191 results on '"Christophe Vergez"'
Search Results
2. Analytical prediction of delayed Hopf bifurcations in a simplified stochastic model of reed musical instruments
- Author
-
Baptiste Bergeot, Christophe Vergez, Dynamique interactions vibrations Structures (DivS), Laboratoire de Mécanique Gabriel Lamé (LaMé), Université d'Orléans (UO)-Université de Tours (UT)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université d'Orléans (UO)-Université de Tours (UT)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA), Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), and Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Control and Systems Engineering ,Applied Mathematics ,Mechanical Engineering ,[NLIN.NLIN-CD]Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD] ,Aerospace Engineering ,Ocean Engineering ,Electrical and Electronic Engineering ,[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] - Abstract
International audience; This paper investigates the dynamic behavior of a simplified single reed instrument model subject to a stochastic forcing of white noise type when one of its bifurcation parameters (the dimensionless blowing pressure) increases linearly over time and crosses the Hopf bifurcation point of its trivial equilibrium position. The stochastic slow dynamics of the model is first obtained by means of the stochastic averaging method. The resulting averaged system reduces to a non-autonomous one-dimensional Itô stochastic differential equation governing the time evolution of the mouthpiece pressure amplitude. Under relevant approximations the latter is solved analytically treating separately cases where noise can be ignored and cases where it cannot. From that, two analytical expressions of the bifurcation parameter value for which the mouthpiece pressure amplitude gets its initial value back are deduced. These special values of the bifurcation parameter characterize the effective appearance of sound in the instrument and are called deterministic dynamic bifurcation point if the noise can be neglected and stochastic dynamic bifurcation point otherwise. Finally, for illustration and validation purposes, the analytical results are compared with direct numerical integration of the model in both deterministic and stochastic situations. In each considered case, a good agreement is observed between theoretical results and numerical simulations, which validates the proposed analysis.
- Published
- 2022
- Full Text
- View/download PDF
3. Amplitude-dependent modal coefficients accounting for localized nonlinear losses in a time-domain integration of woodwind model
- Author
-
Nathan Szwarcberg, Tom Colinot, Christophe Vergez, Michaël Jousserand, Buffet Crampon, Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), and Buffet Group
- Subjects
[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,Speech and Hearing ,Acoustics and Ultrasonics ,clarinet ,musical acoustics ,nonlinear losses ,modal decomposition ,Electrical and Electronic Engineering ,Computer Science Applications - Abstract
International audience; This article develops the design of a sound synthesis model of a woodwind instrument by modal decomposition of the input impedance, taking into account viscothermal losses as well as localized nonlinear losses at the end of the resonator. This formalism has already been applied by Diab et al. (2022) to the study of forced systems. It is now implemented for self-oscillating systems. The employed method extends the denition of the input impedance to the nonlinear domain by adding a dependance on the RMS acoustic velocity at a geometric discontinuity. The poles and residuals resulting from the modal decomposition are interpolated as a function of this velocity. Thus, the pressure-ow relation dened by the resonator is completed by new equations which account for the dependence with the velocity at the end of the tube. To assess the ability of the model to reproduce a real phenomenon, comparisons with the experimental results of Atig et al. (2004) and Dalmont et al. (2007) were carried out. Simulations show that the model reproduces these experimental results qualitatively and quantitatively.; Cet article élabore la conception d'un modèle de synthèse sonore d'un instrument de la famille des bois par décomposition modale de l'impédance d'entrée, en tenant compte des pertes viscothermiques ainsi que des pertes non linéaires localisées à l'extrémité du résonateur. Ce formalisme a déjà été appliqué par Diab et al. (2022) à l'étude des systèmes forcés. Il est maintenant mis en œuvre pour les systèmes auto-oscillants. La méthode employée étend la définition de l'impédance d'entrée au domaine non linéaire, en ajoutant une dépendance à la vitesse acoustique RMS au niveau d'une discontinuité géométrique. Les pôles et les résidus résultant de la décomposition modale sont interpolés en fonction de cette vitesse. Ainsi, la relation pression-débit définie par le résonateur est complétée par de nouvelles équations qui tiennent compte de la dépendance avec la vitesse à l'extrémité du tube. Pour évaluer la capacité du modèle à reproduire un phénomène réel, des comparaisons avec les résultats expérimentaux de Atig et al. (2004) et Dalmont et al. (2007) ont été effectuées. Les simulations montrent que le modèle reproduit qualitativement et quantitativement ces résultats expérimentaux.
- Published
- 2023
4. A nonlinear analytical formulation for the 1D modelling of a flexible beam in channel flow
- Author
-
Filipe Soares, Jose Antunes, Vincent Debut, Christophe Vergez, Bruno Cochelin, Fabrice Silva, Instituto Superior Técnico, Technical University of Lisbon, Instituto Politécnico de Castelo Branco - Polytechnic Institute of Castelo Branco, Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Sons, Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), and Matériaux et Structures (M&S)
- Subjects
Mechanical Engineering ,impact modelling ,[SPI.MECA.VIBR]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Vibrations [physics.class-ph] ,Flow-induced vibration ,beam in axial flow ,nonlinear analytical modeling ,[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] - Abstract
International audience; The dynamics of flexible beams in confined flows has been a subject of research for many years, as its fundamental behaviour is found in many applications, from energy harvesters to musical instruments. Most studies are concerned solely with the conditions for linear stability and do not explore the ensuing nonlinear behaviour of the system. This is particularly delicate as fluttering beams in confined flows are known to often result in dynamics with intermittent impacts between the beam and the side-walls. Here we present a nonlinear analytical resolution to a simplified 1-D model, based on a modal beam and bulk-flow equations. The model accounts for dissipation through distributed frictional and localised head-loss terms. The latter are imposed at the boundary conditions and aims to describe the complex effects occurring outside the domain (turbulence, vortex shedding, etc.). The present analytical resolution leads to a compact system for linear stability analysis, but also to a nonlinear formulation of the fluid-structure interaction. The inclusion of a regularized contact model allows for the computation of the full nonlinear dynamics, including intermittent impacts. Linear stability results are compared to previously published results using 2-D CFD models, and the relative merits of the model are discussed. A variety of limit cycles, (1) with and without impacts, (2) in symmetric and asymmetric configurations and (3) with impacts both at the beam tip and along its length, are shown to illustrate the diversity of dynamics encountered. Moreover, we show that, at large flow velocities, particular model configurations can lead to aperiodic dynamics, a phenomenon reported in several experimental observations. To the authors knowledge, the proposed formulation presents, for the first time, a framework for the comprehensive understanding of the nonlinear dynamics associated with flexible beams in confined axial flow.
- Published
- 2022
- Full Text
- View/download PDF
5. The BRASS Project, from Physical Models to Virtual Musical Instruments: Playability Issues.
- Author
-
Christophe Vergez and Patrice Tisserand
- Published
- 2005
- Full Text
- View/download PDF
6. Nonlinear dynamics of the wolf tone production
- Author
-
Etienne Gourc, Christophe Vergez, Pierre-Olivier Mattei, Samy Missoum, Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), and University of Arizona
- Subjects
Physics ,[PHYS.MECA.VIBR]Physics [physics]/Mechanics [physics]/Vibrations [physics.class-ph] ,Acoustics and Ultrasonics ,Mechanical Engineering ,Wolf tone ,Condensed Matter Physics ,Resonance (particle physics) ,Cello ,String (physics) ,Stability (probability) ,[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] ,Nonlinear system ,Classical mechanics ,Mechanics of Materials ,Piecewise ,Boundary value problem - Abstract
International audience; Some bowed string instruments such as cello or viola are prone to a parasite phenomenon called the wolf tone that gives rise to an undesired warbling sound. It is now accepted that this phenomenon is mainly due to an interaction between a resonance of the body and the motion of the string. A simple model of bowed string instrument consisting of a linear string with a mass-spring boundary condition (modeling the body of the instrument) and excited by Coulomb friction is presented. The eigenproblem analysis shows the presence of a frequency veering phenomenon close to 1 : 1 resonance between the string and the body, giving rise to modal hybridation. Due to the piecewise nature of Coulomb friction, the periodic solutions are computed and continued using a mapping procedure. The analysis of classical as well as non-smooth bifurcations allows us to relate warbling oscillations to the loss of stability of periodic solutions. Finally, a link is made between the bifurcations of periodic solutions and the minimum bow force generally used to explain the appearance of the wolf tone.
- Published
- 2022
- Full Text
- View/download PDF
7. A Galerkin Formulation for the Nonlinear Analysis of a Flexible Beam in Channel Flow
- Author
-
Filipe Soares, Jose Antunes, Vincent Debut, Christophe Vergez, Bruno Cochelin, and Fabrice Silva
- Subjects
History ,Polymers and Plastics ,Mechanical Engineering ,Business and International Management ,Industrial and Manufacturing Engineering - Published
- 2022
- Full Text
- View/download PDF
8. Diversity of ghost notes in tubas, euphoniums and saxhorns
- Author
-
Rémi Mattéoli, Joël Gilbert, Soizic Terrien, Jean-Pierre Dalmont, Christophe Vergez, Sylvain Maugeais, Emmanuel Brasseur, Laboratoire d'Acoustique de l'Université du Mans (LAUM), Le Mans Université (UM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Manceau de Mathématiques (LMM), Le Mans Université (UM), and ANR-11-LABX-0020,LEBESGUE,Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation(2011)
- Subjects
Speech and Hearing ,Acoustics and Ultrasonics ,Classical Physics (physics.class-ph) ,FOS: Physical sciences ,Physics - Classical Physics ,Electrical and Electronic Engineering ,Computer Science Applications ,[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] - Abstract
The ghost note is a natural note which can be played exclusively on bass brass instruments with a predominantly-expanding bore profile such as tubas, euphoniums or saxhorns. It stands between the pedal note-the lowest natural note playable, or first regime-and the instrument's second regime. However, if the interval between the pedal note and the second regime remains close to an octave regardless of the instrument, the interval between the pedal note and the ghost note vary from a minor third to a perfect fourth. References about this note are very scarce, and it is not commonly known among tuba players.This study shows that an elementary brass model describing the player coupled to the instrument is capable of bringing both the ghost and the pedal note to light. Here, we adopt a dynamical systems point of view and perform a bifurcation analysis using a software of numerical continuation. The numerical results provided in terms of frequency intervals between pedal note and ghost note are compared with frequency intervals experimentally inferred from recordings of seven different types of tuba, each of them being played by two professional tuba players., Comment: arXiv admin note: text overlap with arXiv:2112.08751
- Published
- 2022
- Full Text
- View/download PDF
9. Emergence of quasiperiodic regimes in a neutral delay model of flute-like instruments: Influence of the detuning between resonance frequencies
- Author
-
Soizic Terrien, Christophe Vergez, Benoît Fabre, Patricio de la Cuadra, Laboratoire d'Acoustique de l'Université du Mans (LAUM), Le Mans Université (UM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Institut Jean Le Rond d'Alembert (DALEMBERT), and Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,Computational Mathematics ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,Computational Mechanics - Abstract
Musical instruments display a wealth of dynamics, from equilibria (where no sound is produced) to a wide diversity of periodic and non-periodic sound regimes. We focus here on two types of flute-like instruments, namely a recorder and a pre-hispanic Chilean flute. A recent experimental study showed that they both produce quasiperiodic sound regimes which are avoided or played on purpose depending on the instrument. We investigate the generic model of sound production in flute-like musical instruments, a system of neutral delay-differential equations. Using time-domain simulations, we show that it produces stable quasiperiodic oscillations in good agreement with experimental observations. A numerical bifurcation analysis is performed, where both the delay time (related to a control parameter) and the detuning between the resonance frequencies of the instrument – a key parameter for instrument makers – are considered as bifurcation parameters. This demonstrates that the large detuning that is characteristic of prehispanic Chilean flutes plays a crucial role in the emergence of stable quasiperiodic oscillations.
- Published
- 2022
- Full Text
- View/download PDF
10. Characterization of open woodwind toneholes by the tube reversed method
- Author
-
Philippe Guillemain, J. Kergomard, Michael Jousserand, H. Garcia Mayén, Patrick Sanchez, Christophe Vergez, M. Pachebat, Buffet Group, Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Kergomard, Jean, Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), and Association Nationale de la Recherche et la Technologie, PhD grant of Héctor Garcia Mayén(CONVENTION CIFRE N° 2017 1600
- Subjects
Work (thermodynamics) ,Materials science ,Acoustics and Ultrasonics ,Shunt impedance ,[PHYS.PHYS.PHYS-GEN-PH] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,Acoustics ,PACS 43.75 ,Tonehole ,01 natural sciences ,acoustic impedance ,03 medical and health sciences ,0302 clinical medicine ,Arts and Humanities (miscellaneous) ,Robustness (computer science) ,0103 physical sciences ,030223 otorhinolaryngology ,010301 acoustics ,Electrical impedance ,[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,[PHYS.MECA.VIBR]Physics [physics]/Mechanics [physics]/Vibrations [physics.class-ph] ,[SPI.ACOU] Engineering Sciences [physics]/Acoustics [physics.class-ph] ,Series (mathematics) ,Woodwind instruments Musical acoustics ,Input impedance ,Physics::Classical Physics ,Symmetry (physics) ,[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] ,Woodwind ,Physics::Accelerator Physics ,Undercut ,simulations - Abstract
Woodwind tonehole's linear behavior is characterized by two complex quantities: the series and shunt acoustic impedances. A method to determine experimentally these two quantities is presented for the case of open toneholes. It is based on two input impedance measurements. The method can be applied to clarinet-like instruments, and can be used for undercut toneholes as well as toneholes with pads above their output, under the condition that a symmetry axis exists. The robustness of the method proposed is explored numerically through the simulation of the experiment when considering geometrical and measurement uncertainties. Experimental results confirm the relevance of the method proposed to estimate the shunt impedance. Even the effect of small changes in the hole's geometry, such as those induced by undercutting, are characterized experimentally. The main effect of undercutting is shown to be a decrease in the tonehole's acoustic mass, in agreement with theoretical considerations based on the shape of the tonehole. Investigation on the effects of pads will be studied in a further work. Experimental results also reveal that losses in toneholes are significantly higher than those predicted by the theory. Therefore, the method is suitable for the experimental determination of the shunt impedance, but it is not convenient for the characterization of the series impedance.
- Published
- 2021
- Full Text
- View/download PDF
11. Trumpet and Trumpet Player: a Highly nonlinear Interaction studied in the Framework of nonlinear Dynamics.
- Author
-
Christophe Vergez and Xavier Rodet
- Published
- 2001
- Full Text
- View/download PDF
12. Nonlinear Dynamics in Physical Models: From Basic Models to True Musical-Instrument Models.
- Author
-
Xavier Rodet and Christophe Vergez
- Published
- 1999
- Full Text
- View/download PDF
13. Nonlinear Dynamics in Physical Models: Simple Feedback-Loop Systems and Properties.
- Author
-
Xavier Rodet and Christophe Vergez
- Published
- 1999
- Full Text
- View/download PDF
14. A Taylor series-based continuation method for solutions of dynamical systems
- Author
-
Louis Guillot, Bruno Cochelin, Christophe Vergez, Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), and Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Dynamical systems theory ,Computer science ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,MathematicsofComputing_NUMERICALANALYSIS ,Aerospace Engineering ,Ocean Engineering ,01 natural sciences ,symbols.namesake ,Quadratic equation ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION ,0103 physical sciences ,Taylor series ,Applied mathematics ,Electrical and Electronic Engineering ,010301 acoustics ,Bifurcation ,Applied Mathematics ,Mechanical Engineering ,Numerical analysis ,Range (mathematics) ,Nonlinear system ,Control and Systems Engineering ,symbols ,Transient (oscillation) ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
International audience; This paper describes a generic Taylor series based continuation method, the so-called Asymptotic Numerical Method, to compute the bifurcation diagrams of nonlinear systems. The key point of this approach is the quadratic recast of the equations as it allows to treat in the same way a wide range of dynamical systems and their solutions. Implicit Differential-Algebraic Equations, forced or autonomous, possibly with time-delay or fractional order derivatives are handled in the same framework. The static, periodic and quasi-periodic solutions can be continued as well as transient solutions.
- Published
- 2019
- Full Text
- View/download PDF
15. Experimental analysis of non-periodic sound regimes in flute-like musical instruments
- Author
-
Benoît Fabre, Christophe Vergez, Patricio de la Cuadra, Soizic Terrien, Laboratoire d'Acoustique de l'Université du Mans (LAUM), Le Mans Université (UM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Centro de Investigacion en Tecnologias de Audio (CITA), Pontificia Universidad Católica de Chile (UC), Institut Jean Le Rond d'Alembert (DALEMBERT), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Le Mans Université (UM)
- Subjects
geography ,geography.geographical_feature_category ,Acoustics and Ultrasonics ,Computer science ,Acoustics ,Context (language use) ,Flute ,Musical ,Sound production ,01 natural sciences ,[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] ,Nonlinear dynamical systems ,03 medical and health sciences ,0302 clinical medicine ,Arts and Humanities (miscellaneous) ,Quasiperiodic function ,0103 physical sciences ,030223 otorhinolaryngology ,010301 acoustics ,Sound (geography) - Abstract
International audience; Self-sustained musical instruments are complex nonlinear dynamical systems that are known to produce a wealth of dynamical regimes. This includes different kinds of non-periodic sounds, which are either played on purpose or avoided depending on the cultural and musical context. We investigate non-periodic sounds produced by two types of flute-like instruments, namely, an alto recorder and traditional pan-like flutes from Central Chile. We adopt a nonlinear dynamics point of view to characterize the multiphonics produced by the alto recorder and the sonidos rajados produced by the Chilean flutes. Our results unveil the common quasiperiodic nature of the two types of sound regimes and suggest that they result from a similar physical sound production mechanism. This paves the way for a better control of non-periodic sound regimes by the instrument makers.
- Published
- 2021
- Full Text
- View/download PDF
16. Use of physical-model synthesis for developing experimental techniques in ethnomusicology - The case of the Ouldémé flute.
- Author
-
Patricio de la Cuadra, Christophe Vergez, and René Caussé
- Published
- 2002
17. Multistability of saxophone oscillation regimes and its influence on sound production
- Author
-
Jean-Baptiste Doc, Philippe Guillemain, Christophe Vergez, Tom Colinot, Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mécanique des Structures et des Systèmes Couplés (LMSSC), Conservatoire National des Arts et Métiers [CNAM] (CNAM), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM), and Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)
- Subjects
sound synthesis ,Range (music) ,Acoustics and Ultrasonics ,QC221-246 ,numerical continuation ,01 natural sciences ,harmonic balance method ,03 medical and health sciences ,Speech and Hearing ,Resonator ,Harmonic balance ,[SPI]Engineering Sciences [physics] ,0302 clinical medicine ,saxophone ,0103 physical sciences ,Statistical physics ,Electrical and Electronic Engineering ,030223 otorhinolaryngology ,010301 acoustics ,Multistability ,Mathematics ,attraction basins ,Acoustics in engineering. Acoustical engineering ,Oscillation ,Acoustics. Sound ,Computer Science Applications ,[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] ,Numerical continuation ,Register (music) ,TA365-367 ,Inharmonicity - Abstract
The lowest fingerings of the saxophone can lead to several different regimes, depending on the musician’s control and the characteristics of the instrument. This is explored in this paper through a physical model of saxophone. The harmonic balance method shows that for many combinations of musician control parameters, several regimes are stable. Time-domain synthesis is used to show how different regimes can be selected through initial conditions and the initial evolution (rising time) of the blowing pressure, which is explained by studying the attraction basin of each stable regime. These considerations are then applied to study how the produced regimes are affected by properties of the resonator. The inharmonicity between the first two resonances is varied in order to find the value leading to the best suppression of unwanted overblowing. Overlooking multistability in this description can lead to biased conclusions. Results for all the lowest fingerings show that a slightly positive inharmonicity, close to that measured on a saxophone, leads to first register oscillations for the greatest range of control parameters. A perfect harmonicity (integer ratio between the first two resonances) decreases first register production, which adds nuance to one of Benade’s guidelines for understanding sound production. Thus, this study provides some a posteriori insight into empirical design choices relative to the saxophone.
- Published
- 2021
- Full Text
- View/download PDF
18. Trumpet and Trumpet Player: Model and Simulation in a Musical Context.
- Author
-
Christophe Vergez and Xavier Rodet
- Published
- 2001
19. Air Flow Related Improvements for Basic Physical Models of Brass Instruments.
- Author
-
Christophe Vergez and Xavier Rodet
- Published
- 2000
20. Friction and Application to Real-time Physical Modeling of a Violin.
- Author
-
Stefania Serafin, Christophe Vergez, and Xavier Rodet
- Published
- 1999
21. Inversion of a Physical Model of a Trumpet.
- Author
-
Thomas Hélie, Christophe Vergez, Jean Lévine, and Xavier Rodet
- Published
- 1999
22. Woodwind instrument design optimization based on impedance characteristics with geometric constraints
- Author
-
Christophe Vergez, Augustin Ernoult, Michael Jousserand, Philippe Guillemain, Samy Missoum, Advanced 3D Numerical Modeling in Geophysics (Magique 3D), Laboratoire de Mathématiques et de leurs Applications [Pau] (LMAP), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS)-Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Sons, Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), University of Arizona, Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), Buffet Group, This work has been partly supported by the french Agence Nationale de la Recherche (ANR16-LCV2-0007-01 Liamfi project), in cooperation with Buffet Crampon., Centre National de la Recherche Scientifique (CNRS)-Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS)-Université de Pau et des Pays de l'Adour (UPPA)-Inria Bordeaux - Sud-Ouest, Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), and Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,Optimization problem ,Acoustics and Ultrasonics ,Computer science ,Acoustics ,Resonance ,Input impedance ,01 natural sciences ,Bore profile optimization ,Musical acoustics ,03 medical and health sciences ,0302 clinical medicine ,Amplitude ,Geometric design ,Arts and Humanities (miscellaneous) ,0103 physical sciences ,Woodwind instruments ,Musical instrument design ,030223 otorhinolaryngology ,Instrument design ,Impedance characteristics ,010301 acoustics ,Electrical impedance - Abstract
Computational optimization algorithms coupled with acoustic models of wind instruments provide instrument makers with an opportunity to explore new designs. Specifically, they enable the automatic discovery of geometries exhibiting desired resonance characteristics. In this paper, the design optimization of woodwind instruments with complex geometrical features (e.g., non-cylindrical bore profile and side holes with various radii and chimney heights) is investigated. Optimal geometric designs are searched so that their acoustic input impedance has peaks with specific target frequencies and amplitudes. However, woodwind instruments exhibit complex input impedance whose features, such as resonances, might have non-smooth evolution with respect to design variables, thus hampering gradient-based optimization. For this reason, this paper introduces new formulations of the impedance characteristics (resonance frequencies and amplitudes) using a regularized unwrapped angle of the reflection function. The approach is applied to an illustrative instrument subjected to geometric constraints similar to the ones encountered by manufacturers (a key-less pentatonic clarinet with two-registers). Three optimization problems are considered, demonstrating a strategy to simultaneously adjust several impedance characteristics on all fingerings.
- Published
- 2020
- Full Text
- View/download PDF
23. Numerical continuation of a physical model of brass instruments: Application to trumpet comparisons
- Author
-
Vincent Fréour, Christophe Vergez, Louis Guillot, Yutaka Tohgi, Bruno Cochelin, Satoshi Usa, Hideyuki Masuda, Eiji Tominaga, and Yamaha Corporation
- Subjects
Acoustics and Ultrasonics ,Basis (linear algebra) ,Dynamic range ,Numerical analysis ,Mathematical analysis ,[PHYS.MECA]Physics [physics]/Mechanics [physics] ,Input impedance ,Space (mathematics) ,01 natural sciences ,[SPI]Engineering Sciences [physics] ,03 medical and health sciences ,Harmonic balance ,Continuation ,0302 clinical medicine ,Numerical continuation ,Arts and Humanities (miscellaneous) ,0103 physical sciences ,030223 otorhinolaryngology ,010301 acoustics ,Mathematics - Abstract
International audience; The system formed by a trumpet player and his/her instrument can be seen as a non-linear dynamical system, and modeled by physical equations. Numerical tools can then be used to study these models and clarify the influence of the model parameters. The acoustic input impedance, for instance, is strongly dependent on the geometry of the air column and is therefore of primary interest for a musical instrument maker. In this study, a method of continuation of periodic solutions based on the combination of the Harmonic Balance Method (HBM) and the Asymptotic Numerical Method (ANM), is applied to a physical model of brass instruments. It allows the study of the evolution of the system where one parameter of the model (static mouth pressure) varies. This method is used to compare different B trumpets on the basis of two descriptors (hysteresis behavior and dynamic range) computed from the continuation outputs. Results show that this methodology enables to differentiate instruments in the space of the calculated descriptors. Calculations for different values of the lip parameters are also performed to confirm that the obtained categorization is independent of variations of lip parameters.
- Published
- 2020
- Full Text
- View/download PDF
24. A purely frequency based Floquet-Hill formulation for the efficient stability computation of periodic solutions of ordinary differential systems
- Author
-
Olivier Thomas, Christophe Vergez, Louis Guillot, Bruno Cochelin, Arnaud Lazarus, Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Institut Jean Le Rond d'Alembert (DALEMBERT), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d’Ingénierie des Systèmes Physiques et Numériques (LISPEN), Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), Sons, Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), and HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)
- Subjects
Floquet theory ,Physics and Astronomy (miscellaneous) ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,010103 numerical & computational mathematics ,01 natural sciences ,Mécanique: Vibrations [Sciences de l'ingénieur] ,symbols.namesake ,Harmonic balance ,Bifurcations ,Quadratic equation ,Floquet multipliers ,Taylor series ,Applied mathematics ,Time domain ,0101 mathematics ,Mécanique: Mécanique des structures [Sciences de l'ingénieur] ,Fourier series ,Stability analysis of periodic solutions ,Mathematics ,Numerical Analysis ,Numerical analysis ,Applied Mathematics ,Hill's method ,[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph] ,Computer Science Applications ,Asymptotic Numerical Method ,010101 applied mathematics ,Computational Mathematics ,Frequency domain ,Modeling and Simulation ,Quadratic nonlinearities recast ,symbols ,Backbone curve ,Harmonic Balance Method - Abstract
International audience; Since the founding theory established by G. Floquet more than a hundred years ago, computing the stability of periodic solutions has given rise to various numerical methods, mostly depending on the way the periodic solutions are themselves determined , either in the time domain or in the frequency domain. In this paper, we address the stability analysis of branches of periodic solutions that are computed by combining a pure Harmonic Balance Method (HBM) with an Asymptotic Numerical Method (ANM). HBM is a frequency domain method for determining periodic solutions under the form of Fourier series and ANM is continuation technique that relies on high order Taylor series expansion of the solutions branches with respect to a path parameter. It is well established now that this HBM-ANM combination is efficient and reliable, provided that the system of ODE is first of all recasted with quadratic nonlinearities, allowing an easy manipulation of both the Taylor and the Fourier series. In this context, Hill's method, a frequency domain version of Floquet theory, is revisited so as to become a by-product of the HBM applied to a quadratic system, allowing the stability analysis to be implemented in an elegant way and with good computing performances. The different types of stability changes of periodic solutions are all explored and illustrated through several academic examples, including systems that are autonomous or not, conservative or not, free or forced.
- Published
- 2020
- Full Text
- View/download PDF
25. Multiple two-step oscillation regimes produced by the alto saxophone
- Author
-
Patrick Sanchez, Christophe Vergez, Philippe Guillemain, Jean-Baptiste Doc, Tom Colinot, Sons, Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Institut Jean le Rond d'Alembert (DALEMBERT), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Langages et Systèmes Parallèles (LSP), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mécanique des Structures et des Systèmes Couplés (LMSSC), Conservatoire National des Arts et Métiers [CNAM] (CNAM), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-INRIA Rennes, and Institut National de Recherche en Informatique et en Automatique (Inria)
- Subjects
Physics ,[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,Acoustics and Ultrasonics ,Oscillation ,Two step ,Mechanics ,Input impedance ,01 natural sciences ,03 medical and health sciences ,Harmonic balance ,0302 clinical medicine ,Arts and Humanities (miscellaneous) ,Closure (computer programming) ,0103 physical sciences ,C++ string handling ,030223 otorhinolaryngology ,Sound pressure ,010301 acoustics ,ComputingMilieux_MISCELLANEOUS ,Communication channel - Abstract
International audience; A saxophone mouthpiece fitted with sensors is used to observe the oscillation of a saxophone reed, as well as the internal acoustic pressure, allowing to identify qualitatively different oscillating regimes. In addition to the standard two-step regime, where the reed channel successively opens and closes once during an oscillation cycle, the experimental results show regimes featuring two closures of the reed channel per cycle, as well as inverted regimes, where the reed closure episode is longer than the open episode. These regimes are well-known on bowed string instruments and some were already described on the Uilleann pipes. A simple saxophone model using measured input impedance is studied with the harmonic balance method, and is shown to reproduce the same two-step regimes. The experiment shows qualitative agreement with the simulation: in both cases, the various regimes appear in the same order as the blowing pressure is increased. Similar results are obtained with other values of the reed opening control parameter, as well as another fingering.
- Published
- 2020
- Full Text
- View/download PDF
26. Comparison of Real Trumpet Playing, Latex Model of Lips and Computer Model.
- Author
-
Christophe Vergez and Xavier Rodet
- Published
- 1997
27. Physical Models of Trumpet-like Instruments, Detailed Behavior and Model Improvements.
- Author
-
Xavier Rodet and Christophe Vergez
- Published
- 1996
28. Constrained continuation of a physical model of brass instrument
- Author
-
Louis Guillot, Christophe Vergez, Hideyuki Masuda, Vincent Fréour, and Bruno Cochelin
- Subjects
Brass ,Continuation ,Acoustics and Ultrasonics ,Arts and Humanities (miscellaneous) ,visual_art ,visual_art.visual_art_medium ,Mechanical engineering ,Geology - Published
- 2021
- Full Text
- View/download PDF
29. Optimization under uncertainty of parallel nonlinear energy sinks
- Author
-
Christophe Vergez, Samy Missoum, Pierre-Olivier Mattei, and Ethan Boroson
- Subjects
Optimal design ,Mathematical optimization ,Work (thermodynamics) ,Acoustics and Ultrasonics ,Mechanical Engineering ,02 engineering and technology ,Expected value ,Condensed Matter Physics ,01 natural sciences ,Vibration ,Nonlinear system ,020303 mechanical engineering & transports ,0203 mechanical engineering ,Mechanics of Materials ,Control theory ,Tuned mass damper ,0103 physical sciences ,Range (statistics) ,010301 acoustics ,Computer Science::Databases ,Energy (signal processing) ,Mathematics - Abstract
Nonlinear Energy Sinks (NESs) are a promising technique for passively reducing the amplitude of vibrations. Through nonlinear stiffness properties, a NES is able to passively and irreversibly absorb energy. Unlike the traditional Tuned Mass Damper (TMD), NESs do not require a specific tuning and absorb energy over a wider range of frequencies. Nevertheless, they are still only efficient over a limited range of excitations. In order to mitigate this limitation and maximize the efficiency range, this work investigates the optimization of multiple NESs configured in parallel. It is well known that the efficiency of a NES is extremely sensitive to small perturbations in loading conditions or design parameters. In fact, the efficiency of a NES has been shown to be nearly discontinuous in the neighborhood of its activation threshold. For this reason, uncertainties must be taken into account in the design optimization of NESs. In addition, the discontinuities require a specific treatment during the optimization process. In this work, the objective of the optimization is to maximize the expected value of the efficiency of NESs in parallel. The optimization algorithm is able to tackle design variables with uncertainty (e.g., nonlinear stiffness coefficients) as well as aleatory variables such as the initial velocity of the main system. The optimal design of several parallel NES configurations for maximum mean efficiency is investigated. Specifically, NES nonlinear stiffness properties, considered random design variables, are optimized for cases with 1, 2, 3, 4, 5, and 10 NESs in parallel. The distributions of efficiency for the optimal parallel configurations are compared to distributions of efficiencies of non-optimized NESs. It is observed that the optimization enables a sharp increase in the mean value of efficiency while reducing the corresponding variance, thus leading to more robust NES designs.
- Published
- 2017
- Full Text
- View/download PDF
30. Numerical optimization of a bicylindrical resonator impedance: differences and common features between a saxophone resonator and a bicylindrical resonator
- Author
-
Jean-Baptiste Doc, Philippe Guillemain, Michael Jousserand, Tom Colinot, Christophe Vergez, Sons, Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mécanique des Structures et des Systèmes Couplés (LMSSC), Conservatoire National des Arts et Métiers [CNAM] (CNAM), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM), Buffet Group, Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), and Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)
- Subjects
Physics ,Acoustics and Ultrasonics ,Acoustics ,[PHYS.MECA]Physics [physics]/Mechanics [physics] ,01 natural sciences ,[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] ,03 medical and health sciences ,Resonator ,0302 clinical medicine ,0103 physical sciences ,030223 otorhinolaryngology ,010301 acoustics ,Electrical impedance ,Music - Abstract
International audience; This paper explores the analogy between a saxophone resonator and a bicylindrical resonator, sometimes called transverse saxophone or cylindrical saxophone. The dimensions of a bicylindrical resonator are optimized numerically to approximate a saxophone impedance. The target is the impedance measured on an usual saxophone. A classical gradient-based non-linear least-square fit function is used. Several cost functions corresponding to distances to the target impedance are assessed, according to their influence on the optimal geometry. Compromises appear between the frequency regions depending on the cost function. It is shown that the chosen cost functions are differentiable and locally convex. The convexity region contains the initial geometrical dimensions obtained by crude approximation of the first resonance frequency of the target. One optimal geometry is submitted to further analysis using descriptors of the impedance. Its deviations from the target saxophone are put into perspective with the discrepancies between the target saxophone and a saxophone from a different manufacture. Descriptors such as harmonicity or impedance peak ratio set the bicylindrical resonator apart from saxophone resonators, despite a good agreement of the resonance frequencies. Therefore, a reed instrument with a bicylindrical resonator could be tuned to produce the same notes as a saxophone, but due to differences in the intrinsic characteristics of the resonator, it should be considered not as a saxophone but as a distinct instrument.
- Published
- 2019
- Full Text
- View/download PDF
31. Numerical analysis and comparison of brass instruments by continuation
- Author
-
Vincent Fréour, Hideyuki Masuda, Satoshi Usa, Eiji Tominaga, Yutaka Tohgi, Bruno Cochelin, Christophe Vergez, Yamaha Corporation, Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), and Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
brass instruments ,continuation ,physical modelling ,[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] - Abstract
International audience; Brass instrument design has long been relying on empirical know-how, build up over the years by the craftsmen. Some relationships between the air-column geometry, the intonation and some attributes of sound color have been formalized through this process by the makers. However, many properties of the instrument, related to timbre, dynamic range, playability, etc. are still very difficult to correlate to the design. Alongside these issues and important questions for the craftsmen, the knowledge in the acoustics of musical instruments has extensively improved in the last decades, benefiting especially from cutting edge engineering methods for the analysis of dynamic systems. In this presentation, we will detail some applications of stability analysis and continuation (Asymptotic Numerical Method), to physical models of trumpets. This approach aims to clarify differences between instruments on the basis of calculated performance descriptors. On a longer term, our goal is to include these technologies in the development of new instruments, by providing some virtual performance analyzers for the design of brass instruments.
- Published
- 2019
32. Comparison of ANM and Predictor-Corrector Method to Continue Solutions of Harmonic Balance Equations
- Author
-
Malte Krack, Jonas Kappauf, Christophe Vergez, Lukas Woiwode, Louis Guillot, Nidish Narayanaa Balaji, Aurélien Grolet, Bruno Cochelin, Fabia Tubita, University of Kassel, Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), École Centrale de Marseille (ECM), Laboratoire des Sciences de l'Information et des Systèmes (LSIS), Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Paristech ENSAM Aix-en-Provence-Université de Toulon (UTLN)-Aix Marseille Université (AMU), Universität Stuttgart [Stuttgart], Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), and Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Arts et Métiers Paristech ENSAM Aix-en-Provence-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Predictor–corrector method ,Polynomial ,Computer science ,asymptotic numerical method ,Unilateral contact ,nonlinear vibrations ,02 engineering and technology ,01 natural sciences ,Harmonic balance ,Mécanique: Vibrations [Sciences de l'ingénieur] ,symbols.namesake ,0203 mechanical engineering ,alternating frequency-time scheme ,Taylor series ,Asymptotic numerical method ,Applied mathematics ,[NLIN]Nonlinear Sciences [physics] ,0101 mathematics ,Mécanique [Sciences de l'ingénieur] ,Numerical analysis ,Harmonic Balance ,Continuation ,[SPI.MECA.VIBR]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Vibrations [physics.class-ph] ,Nonlinear vibrations ,010101 applied mathematics ,Algebraic equation ,020303 mechanical engineering & transports ,symbols ,Alternating frequency-time scheme ,continuation ,Series expansion - Abstract
International audience; In this work we apply and compare two numerical path continuation algorithms for solving algebraic equations arising when applying the Harmonic Balance Method to compute periodic regimes of nonlinear dynamical systems. The first algorithm relies on a predictor-corrector scheme and an Alternating Frequency-Time approach. This algorithm can be applied directly also to non-analytic nonlinearities. The second algorithm relies on a high-order Taylor series expansion of the solution path (the so-called Asymptotic Numerical Method) and can be formulated entirely in the frequency domain. The series expansion can be viewed as a high-order predictor equipped with inherent error estimation capabilities, which permits to avoid correction steps. The second algorithm is limited to analytic nonlinearities, and typically additional variables need to be introduced to cast the equation system into a form that permits the efficient computation of the required high- order derivatives. We apply the algorithms to selected vibration problems involving mechanical systems with polynomial stiffness, dry friction and unilateral contact nonlinearities. We assess the influence of the algorithmic parameters of both methods to draw a picture of their differences and similarities. We analyze the computational performance in detail, to identify bottlenecks of the two methods.
- Published
- 2019
- Full Text
- View/download PDF
33. Continuation of periodic solutions of various types of Delay Differential Equations using Asymptotic Numerical Method and Harmonic Balance Method
- Author
-
Christophe Vergez, Louis Guillot, Bruno Cochelin, Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), Sons, Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), Matériaux et Structures (M&S), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), and Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Van der Pol oscillator ,Applied Mathematics ,Mechanical Engineering ,Numerical analysis ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,Aerospace Engineering ,Ocean Engineering ,010103 numerical & computational mathematics ,Delay differential equation ,System of linear equations ,01 natural sciences ,[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] ,Harmonic balance ,Continuation ,Quadratic equation ,Control and Systems Engineering ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,0103 physical sciences ,Applied mathematics ,0101 mathematics ,Electrical and Electronic Engineering ,010301 acoustics ,Bifurcation ,Mathematics ,[INFO.INFO-MS]Computer Science [cs]/Mathematical Software [cs.MS] - Abstract
International audience; This article presents an extension of the Asymptotic Numerical Method combined with the Harmonic Balance Method to the continuation of periodic orbits of Delay Differential Equations. The equations can be forced or autonomous and possibly of neutral type. The approach developed in this paper requires the system of equations to be written in a quadratic formalism which is detailed. The method is applied to various systems, from Van der Pol and Duffing os-cillators to toy models of clarinet and saxophone. The Harmonic Balance Method is ascertained from a comparison to standards time-integration solvers. Bifurcation diagrams are drawn which are sometimes intricate, showing the robustness of this method.
- Published
- 2019
- Full Text
- View/download PDF
34. A generic and efficient Taylor series based continuation method using a quadratic recast of smooth nonlinear systems
- Author
-
Louis Guillot, Christophe Vergez, Bruno Cochelin, Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Matériaux et Structures (M&S), and Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Computer science ,finite element method ,asymptotic numerical method ,02 engineering and technology ,01 natural sciences ,symbols.namesake ,Continuation ,Quadratic equation ,0203 mechanical engineering ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,Taylor series ,Applied mathematics ,0101 mathematics ,[INFO.INFO-MS]Computer Science [cs]/Mathematical Software [cs.MS] ,Quadratic growth ,Numerical Analysis ,Transcendental function ,Applied Mathematics ,Numerical analysis ,General Engineering ,Finite element method ,010101 applied mathematics ,Nonlinear system ,020303 mechanical engineering & transports ,[SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Structural mechanics [physics.class-ph] ,quadratic recast ,symbols ,nonlinear systems ,continuation - Abstract
International audience; This paper is concerned with a Taylor series based continuation algorithm, ie, the so-called Asymptotic Numerical Method (ANM). It describes a generic continuation procedure that apply the ANM principle at best, that is to say, that presents a high level of genericity without paying the price of this genericity by low computing performances. The way to quadratically recast a system of equation is now part of the method itself, and the way to handle elementary transcendental function is detailed with great attention. A sparse tensorial formalism is introduced for the internal representation of the system, which, when combines with a block condensation technique, provides a good computational efficiency of the ANM. Three examples are developed to show the performance and the versatility of the implementation of the continuation tool. Its robustness and its accuracy are explored. Finally, the potentiality of this method for complex non linear finite element analysis is enlightened by treating 2D elasticity problem with geometrical nonlinearities.
- Published
- 2019
- Full Text
- View/download PDF
35. Role of the resonator geometry on the pressure spectrum of reed conical instruments
- Author
-
Christophe Vergez, Philippe Guillemain, Jean Kergomard, Sami Karkar, Patrick Sanchez, Bruno Gazengel, Jean-Pierre Dalmont, Sons, Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Langages et Systèmes Parallèles (LSP), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Acoustique de l'Université du Mans (LAUM), Le Mans Université (UM)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Tribologie et Dynamique des Systèmes (LTDS), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Ecole Nationale d'Ingénieurs de Saint Etienne (ENISE)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), Centre National de la Recherche Scientifique (CNRS)-Le Mans Université (UM), and Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Ecole Nationale d'Ingénieurs de Saint Etienne-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,Acoustics and Ultrasonics ,Oscillation ,Computation ,Acoustics ,Input impedance ,Conical surface ,01 natural sciences ,[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,03 medical and health sciences ,Resonator ,symbols.namesake ,0302 clinical medicine ,Harmonics ,Helmholtz free energy ,0103 physical sciences ,symbols ,030223 otorhinolaryngology ,010301 acoustics ,Music ,Mouthpiece - Abstract
International audience; Spectra of musical instruments exhibit formants or anti-formants which are important characteristics of the sounds produced. In the present paper, it is shown that anti-formants exist in the spectrum of the mouthpiece pressure of saxophones. Their frequencies are not far but slightly higher than the natural frequencies of the truncated part of the cone. To determine these frequencies, a first step is the numerical determination of the playing frequency by using a simple oscillation model. An analytical analysis exhibits the role of the inharmonicity due to the cone truncation and the mouthpiece. A second step is the study of the input impedance values at the harmonics of the playing frequency. As a result, the consideration of the playing frequency for each note explains why the anti-formants are wider than those resulting from a Helmholtz motion observed for a bowed string. Finally numerical results for the mouthpiece spectrum are compared to experiments for three saxophones (soprano, alto and baritone). It is shown that when scaled by the length of the missing cone, the anti-formant frequencies in the mouthpiece are very similar for the three instruments. The frequencies given by the model are close to the natural frequencies of the missing cone length, but slightly higher. Finally, the numerical computation shows that anti-formants and formants might be found in the radiated pressure.
- Published
- 2019
- Full Text
- View/download PDF
36. A Taylor series based continuation method for the periodic solutions of a wide range of dynamical systems
- Author
-
Louis Guillot, Bruno Cochelin, Christophe Vergez, Vergez, Christophe, Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), École Centrale de Marseille (ECM), and Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[NLIN] Nonlinear Sciences [physics] ,[NLIN]Nonlinear Sciences [physics] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2019
37. Continuation of periodic solutions for systems with fractional derivatives
- Author
-
Christophe Vergez, Bruno Lombard, Pierre Vigué, Bruno Cochelin, Sons, Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), and Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)
- Subjects
Hopf bifurcation ,[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,Applied Mathematics ,Mechanical Engineering ,Numerical analysis ,Aerospace Engineering ,Ocean Engineering ,01 natural sciences ,Fractional calculus ,Nonlinear system ,Harmonic balance ,symbols.namesake ,Control and Systems Engineering ,0103 physical sciences ,symbols ,Applied mathematics ,Electrical and Electronic Engineering ,Constant (mathematics) ,Representation (mathematics) ,010301 acoustics ,Bifurcation ,Mathematics - Abstract
International audience; This paper addresses the numerical computation of periodic solutions of nonlinear differential systems involving fractional derivatives. For this purpose, the Harmonic Balance Method and the Asymptotic Numerical Method are combined, generalizing an approach largely followed in non-fractional systems. This enables to perform the continuation of periodic solutions of fractional systems with respect to a system parameter or to the fractional order. In the particular case of a constant fractional order, the results are validated by a successful comparison with an alternative formulation based on the diffusive representation of fractional operators. The new numerical strategy presented here allows to simulate phenomena still lacking from theoretical foundations. For example, the numerical experiments proposed here lead to a bifurcation similar to the Hopf bifurcation, well known in the case of non-fractional systems. Throughout this article, the Weyl derivative is used; its link with the classic Caputo derivative is elucidated.
- Published
- 2019
- Full Text
- View/download PDF
38. From the bifurcation diagrams to the ease of playing of reed musical instruments. Application to a reed-like instrument having two quasi-harmonic resonances
- Author
-
Joel Gilbert, Sylvain Maugeais, Christophe Vergez, Gilbert, Joël, Laboratoire d'Acoustique de l'Université du Mans (LAUM), Le Mans Université (UM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Manceau de Mathématiques (LMM), Le Mans Université (UM), Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Le Mans Université (UM)
- Subjects
[PHYS.MECA.ACOU] Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] ,[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] - Abstract
International audience; A reed-like instrument having two quasi-harmonic resonances, represented by a 4-dimensional dynamical system, is studied using the continuation and bifurcation software AUTO. Bifurcation diagrams are explored with respect to the blowing pressure, with focus on amplitude and frequency evolutions along the different solution branches.
- Published
- 2019
39. Fonctionnement des instruments à vent : le point de vue du physicien
- Author
-
Fabrice Silva, Christophe Vergez, Silva, Fabrice, Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), Sons, Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), and Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS] ,[PHYS.MECA.ACOU] Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] ,ComputingMilieux_MISCELLANEOUS ,[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] - Abstract
National audience
- Published
- 2019
40. Computing nonlinear modes of geometrically nonlinear structures
- Author
-
Bruno Cochelin, Louis Guillot, Christophe Vergez, Vergez, Christophe, École Centrale de Marseille (ECM), Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), and Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[NLIN] Nonlinear Sciences [physics] ,[NLIN]Nonlinear Sciences [physics] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2019
41. Sound production on a 'coaxial saxophone'
- Author
-
Christophe Vergez, Philippe Guillemain, Jean-Baptiste Doc, Jean Kergomard, Laboratoire de Mécanique des Structures et des Systèmes Couplés (LMSSC), Conservatoire National des Arts et Métiers [CNAM] (CNAM), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM), Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Sons, Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), and Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)
- Subjects
Physics ,Acoustics and Ultrasonics ,Acoustics ,Conical surface ,Sound production ,01 natural sciences ,[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] ,Musical acoustics ,03 medical and health sciences ,Resonator ,0302 clinical medicine ,Arts and Humanities (miscellaneous) ,0103 physical sciences ,Limit (music) ,Physics::Accelerator Physics ,Coaxial ,030223 otorhinolaryngology ,010301 acoustics ,Electrical impedance ,Mouthpiece - Abstract
International audience; Sound production on a " coaxial saxophone " is investigated experimentally. The coaxial saxophone is a variant of the cylindrical saxophone made up of two tubes mounted in parallel, which can be seen as a low-frequency analogy of a truncated conical resonator with a mouthpiece. Initially developed for the purposes of theoretical analysis, an experimental verification of the analogy between conical and cylindrical saxophones has never been reported. The present paper explains why the volume of the cylindrical saxophone mouthpiece limits the achievement of a good playability. To limit the mouthpiece volume, a coaxial alignment of pipes is proposed and a prototype of coaxial saxophone is built. An impedance model of coaxial resonator is proposed and validated by comparison with experimental data. Sound production is also studied through experiments with a blowing machine. The playability of the prototype is then assessed and proven for several values of the blowing pressure, of the embouchure parameter, and of the instrument's geometrical parameters.
- Published
- 2016
- Full Text
- View/download PDF
42. Comparison of two algorithms for Harmonic Balance and path continuation
- Author
-
Bruno Cochelin, Fabia Tubita, Jonas Kappauf, Nidish Narayanaa Balaji, Lukas Woiwode, Christophe Vergez, Aurélien Grolet, Louis Guillot, Malte Krack, Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), Laboratoire d’Ingénierie des Systèmes Physiques et Numériques (LISPEN), Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), Universität Stuttgart [Stuttgart], Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), and HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)
- Subjects
0209 industrial biotechnology ,Computer science ,Aerospace Engineering ,02 engineering and technology ,friction damping ,01 natural sciences ,symbols.namesake ,Harmonic balance ,Continuation ,020901 industrial engineering & automation ,continuation method ,Robustness (computer science) ,0103 physical sciences ,Taylor series ,010301 acoustics ,Civil and Structural Engineering ,[PHYS.MECA.VIBR]Physics [physics]/Mechanics [physics]/Vibrations [physics.class-ph] ,Mechanical Engineering ,Numerical analysis ,periodic solution ,geometric nonlinearity ,non-linear vibration ,Finite element method ,Computer Science Applications ,Numerical continuation ,Control and Systems Engineering ,Frequency domain ,Signal Processing ,symbols ,Harmonic Balance Method ,Algorithm - Abstract
International audience; In this work we apply and compare two algorithms for setting up Harmonic Balance equations and numerical continuation of the solution path for harmonically driven mechanical systems. The first algorithm relies on a predictor-corrector scheme and an Alternating Frequency-Time approach (AFT-PreCo). The second algorithm relies on a high-order Taylor series expansion of the solution path (asymptotic numerical method) and classical Harmonic Balance formulated entirely in the frequency domain (cHB-ANM). We conclude that the cHB-ANM is suited for smooth nonlinearities, for instance geometrically nonlinear finite element models. Here, cHB-ANM avoids aliasing errors and convinces with a numerically robust adjustment of the continuation step length and a continuous representation of the solution path. For non-smooth nonlinearities such as stick-slip friction or unilateral constraints, AFT-PreCo is better suited, and convinces with high numerical robustness and efficiency.
- Published
- 2020
- Full Text
- View/download PDF
43. Minimal blowing pressure allowing periodic oscillations in a simplified reed musical instrument model: Bouasse-Benade prescription assessed through numerical continuation
- Author
-
Sylvain Maugeais, Christophe Vergez, and Joël Gilbert
- Subjects
Physics ,Acoustics in engineering. Acoustical engineering ,Acoustics and Ultrasonics ,Oscillation ,Mathematical analysis ,Acoustics. Sound ,QC221-246 ,Musical instrument ,02 engineering and technology ,Dynamical system ,01 natural sciences ,Computer Science Applications ,Speech and Hearing ,020303 mechanical engineering & transports ,Amplitude ,Numerical continuation ,0203 mechanical engineering ,TA365-367 ,0103 physical sciences ,Harmonic ,Electrical and Electronic Engineering ,010301 acoustics ,Bifurcation ,Acoustic resonance - Abstract
A reed instrument model with N acoustical modes can be described as a 2N dimensional autonomous nonlinear dynamical system. Here, a simplified model of a reed-like instrument having two quasi-harmonic resonances, represented by a four dimensional dynamical system, is studied using the continuation and bifurcation software AUTO. Bifurcation diagrams of equilibria and periodic solutions are explored with respect to the blowing mouth pressure, with focus on amplitude and frequency evolutions along the different solution branches. Equilibria and periodic regimes are connected through Hopf bifurcations, which are found to be direct or inverse depending on the physical parameters values. Emerging periodic regimes mainly supported by either the first acoustic resonance (first register) or the second acoustic resonance (second register) are successfully identified by the model. An additional periodic branch is also found to emerge from the branch of the second register through a period-doubling bifurcation. The evolution of the oscillation frequency along each branch of the periodic regimes is also predicted by the continuation method. Stability along each branch is computed as well. Some of the results are interpreted in terms of the ease of playing of the reed instrument. The effect of the inharmonicity between the first two impedance peaks is observed both when the amplitude of the first is greater than the second, as well as the inverse case. In both cases, the blowing pressure that results in periodic oscillations has a lowest value when the two resonances are harmonic, a theoretical illustration of the Bouasse-Benade prescription.
- Published
- 2020
- Full Text
- View/download PDF
44. Pour la Science - Des instruments de musique virtuels
- Author
-
Thomas Hélie, Christophe Vergez, Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), and Vergez, Christophe
- Subjects
[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,[SPI.ACOU] Engineering Sciences [physics]/Acoustics [physics.class-ph] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2018
45. Assessment of the harmonic balance method on a self-oscillating one degree-of-freedom system with regularized friction
- Author
-
Pierre Vigué, Bruno Cochelin, Christophe Vergez, Sami Karkar, Sons, Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), École Centrale de Lyon (ECL), Université de Lyon, Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), and Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)
- Subjects
0209 industrial biotechnology ,Discretization ,Dynamical systems theory ,Applied Mathematics ,Mechanical Engineering ,Mathematical analysis ,Aerospace Engineering ,[SPI.MECA.VIBR]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Vibrations [physics.class-ph] ,Ocean Engineering ,010103 numerical & computational mathematics ,02 engineering and technology ,01 natural sciences ,Damper ,Harmonic balance ,Nonlinear system ,020901 industrial engineering & automation ,Control and Systems Engineering ,Approximation error ,Spring (device) ,0101 mathematics ,Electrical and Electronic Engineering ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Mathematics - Abstract
International audience; Time-periodic solutions of dynamical systems can be looked for using a discretization method. This paper tests the Harmonic Balance Method (HBM) on a one-degree-of-freedom system (mass, damper, spring, belt) with a regularized friction law. Its relative error is computed with respect to the number of discretization unknowns. Despite the widespread idea that frequency methods are hardly applicable to friction problems, the HBM compares well with a classical time-domain method for this nonlinear system. The main conclusion of this article is that the HBM, without any specific optimization, is well suited for regularized friction.
- Published
- 2018
- Full Text
- View/download PDF
46. Comment l'optimisation peut-elle être une aide à la facture instrumentale ?
- Author
-
Augustin Ernoult, Samy Missoum, Michael Jousserand, Philippe Guillemain, Christophe Vergez, Patrick Sanchez, Ernoult, Augustin, Sons, Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), University of Arizona, Department of Mechanical and Aerospace Engineering [Arizona State University], Arizona State University [Tempe] (ASU), Buffet Group, and Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,[SPI]Engineering Sciences [physics] ,[SPI.ACOU] Engineering Sciences [physics]/Acoustics [physics.class-ph] ,[SPI] Engineering Sciences [physics] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2018
47. Physical modelling of trombone mutes, the pedal note issue
- Author
-
Christophe Vergez, Lionel Velut, Joël Gilbert, Sons, Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Acoustique de l'Université du Mans (LAUM), Le Mans Université (UM)-Centre National de la Recherche Scientifique (CNRS), MESR, Labex MEC (ANR-10-LABX-0092), Initiative d'Excellence A*MIDEX (ANR-11-IDEX-0001-02), ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011), VELUT, Lionel, INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE - - Amidex2011 - ANR-11-IDEX-0001 - IDEX - VALID, Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), and Centre National de la Recherche Scientifique (CNRS)-Le Mans Université (UM)
- Subjects
[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,[PHYS.PHYS.PHYS-FLU-DYN]Physics [physics]/Physics [physics]/Fluid Dynamics [physics.flu-dyn] ,Range (music) ,Engineering ,[SPI.ACOU] Engineering Sciences [physics]/Acoustics [physics.class-ph] ,Acoustics and Ultrasonics ,business.industry ,Acoustics ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS] ,[PHYS.PHYS.PHYS-FLU-DYN] Physics [physics]/Physics [physics]/Fluid Dynamics [physics.flu-dyn] ,Physical modelling ,Active control ,[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] ,Linear stability analysis ,[PHYS.PHYS.PHYS-INS-DET] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Intonation (music) ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,business ,[PHYS.MECA.ACOU] Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] ,Music ,Simulation - Abstract
International audience; Brass players use a variety of mutes to change the sound of their instrument for artistic expression. However, mutes can also modify the intonation and the playability of the muted instrument. An example is the use of a straight mute on a trombone, which makes it very difficult to play stable pedal notes.Previous studies have shown that using a straight mute establishes a parasitic acoustic resonance in the trombone. To cancel this modification, an active control device was developed and integrated into a mute, with satisfying experimental results [Meurisse et al., 2015]. With this device, the perturbed pedal notes can easily be played again.This paper investigates the ability of a physical model of brass instrument to reproduce the behaviour of the trombone pedal Bb without mute, or with an "active" or a "passive" straight mute. Linear stability analysis and time-domain simulations are used to analyse the behaviour of the model in the parameter range corresponding to the pedal note. Numerical results are compared for different models of instruments: a trombone, a trombone with a straight (passive) mute, an a trombone with an active mute. It is shown that the simple physical model considered behaves similarly to what is experienced with real instruments: the playing of the pedal note is perturbed with a passive mute, whereas the model of trombone with the experimental active mute gives results very similar to those obtained with an open trombone.
- Published
- 2017
48. How well can linear stability analysis predict the behavior of an outward valve brass instrument model ?
- Author
-
Christophe Vergez, Joël Gilbert, Mithra Djahanbani, Lionel Velut, Sons, Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), Laboratoire d'Acoustique de l'Université du Mans (LAUM), Le Mans Université (UM)-Centre National de la Recherche Scientifique (CNRS), Labex MEX (ANR-10-LABX-0092), A*MIDEX (ANR-11-IDEX-0001-02), Ministère de l'Enseignement Supérieur et de la Recherche, ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Le Mans Université (UM)
- Subjects
Engineering ,Acoustics and Ultrasonics ,linear stability analysis ,PACS 43.75.Fg ,time-domain simulation ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,physical model ,01 natural sciences ,Instability ,Brass ,03 medical and health sciences ,0302 clinical medicine ,Linear stability analysis ,0103 physical sciences ,030223 otorhinolaryngology ,Representation (mathematics) ,010301 acoustics ,Simulation ,[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,business.industry ,Oscillation ,Computer Science::Information Retrieval ,brass instrument ,Mechanics ,Acoustics ,[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] ,Nonlinear system ,pedal note ,Modal ,Nonlinear model ,visual_art ,visual_art.visual_art_medium ,business ,Music - Abstract
International audience; A physical model of brass instrument is considered in this paper : a one degree-of-freedom outward-striking valve for the lips, non-linearly coupled to a modal representation of the air column. It is studied through Linear Stability Analysis (LSA) of the equilibrium solution. This approach provides the threshold blowing pressure value, at which instability occurs, and the instability frequency value. The relevance of the results of this method is theoretically limited to the neighbourhood of the equilibrium solution. This paper checks the efficiency of LSA to understand the behaviour of the model computed through time-domain simulations. As expected, a good agreement is observed between LSA and numerical simulations of the complete nonlinear model around the oscillation threshold. For blowing pressures far above the oscillation threshold, the picture is more contrasted. In most of the cases tested, a periodic regime coherent with the LSA results is observed, but over-blowing, quasi-periodicity and period-doubling also occur. Interestingly, LSA predicts the production of the pedal note by a trombone, for which only nonlinear hypotheses have been previously proposed. LSA also predicts the production of a saxhorn note which, although known to musicians, has barely been documented.
- Published
- 2017
- Full Text
- View/download PDF
49. Regularized friction and continuation: Comparison with Coulomb's law
- Author
-
Bruno Cochelin, Sami Karkar, Pierre Vigué, Christophe Vergez, Sons, Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), École Centrale de Lyon (ECL), Université de Lyon, Matériaux et Structures (M&S), ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011), and Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Acoustics and Ultrasonics ,Friction ,02 engineering and technology ,01 natural sciences ,Coulomb's law ,Harmonic balance ,symbols.namesake ,0203 mechanical engineering ,0103 physical sciences ,Regularization ,Coulomb ,010301 acoustics ,Bifurcation ,Mathematics ,[PHYS.MECA.VIBR]Physics [physics]/Mechanics [physics]/Vibrations [physics.class-ph] ,Normal force ,Periodic solutions ,Mechanical Engineering ,Numerical analysis ,Relative velocity ,Continuation ,16. Peace & justice ,Condensed Matter Physics ,[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] ,020303 mechanical engineering & transports ,Numerical continuation ,Classical mechanics ,Mechanics of Materials ,symbols ,Harmonic Balance Method - Abstract
International audience; Periodic solutions of systems with friction are difficult to investigate because of the irregular nature of friction laws. This paper examines periodic solutions and most notably stick-slip, on a simple one-degre-of-freedom system (mass, spring, damper, belt), with Coulomb's friction law, and with a regularized friction law (i.e. the friction coefficient becomes a function of relative speed, with a stiffness parameter). With Coulomb's law, the stick-slip solution is constructed step by step, which gives a usable existence condition. With the regularized law, the Asymptotic Numerical Method and the Harmonic Balance Method provide bifurcation diagrams with respect to the belt speed or normal force, and for several values of the regularization parameter. Formulations from the Coulomb case give the means of a comparison between regularized solutions and a standard reference. With an appropriate definition, regularized stick-slip motion exists, its amplitude increases with respect to the belt speed and its pulsation decreases with respect to the normal force.
- Published
- 2017
- Full Text
- View/download PDF
50. Time-domain numerical modeling of brass instruments including nonlinear wave propagation, viscothermal losses, and lips vibration
- Author
-
Bruno Lombard, Harold Berjamin, Christophe Vergez, Emmanuel Cottanceau, Ondes et Imagerie (O&I), Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), Sons, Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), and Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,nonlinear acoustics ,Acoustics and Ultrasonics ,Acoustics ,Classical Physics (physics.class-ph) ,FOS: Physical sciences ,Physics - Classical Physics ,01 natural sciences ,Displacement (vector) ,Fractional calculus ,Vibration ,Resonator ,Nonlinear acoustics ,musical acoustics ,0103 physical sciences ,Exciter ,Newmark-beta method ,Time domain ,010306 general physics ,010301 acoustics ,Music - Abstract
International audience; A time-domain numerical modeling of brass instruments is proposed. On one hand, outgoing and incoming waves in the resonator are described by the Menguy-Gilbert model, which incorporates three key issues: nonlinear wave propagation, viscothermal losses, and a variable section. The non-linear propagation is simulated by a TVD scheme well-suited to non-smooth waves. The fractional derivatives induced by the viscothermal losses are replaced by a set of local-in-time memory variables. A splitting strategy is followed to couple optimally these dedicated methods. On the other hand, the exciter is described by a one-mass model for the lips. The Newmark method is used to integrate the nonlinear ordinary differential equation so-obtained. At each time step, a coupling is performed between the pressure in the tube and the displacement of the lips. Finally, an extensive set of validation tests is successfully completed. In particular, self-sustained oscillations of the lips are simulated by taking into account the nonlinear wave propagation in the tube. Simulations clearly indicate that the nonlinear wave propagation has a major influence on the timbre of the sound, as expected. Moreover, simulations also highlight an influence on playing frequencies, time envelopes and on the playability of the low frequencies in the case of a variable lips tension.
- Published
- 2017
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.