Hein De Jong, Katharina Haag, Justine Padovani, Jean-Paul Trouvé, Brigitte Chabbert, Johnny Beaugrand, Sergio Fita, Jörg Müssig, Simon Hawkins, Christophe Pineau, Michael K. Deyholos, Hochschule Bremen (HSB), University of Applied Sciences, Fractionnement des AgroRessources et Environnement (FARE), Université de Reims Champagne-Ardenne (URCA)-Institut National de la Recherche Agronomique (INRA), Composites Department, Plastics Technology Centre-AIMPLAS, St Pierre Le Viger, France, Terre de Lin - Société Coopérative Agricole (Terre De Lin), Linéa Semences de Lin, Linea, Unité de Glycobiologie Structurale et Fonctionnelle UMR 8576 (UGSF), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Université de Lille, Limagrain, Department of Biology, Northern Arizona University [Flagstaff], German Federal Ministry of Education and Research [BMBF] [FKZ: 0315911], French National Research Agency [ANR-10-KBBE-0003], Spanish Ministry of Economy and Competitiveness - General Management of Scientific and Technical Research [PIM2010PICB-00672], Genome Canada, Natural Sciences and Engineering Research Council of Canada, Terre de Lin - Société Coopérative Agricole, Université de Lille-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Fractionnement des AgroRessources et Environnement - UMR-A 614 (FARE), Université de Reims Champagne-Ardenne (URCA)-SFR Condorcet, Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 (UGSF), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Université de Reims Champagne-Ardenne (URCA)-Institut National de la Recherche Agronomique (INRA)-SFR Condorcet, Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS), and Institut National de la Recherche Agronomique (INRA)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
The use of natural fibres such as flax in composite materials is an expanding market sector. Variability potentially exists at many points in the “plant-composite continuum”. In this study, the influence of i) variety, ii) growth year, and iii) processing technique on the mechanical properties of composites was tested. Ten varieties of flax grown in two consecutive years were processed by the following techniques: i) twin-screw extrusion and injection moulding, ii) vacuum assisted resin transfer moulding (VARTM) and iii) pultrusion. These processes differed in the fibre length, fibre orientation and polymer used, and so differed overall in the severity of the fibre treatments. The two repetitions of growing in two subsequent years showed a significant influence on the morphology of the raw fibre bundles and the composite properties processed with VARTM and pultrusion technique. The year effect was overlapped by the severe processing influence using twin-screw extrusion and injection moulding, where no influence of the growing year was detectable in the mechanical properties of the composites and the morphology of the fibre bundles extracted from the composites. Although the use of different processes on the same plant material causes large differences in the mechanical properties of the composites, we could identify plant varieties that showed consistently above average and below average performance with all processing techniques and over two years. This knowledge can be used as a basis for further breeding of flax varieties optimised for composite reinforcement.