244 results on '"Christopher G. White"'
Search Results
2. Unsettled Minds: Psychology and the American Search for Spiritual Assurance, 1830-1940
- Author
-
Christopher G. White
- Published
- 2008
3. A high precision calibration of the nonlinear energy response at Daya Bay
- Author
-
X. L. Ji, E. Naumova, D. A. Dwyer, T. J. Langford, L. Mora Lepin, H. M. Steiner, Y. Q. Ma, Xiao-yan Li, J. J. Cherwinka, N. Raper, Rupert Leitner, A. Higuera, Zhi-zhong Xing, Qinglong Wu, Kam Biu Luk, Christopher G. White, M. Qi, Tian Xue, J. L. Sun, S. H. Kettell, Artem Chukanov, X. B. Ma, Y. K. Heng, K. Whisnant, C. Li, Lawrence Pinsky, Jinjuan Ren, J. Park, Q. J. Li, Y. Z. Yang, X.F. Zhang, Tao Hu, N. Y. Wang, B. Viren, Maxim Gonchar, L. H. Wei, R. T. Lei, Qingmin Zhang, F. S. Deng, R. A. Johnson, Jiawen Zhang, J. H. C. Lee, Guanghua Gong, C. C. Zhang, Minfang Yeh, B. Z. Hu, Wei Wang, S. J. Patton, Lei Zhou, B. R. Littlejohn, Jia Xu, Yufeng Li, Y. M. Zhang, Jim Napolitano, Hongzhao Yu, K. L. Jen, Bing-Lin Young, Jianrun Hu, J. P. Cummings, Z. Guo, L. Guo, Y. Chang, Patrick Huber, Hanxiong Huang, L. Kang, Jun Cheng, Chao Zhang, X. T. Zhang, Baobiao Yue, H. L. Zhuang, Alexander Olshevskiy, J. K. C. Leung, Guey-Lin Lin, Honghan Gong, Shanfeng Li, Jonathan S. Lu, Yaoyu Zhang, Y. B. Huang, E. T. Worcester, F. Z. Qi, Vit Vorobel, Shengxin Lin, H. H. Zhang, Wei Li, S. Jetter, Yi Chen, Yunzhe Liu, Yuhang Guo, Siew Cheng Wong, N. Dash, K. T. McDonald, W. H. Tse, D. C. Jones, Meng Ye, Christopher L. Marshall, J. F. Chang, Jiaheng Zou, Y. K. Hor, J. J. Ling, D. A. Martinez Caicedo, Zhiyong Zhang, B. Roskovec, Zhijian Zhang, Zhibing Li, A. B. Balantekin, Richard Rosero, Z. M. Wang, H. R. Band, Changgen Yang, Jianglai Liu, X. C. Ruan, Mengsu Yang, K. Treskov, X. H. Guo, M. Dvořák, Feiyang Zhang, H. R. Pan, Michael Kramer, V. Pec, L. Lebanowski, Y. Y. Ding, C. Lu, Rui Zhang, S. Hans, R. G. Wang, Xingtao Huang, Simon Blyth, Yixue Chen, M. Z. Wang, Ming Chung Chu, R. W. Hackenburg, Chun S. J. Pun, Liang Zhan, M. Bishai, F. P. An, D. M. Xia, Z. Wang, Zhuojun Hu, K. M. Heeger, Changjian Lin, Shaomin Chen, Jun Cao, Xiaolu Ji, L. S. Littenberg, Z. K. Cheng, Z. P. Zhang, S. F. Li, Y. X. Zhang, W. J. Wu, Dmitry V. Naumov, D. Adey, L. W. Koerner, X. Wang, R. D. McKeown, D. Cao, D. E. Jaffe, C. E. Tull, Miao He, Haoqi Lu, Y. F. Wang, Haosheng Chen, J. M. Link, Yanlin Liu, Hongliang Li, Jing Wang, S. K. Lin, Hai Liang, Liangjian Wen, Guofu Cao, Jingyuan Guo, Juan Pedro Ochoa-Ricoux, Jen-Chieh Peng, Xiaohui Qian, J. Lee, H. Y. Wei, J. Dove, Yuda Zeng, S. Zeng, H. L. H. Wong, Yuman Wang, W. Q. Gu, Zeyuan Yu, S. Kohn, Chunjie Wang, M. V. Diwan, X. Q. Li, Tadeas Dohnal, Lin Yang, Jinmei Liu, Jing Zhao, S. Li, X. Y. Ma, I. Mitchell, Y. B. Hsiung, and Feng Li
- Subjects
Physics ,Nuclear and High Energy Physics ,Physics::Instrumentation and Detectors ,Scintillation counter ,Detector ,Calibration ,Daya Bay Reactor Neutrino Experiment ,Neutrino ,Scintillator ,Kinetic energy ,Instrumentation ,Energy (signal processing) ,Computational physics - Abstract
A high precision calibration of the nonlinearity in the energy response of the Daya Bay Reactor Neutrino Experiment’s antineutrino detectors is presented in detail. The energy nonlinearity originates from the particle-dependent light yield of the scintillator and charge-dependent electronics response. The nonlinearity model is constrained by γ calibration points from deployed and naturally occurring radioactive sources, the β spectrum from ^(12)B decays, and a direct measurement of the electronics nonlinearity with a new flash analog-to-digital converter readout system. Less than 0.5% uncertainty in the energy nonlinearity calibration is achieved for positrons of kinetic energies greater than 1 MeV.
- Published
- 2019
- Full Text
- View/download PDF
4. Limits on Sub-GeV Dark Matter from the PROSPECT Reactor Antineutrino Experiment
- Author
-
J. Koblanski, J. L. Palomino, Chao Zhang, M. P. Mendenhall, Minfang Yeh, A. J. Conant, A. B. Hansell, C. E. Gilbert, Christopher V. Cappiello, B. T. Foust, J. Wilhelmi, J. LaRosa, A. M. Meyer, R. Neilson, J. K. Gaison, J. Maricic, R. Milincic, G. Deichert, T. J. Langford, D. Venegas-Vargas, Jim Napolitano, C. D. Bryan, Xin Lu, P. E. Mueller, R. L. Varner, Nathaniel Bowden, R. Rosero, X. Zhang, Denis E. Bergeron, D. E. Jaffe, J. A. Nikkel, Xiaolu Ji, Hans P. Mumm, S. Hans, D. C. Jones, A. B. Balantekin, M. A. Tyra, A. Woolverton, O. Kyzylova, S. Nour, Anna Erickson, K. M. Heeger, C. E. Lane, Christopher G. White, T. Classen, C. D. Bass, M. J. Dolinski, P. Weatherly, M. V. Diwan, H. R. Band, A. Galindo-Uribarri, B. R. Littlejohn, P. T. Surukuchi, Dmitry A. Pushin, S. Jayakumar, B. Heffron, Xin Qian, and M. Andriamirado
- Subjects
Physics ,High energy ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Dark matter ,Flux ,FOS: Physical sciences ,Cosmic ray ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,7. Clean energy ,01 natural sciences ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,Sidereal time ,0103 physical sciences ,Neutrino ,010306 general physics ,Nuclear Experiment - Abstract
If dark matter has mass lower than around 1 GeV, it will not impart enough energy to cause detectable nuclear recoils in many direct-detection experiments. However, if dark matter is upscattered to high energy by collisions with cosmic rays, it may be detectable in both direct-detection experiments and neutrino experiments. We report the results of a dedicated search for boosted dark matter upscattered by cosmic rays using the PROSPECT reactor antineutrino experiment. We show that such a flux of upscattered dark matter would display characteristic diurnal sidereal modulation, and use this to set new experimental constraints on sub-GeV dark matter exhibiting large interaction cross-sections., 11 pages, 8 figures
- Published
- 2021
5. Antineutrino Energy Spectrum Unfolding Based on the Daya Bay Measurement and Its Applications
- Author
-
Jinjuan Ren, Dmitry Dolzhikov, Haifeng Li, Yuman Wang, S. Zeng, W. Q. Gu, Z. M. Wang, X. L. Ji, Minfang Yeh, Y. X. Zhang, C. Morales Reveco, Michael Kramer, Yufeng Li, K. L. Jen, Tomas Tmej, J. P. Gallo, Chun S. J. Pun, Zhuojun Hu, Shaomin Chen, Jun Cao, Haifeng Yao, J. J. Cherwinka, S. F. Li, Bangzheng Ma, Dmitry V. Naumov, Yinhong Zhang, Yongzhu Chen, Yue Meng, Q. J. Li, H. R. Pan, Kam-Biu Luk, N. Raper, H. Liang, Yixue Chen, Hongzhao Yu, Olivia Dalager, Z. Guo, D. C. Jones, Hanxiong Huang, L. Kang, N. Y. Wang, B. Viren, X. T. Huang, Tianpeng Xu, A. B. Balantekin, C. G. Yang, Zhi-zhong Xing, Baobiao Yue, W. J. Wu, Y. Z. Yang, R. D. McKeown, C. E. Tull, S. Kohn, L. H. Wei, Rong Zhao, R. T. Lei, F. Li, Simon Blyth, R. C. Mandujano, Guanghua Gong, Li Zhou, S. Hans, M. Z. Wang, Ming Chung Chu, W. H. Tse, Diru Wu, M. Ye, Jingyuan Guo, Chi Lin, K. T. McDonald, F. L. Wu, Jen-Chieh Peng, Y. K. Hor, Jianrun Hu, Qinglong Wu, Junwei Huang, Jianglai Liu, J. Dove, Yuda Zeng, J. M. Link, J. P. Cummings, L. Guo, Alexander Olshevskiy, M. Qi, Tian Xue, M. Bishai, Chao Zhang, S. J. Patton, Y. K. Heng, H. S. Chen, Xiaohui Qian, J. Lee, H. Y. Wei, K. M. Heeger, Zhijian Zhang, Rupert Leitner, L. S. Littenberg, H. L. H. Wong, H. H. Zhang, H. L. Zhuang, K. Treskov, Richard Rosero, Juan Pedro Ochoa-Ricoux, X. Wang, J. J. Ling, B. R. Littlejohn, M. Grassi, D. E. Jaffe, Miao He, E. Naumova, D. A. Dwyer, B. Z. Hu, Haoqi Lu, T. J. Langford, Ruhui Li, Yaoyu Zhang, Y. B. Huang, Vitalii Zavadskyi, Y. F. Wang, Y. H. Chang, Vit Vorobel, S. Zhang, Jing Wang, T. Hu, Xiaolu Ji, Wei Li, H. M. Steiner, R. W. Hackenburg, Y. Q. Ma, Z. Wang, Honghan Gong, K. Whisnant, Zhiyong Zhang, J. Cheng, Yuhang Guo, B. Roskovec, Jiaheng Zou, D. M. Xia, F. S. Deng, Bing-Lin Young, Liangjian Wen, Guofu Cao, X. C. Ruan, Z. K. Cheng, Z. P. Zhang, Jianmin Li, Y. Y. Ding, Fengpeng An, Zhangquan Xie, Qingmin Zhang, Jim Napolitano, W. Wang, Y. B. Hsiung, Z. Y. Yu, M. V. Diwan, X. Q. Li, H. K. Xu, Patrick Huber, Tadeas Dohnal, J. L. Sun, X. T. Zhang, J. Park, T. M. T. Nguyen, J. H. C. Lee, Z. B. Li, Shengxin Lin, E. T. Worcester, Lin Yang, F. Z. Qi, Jinmei Liu, Jing Zhao, X. Y. Ma, Christopher L. Marshall, J. F. Chang, X. H. Guo, Jiawen Zhang, M. Dvořák, C. H. Wang, R. G. Wang, Feiyang Zhang, Liang Zhan, Christopher G. White, C. Lu, J. L. Xu, Shanfeng Li, Guey-Lin Lin, Jian Liu, J. K. C. Leung, S. H. Kettell, X. B. Ma, Maxim Gonchar, Xinglong Li, and R. A. Johnson
- Subjects
Physics ,Nuclear and High Energy Physics ,Isotope ,Fissile material ,010308 nuclear & particles physics ,Fission ,Detector ,FOS: Physical sciences ,Astronomy and Astrophysics ,01 natural sciences ,Spectral line ,Physics::Geophysics ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Inverse beta decay ,0103 physical sciences ,Energy spectrum ,High Energy Physics::Experiment ,010306 general physics ,Nuclear Experiment ,Instrumentation ,Energy (signal processing) - Abstract
The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era. The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by the Daya Bay experiment, in combination with the fission rates of fissile isotopes in the reactor, is used to extract the positron energy spectra resulting from the fission of specific isotopes. This information can be used to produce a precise, data-based prediction of the antineutrino energy spectrum in other reactor antineutrino experiments with different fission fractions than Daya Bay. The positron energy spectra are unfolded to obtain the antineutrino energy spectra by removing the contribution from detector response with the Wiener-SVD unfolding method. Consistent results are obtained with other unfolding methods. A technique to construct a data-based prediction of the reactor antineutrino energy spectrum is proposed and investigated. Given the reactor fission fractions, the technique can predict the energy spectrum to a 2% precision. In addition, we illustrate how to perform a rigorous comparison between the unfolded antineutrino spectrum and a theoretical model prediction that avoids the input model bias of the unfolding method., 22 pages, 10 figures, 6 supplemental materials
- Published
- 2021
6. Improved Constraints on Sterile Neutrino Mixing from Disappearance Searches in the MINOS, MINOS+ , Daya Bay, and Bugey-3 Experiments
- Author
-
J. L. Sun, E. T. Worcester, F. Z. Qi, Jingyuan Guo, X. H. Guo, M. Dvořák, C. H. Wang, Feiyang Zhang, Richard Rosero, Jen-Chieh Peng, X. L. Ji, J. Park, J. H. C. Lee, J. P. Gallo, Miao He, A. E. Kreymer, S. V. Cao, J. Dove, Yuda Zeng, P. Lucas, Marvin L Marshak, Shanfeng Li, Chun S. J. Pun, Zhuojun Hu, D. C. Jones, Li Zhou, Christopher L. Marshall, J. F. Chang, A. B. Balantekin, Diru Wu, N. Poonthottathil, Yunzhe Liu, D. M. Xia, Shaomin Chen, Jun Cao, R. Chen, N. Graf, Y. Y. Ding, S. Hans, C. Lu, J. L. Xu, Rakesh Sharma, R. W. Hackenburg, S. R. Hahn, Haifeng Yao, S. Childress, S. H. Kettell, X. B. Ma, A. Aurisano, Honghan Gong, Maxim Gonchar, Xinglong Li, Z. Wang, S. F. Li, R. A. Johnson, H. H. Zhang, Jiawen Zhang, Fengpeng An, Yuhang Guo, Alexander Olshevskiy, Siew Cheng Wong, H. R. Band, Guey-Lin Lin, Jonathan S. Lu, Dmitry V. Naumov, Lin Yang, J. K. Nelson, D. E. Jaffe, H. Liang, Yixue Chen, G. B. Mills, Z. Y. Yu, Z. K. Cheng, K. Whisnant, J. J. Ling, Karol Lang, Z. P. Zhang, J. R. Meier, Jinmei Liu, Simon Blyth, J. Cheng, M. Kordosky, Jing Zhao, S. Li, X. Y. Ma, R. Mehdiyev, S. J. Patton, J. Schneps, Andrew Blake, M. Z. Wang, Ming Chung Chu, Zhangquan Xie, H. L. Zhuang, Michael Kramer, I. Anghel, A. Timmons, C. Morales Reveco, F. L. Wu, Y. X. Zhang, M. M. Pfützner, R. K. Plunkett, Yufeng Li, K. L. Jen, Ž. Pavlović, W. J. Wu, Vit Vorobel, R. D. McKeown, Wei Li, Artem Chukanov, N. Dash, Yue Meng, P. Sail, M. V. Diwan, Zhiyong Zhang, B. Roskovec, John Evans, X. Q. Li, M. Qi, M. Bishai, Tadeas Dohnal, Hongzhao Yu, Jing Wang, A. Schreckenberger, Nasir Shaheed, Hanxiong Huang, Z. B. Li, Y. Z. Yang, L. Kang, Qingmin Zhang, J. K. C. Leung, Gregory J Pawloski, R. T. Lei, Hongliang Li, P. Gouffon, X. Qiu, M. Ye, W. Wang, B. Z. Hu, N. Y. Wang, M. A. Thomson, D. Naples, B. Viren, Jianrun Hu, Stanley G. Wojcicki, L. Guo, Zhijian Zhang, Jiachen Li, J. O'Connor, Alec Habig, Y. B. Hsiung, Chao Zhang, K. Grzelak, J. J. Cherwinka, Xiaolu Ji, Liangjian Wen, D. D. Phan, Guofu Cao, L. H. Wei, K. Treskov, N. Raper, Jinjuan Ren, Q. J. Li, W. A. Mann, R. Hatcher, R. A. Gomes, Jim Napolitano, N. Tagg, A. Radovic, Qinglong Wu, G.D. Barr, Junwei Huang, Kam Biu Luk, G. J. Feldman, Yinhong Zhang, Z. Guo, Tian Xue, A. Holin, Juergen Thomas, Y. K. Heng, K. T. McDonald, J. Todd, Yanhui Liu, A. C. Weber, A. Perch, X. C. Ruan, Xin Qian, Guanghua Gong, Joao A B Coelho, Chi Lin, Juan Pedro Ochoa-Ricoux, L. Mora Lepin, A. Higuera, X. T. Huang, C. G. Yang, H. R. Pan, Zhi-zhong Xing, S. De Rijck, C. E. Tull, D. Torretta, J. Lee, H. Y. Wei, H. L. H. Wong, J. Hartnell, H. S. Chen, T. J. Carroll, P. Adamson, Y. K. Hor, Jianglai Liu, L. W. Koerner, X. Wang, Haoqi Lu, Y. F. Wang, W. Flanagan, T. Tmej, S. Kohn, S. Germani, Warner A. Miller, R. Toner, E. Naumova, D. A. Dwyer, T. J. Langford, A. Sousa, Yuman Wang, S. Zeng, W. Q. Gu, H. M. Steiner, P. Vahle, Y. Q. Ma, F. S. Deng, Bing-Lin Young, B. R. Littlejohn, Yaoyu Zhang, Y. B. Huang, Patrick Huber, Y. H. Chang, X. T. Zhang, Shengxin Lin, C. M. Castromonte, T. Hu, D. A. Martinez Caicedo, Minfang Yeh, Yongzhu Chen, Baobiao Yue, F. Li, R. G. Wang, W. H. Tse, R. J. Nichol, N. Mayer, Liang Zhan, K. M. Heeger, Christopher G. White, S. C. Tognini, Rupert Leitner, D. Dolzhikov, T. Xu, J. M. Link, J. P. Cummings, mrow, Leigh H. Whitehead, M. Y. Gabrielyan, L. S. Littenberg, M. C. Sanchez, R. B. Pahlka, and Z. M. Wang
- Subjects
Physics ,Particle physics ,Sterile neutrino ,Muon ,General Physics and Astronomy ,01 natural sciences ,MiniBooNE ,MINOS ,0103 physical sciences ,Muon neutrino ,Neutron ,010306 general physics ,Electron neutrino ,Mixing (physics) - Abstract
Searches for electron antineutrino, muon neutrino, and muon antineutrino disappearance driven by sterile neutrino mixing have been carried out by the Daya Bay and MINOS+ collaborations. This Letter presents the combined results of these searches, along with exclusion results from the Bugey-3 reactor experiment, framed in a minimally extended four-neutrino scenario. Significantly improved constraints on the θ_{μe} mixing angle are derived that constitute the most constraining limits to date over five orders of magnitude in the mass-squared splitting Δm_{41}^{2}, excluding the 90% C.L. sterile-neutrino parameter space allowed by the LSND and MiniBooNE observations at 90% CL_{s} for Δm_{41}^{2}
- Published
- 2020
- Full Text
- View/download PDF
7. Nonfuel antineutrino contributions in the ORNL High Flux Isotope Reactor (HFIR)
- Author
-
Xiaolu Ji, I. Mitchell, D. Norcini, A. Woolverton, C.E. Gilbert, J. Wilhelmi, Chao Zhang, Aiwu Zhang, S. Nour, M. P. Mendenhall, A. J. Conant, J. L. Palomino-Gallo, Anna Erickson, X. Lu, R. Neilson, E. Romero-Romero, C. E. Lane, Christopher G. White, T. Classen, D. Berish, R. Milincic, D. E. Jaffe, T. J. Langford, R. Rosero, A. B. Hansell, J. A. Nikkel, C. D. Bryan, J. LaRosa, Denis E. Bergeron, B. T. Foust, A. Galindo-Uribarri, B. R. Littlejohn, Jim Napolitano, M. A. Tyra, P. T. Surukuchi, X. Zhang, D. C. Jones, A. B. Balantekin, O. Kyzylova, R. L. Varner, J. K. Gaison, B. Hackett, J. Maricic, Nathaniel Bowden, Hans P. Mumm, K. M. Heeger, Minfang Yeh, J. P. Brodsky, M. V. Diwan, P. E. Mueller, H. R. Band, G. Deichert, Xin Qian, Dmitry A. Pushin, B. Heffron, C. D. Bass, M. J. Dolinski, and S. Hans
- Subjects
Physics ,Isotope ,010308 nuclear & particles physics ,chemistry.chemical_element ,Uranium ,Oak Ridge National Laboratory ,01 natural sciences ,7. Clean energy ,Nuclear physics ,chemistry ,13. Climate action ,Inverse beta decay ,0103 physical sciences ,Neutron ,Irradiation ,Reactor neutrino ,010306 general physics ,High Flux Isotope Reactor - Abstract
Reactor neutrino experiments have seen major improvements in precision in recent years. With the experimental uncertainties becoming lower than those from theory, carefully considering all sources of ν ¯ e is important when making theoretical predictions. One source of ν ¯ e that is often neglected arises from the irradiation of the nonfuel materials in reactors. The ν ¯ e rates and energies from these sources vary widely based on the reactor type, configuration, and sampling stage during the reactor cycle and have to be carefully considered for each experiment independently. In this article, we present a formalism for selecting the possible ν ¯ e sources arising from the neutron captures on reactor and target materials. We apply this formalism to the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, the ν ¯ e source for the the Precision Reactor Oscillation and Spectrum Measurement (PROSPECT) experiment. Overall, we observe that the nonfuel ν ¯ e contributions from HFIR to PROSPECT amount to 1% above the inverse beta decay threshold with a maximum contribution of 9% in the 1.8-2.0 MeV range. Nonfuel contributions can be particularly high for research reactors like HFIR because of the choice of structural and reflector material in addition to the intentional irradiation of target material for isotope production. We show that typical commercial pressurized water reactors fueled with low-enriched uranium will have significantly smaller nonfuel ν ¯ e contribution.
- Published
- 2020
- Full Text
- View/download PDF
8. Search For Electron-Antineutrinos Associated With Gravitational-Wave Events GW150914, GW151012, GW151226, GW170104, GW170608, GW170814, and GW170817 at Daya Bay
- Author
-
B. R. Littlejohn, Yaoyu Zhang, Y. B. Huang, J. P. Gallo, R. W. Hackenburg, Y. H. Chang, Z. Wang, Chun S. J. Pun, Zhuojun Hu, Shaomin Chen, Y. K. Hor, Jun Cao, Hongzhao Yu, Hanxiong Huang, L. Kang, Haifeng Yao, Jianglai Liu, S. F. Li, Dmitry V. Naumov, Xin Qian, Z. Y. Yu, S. J. Patton, K. Whisnant, J. Cheng, X. Wang, Haoqi Lu, A. Higuera, X. T. Huang, C. G. Yang, Olivia Dalager, M. V. Diwan, X. Q. Li, Tadeas Dohnal, J. K. C. Leung, X. C. Ruan, Zhi-zhong Xing, Z. B. Li, D. M. Xia, H. L. Zhuang, Y. F. Wang, Michael Kramer, E. T. Worcester, F. Z. Qi, S. H. Kettell, X. B. Ma, Jinjuan Ren, Christopher L. Marshall, J. F. Chang, Christopher G. White, H. R. Band, H. Liang, Yixue Chen, N. Y. Wang, B. Viren, Q. J. Li, Y. Z. Yang, L. H. Wei, H. S. Chen, R. T. Lei, W. J. Wu, R. D. McKeown, Qingmin Zhang, Maxim Gonchar, Xinglong Li, R. A. Johnson, X. L. Ji, Rupert Leitner, Z. M. Wang, D. E. Jaffe, Guanghua Gong, C. Lu, Chi Lin, Jim Napolitano, Jiawen Zhang, Jingyuan Guo, Jen-Chieh Peng, Jianrun Hu, Qinglong Wu, Yinhong Zhang, Z. Guo, J. J. Cherwinka, Li Zhou, J. Dove, Yuda Zeng, N. Raper, Tian Xue, Miao He, L. Guo, Xiaolu Ji, C. Morales Reveco, Chao Zhang, X. H. Guo, Guey-Lin Lin, Jonathan S. Lu, D. A. Martinez Caicedo, Jia Xu, Yufeng Li, Y. K. Heng, K. T. McDonald, M. Dvořák, C. H. Wang, Vit Vorobel, K. L. Jen, Tomas Tmej, Feiyang Zhang, Jianmin Li, M. Ye, Wei Li, S. Kohn, Y. Y. Ding, D. C. Jones, H. H. Zhang, R. G. Wang, A. B. Balantekin, Liang Zhan, F. L. Wu, Zhiyong Zhang, B. Roskovec, Fengpeng An, Tianpeng Xu, Patrick Huber, X. T. Zhang, Minfang Yeh, Shengxin Lin, Shanfeng Li, S. Hans, J. L. Sun, Juan Pedro Ochoa-Ricoux, J. Park, J. H. C. Lee, Alexander Olshevskiy, Yongzhu Chen, J. J. Ling, Baobiao Yue, Honghan Gong, Zhijian Zhang, J. Lee, H. Y. Wei, Yuhang Guo, H. L. H. Wong, Jiaheng Zou, K. Treskov, T. Hu, F. Li, Richard Rosero, W. H. Tse, H. R. Pan, C. E. Tull, Y. X. Zhang, K. M. Heeger, Yue Meng, Kam-Biu Luk, Simon Blyth, M. Z. Wang, Ming Chung Chu, Yuman Wang, S. Zeng, W. Q. Gu, M. Qi, M. Bishai, B. Z. Hu, F. S. Deng, Bing-Lin Young, Diru Wu, L. S. Littenberg, E. Naumova, D. A. Dwyer, W. Wang, T. J. Langford, Y. B. Hsiung, Lin Yang, Jinmei Liu, Jing Zhao, X. Y. Ma, H. M. Steiner, Y. Q. Ma, J. M. Link, J. P. Cummings, Jing Wang, Liangjian Wen, Guofu Cao, Z. K. Cheng, Z. P. Zhang, and Zhangquan Xie
- Subjects
Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Nuclear and High Energy Physics ,Range (particle radiation) ,Physics - Instrumentation and Detectors ,010308 nuclear & particles physics ,Gravitational wave ,FOS: Physical sciences ,Astronomy and Astrophysics ,Electron ,Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,01 natural sciences ,Spectral line ,High Energy Physics - Experiment ,Neutron star ,High Energy Physics - Experiment (hep-ex) ,0103 physical sciences ,GW151226 ,Monochromatic color ,Neutrino ,010306 general physics ,Astrophysics - High Energy Astrophysical Phenomena ,Instrumentation - Abstract
Providing a possible connection between neutrino emission and gravitational-wave (GW) bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge. In the Daya Bay experiment, using data collected from December 2011 to August 2017, a search has been performed for electron-antineutrino signals coinciding with detected GW events, including GW150914, GW151012, GW151226, GW170104, GW170608, GW170814, and GW170817. We used three time windows of $\mathrm{\pm 10~s}$, $\mathrm{\pm 500~s}$, and $\mathrm{\pm 1000~s}$ relative to the occurrence of the GW events, and a neutrino energy range of 1.8 to 100 MeV to search for correlated neutrino candidates. The detected electron-antineutrino candidates are consistent with the expected background rates for all the three time windows. Assuming monochromatic spectra, we found upper limits (90% confidence level) on electron-antineutrino fluence of $(1.13~-~2.44) \times 10^{11}~\rm{cm^{-2}}$ at 5 MeV to $8.0 \times 10^{7}~\rm{cm^{-2}}$ at 100 MeV for the three time windows. Under the assumption of a Fermi-Dirac spectrum, the upper limits were found to be $(5.4~-~7.0)\times 10^{9}~\rm{cm^{-2}}$ for the three time windows., Comment: 16 pages, 12 figures, 9 tables
- Published
- 2020
- Full Text
- View/download PDF
9. Study of the wave packet treatment of neutrino oscillation at Daya Bay
- Author
-
Ya Ping Cheng, Jie Ren, David E. Jaffe, Xin Qian, Ze Yuan Yu, Qiu Mei Ma, Ji Liang Sun, Christopher G. White, Zhe Ning, Yufeng Li, Wenju Huo, Jia Jie Ling, Meng Ting Yang, Simon Blyth, Ming Chung Chu, Han Yu Wei, Zhi-zhong Xing, Rupert Leitner, Ya Yun Ding, Chang Gen Yang, T. Wise, N. Raper, Simon John Patton, Qiu Ju Li, Jun Cao, Akif Baha Balantekin, Shao Min Chen, S. Jetter, Yu-Cheng Lin, John Kon Chong Leung, Jia Heng Zou, Qun Wu, M. Bishai, Yi Ming Zhang, Yue Kun Heng, William R Edwards, Xiao Lu Ji, Min Fang Yeh, Zhe Wang, Zhaokan Cheng, Hao Liang, Jason C.S. Pun, Ka Vang Tsang, Sam Kohn, Zheng Wang, Wei Wang, Dmitry V. Naumov, Yat Long Chan, Xiang Pan Ji, Yasuhiro Nakajima, de Arcos Jose, Xuantong Zhang, Yu Qian Ma, L. Whitehead, Meng Yun Guan, W. Tang, Yun Chang, Jia Hua Cheng, Vit Vorobel, Zhipeng Lv, Jim Napolitano, Jason Dove, Kin Keung Kwan, Xiao Yan Ma, Yi Xin Zhang, W. J. Wu, Tao Hu, Alexander Olshevskiy, Bing Lin Young, Xi Wang, R. D. McKeown, Zhijian Zhang, Zhimin Wang, J. Joshi, Herbert M Steiner, H. R. Pan, Jia Shu Lu, Ronald Gill, Richard Rosero, K. Treskov, Sheng Chao Li, Yi Fang Wang, Gao Song Li, Chang Guo Lu, Chia-Hao Wu, Ghulam Hussain, Maxim Gonchar, Xing Tao Huang, Hui Gong, Nan Zhou, Zhiyong Zhang, Jian Yi Xu, Han Xiong Huang, Randy Allan Johnson, P. Jaffke, Bedrich Roskovec, David A Martinez Caicedo, D. W. Liu, Li Kang, Tao Xue, B. Viren, Yee Bob Hsiung, Wen Qiang Gu, Shan Zeng, Ran Han, Fei Li, Maria Dolgareva, Jin Fan Chang, Juan Pedro Ochoa-Ricoux, H. H. Zhang, C. E. Tull, M. V. Diwan, H. R. Band, V. Pec, Shanfeng Li, Ziyi Guo, E. T. Worcester, Dong Mei Xia, Zi Ping Zhang, Yu Chen, Wei Hu, Jen-Chieh Peng, M. H. Ye, S. Hans, Ming Qi, Rui Guang Wang, Ian Mitchell, Rui Ting Lei, Deng Jie Li, Meng Wang, Qing Wang Zhao, Kam Biu Luk, Shih Kai Lin, Artem Chukanov, Wei Li Zhong, Chan Fai Wong, He Sheng Chen, Kou Lun Jen, Lawrence Pinsky, Chao Li, Jing Kai Xia, Nai Yan Wang, Michael Mooney, T. Kwok, Guey-Lin Lin, Xue Feng Ding, B. R. Littlejohn, Jia Wen Zhang, Aaron Higuera, Qing Min Zhang, Z. B. Li, Jian Bin Jiao, Jongmin Lee, Marco Grassi, Dmitriy Taychenachev, Miao He, Jiang Lai Liu, Lei Guo, Man-wai Kwok, Hong Lin Zhuang, Jie Cheng, Chao Zhang, Jenny Hc Lee, En Chuan Huang, Yury Malyshkin, Xin Heng Guo, JohnP Cummings, Feng Peng An, Nicolás Viaux, Lei Yang, Jonathan M. Link, K. M. Heeger, JeffJ Cherwinka, Quan You Chen, Joseph Yuen-Keung Hor, Yumei Zhang, S H Kettell, Hao Qi Lu, K. Whisnant, Bei Zhen Hu, Cheng-Ju Stephen Lin, Guang Hua Gong, Matt Kramer, Jimmy Ngai, E. Naumova, D. A. Dwyer, T. J. Langford, Jaewon Park, Xu Bo Ma, Jin Chang Liu, Liangjian Wen, Guofu Cao, Cen Wuron, Gong Xing Sun, Zi Yan Deng, Jie Zhao, Chung Hsiang Wang, Y. Xu, Hin-Lok Henoch Wong, De Wen Cao, R. W. Hackenburg, Weidong Li, Xi Chao Ruan, Fa Zhi Qi, Liang Zhan, Patrick Huber, Shengxin Lin, Li Zhou, Changwei Loh, Ji Lei Xu, Li Chu Chang, Yu Bin Zhao, Zi Ping Ye, Kwong Lau, L. S. Littenberg, Yi Chen, Hai Bo Yang, Ma Sheng Yang, X. N. Li, and L. Lebanowski
- Subjects
Physics and Astronomy (miscellaneous) ,Plane wave ,FOS: Physical sciences ,lcsh:Astrophysics ,Atomic ,01 natural sciences ,High Energy Physics - Experiment ,Nuclear physics ,Momentum ,High Energy Physics - Experiment (hep-ex) ,Particle and Plasma Physics ,High Energy Physics - Phenomenology (hep-ph) ,0103 physical sciences ,lcsh:QB460-466 ,Nuclear ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,010306 general physics ,Dispersion (water waves) ,Neutrino oscillation ,Engineering (miscellaneous) ,Physics ,Quantum Physics ,hep-ex ,010308 nuclear & particles physics ,Oscillation ,Detector ,Molecular ,hep-ph ,Nuclear & Particles Physics ,High Energy Physics - Phenomenology ,lcsh:QC770-798 ,High Energy Physics::Experiment ,Neutrino ,Energy (signal processing) - Abstract
The disappearance of reactor $$\bar{\nu }_e$$ ν ¯ e observed by the Daya Bay experiment is examined in the framework of a model in which the neutrino is described by a wave packet with a relative intrinsic momentum dispersion $$\sigma _\mathrm{{rel}}$$ σ rel . Three pairs of nuclear reactors and eight antineutrino detectors, each with good energy resolution, distributed among three experimental halls, supply a high-statistics sample of $$\bar{\nu }_e$$ ν ¯ e acquired at nine different baselines. This provides a unique platform to test the effects which arise from the wave packet treatment of neutrino oscillation. The modified survival probability formula was used to fit Daya Bay data, providing the first experimental limits: $$2.38 \times 10^{-17}< \sigma _\mathrm{{rel}} < 0.23$$ 2.38 × 10 - 17 < σ rel < 0.23 . Treating the dimensions of the reactor cores and detectors as constraints, the limits are improved: $$10^{-14} \lesssim \sigma _\text {rel} < 0.23$$ 10 - 14 ≲ σ rel < 0.23 , and an upper limit of $$\sigma _\text {rel}
- Published
- 2017
- Full Text
- View/download PDF
10. 2. Fragments of Truth
- Author
-
Christopher G. White
- Subjects
Philosophy ,Religious studies ,Christianity - Published
- 2019
- Full Text
- View/download PDF
11. Epilogue: Intensely Unsettled—Again
- Author
-
Christopher G. White
- Subjects
History ,Religious studies ,Christianity - Published
- 2019
- Full Text
- View/download PDF
12. 5. 'A Multitude of Superstitions and Crudities'
- Author
-
Christopher G. White
- Subjects
History ,Multitude ,Religious studies ,Christianity - Published
- 2019
- Full Text
- View/download PDF
13. 6. Suggestive Explanations
- Author
-
Christopher G. White
- Subjects
History ,Religious studies ,Christianity - Published
- 2019
- Full Text
- View/download PDF
14. 3. Nervous Energies
- Author
-
Christopher G. White
- Subjects
Philosophy ,Religious studies ,Christianity - Published
- 2019
- Full Text
- View/download PDF
15. 4. Neuromuscular Christians
- Author
-
Christopher G. White
- Subjects
Sociology ,Religious studies ,Christianity - Published
- 2019
- Full Text
- View/download PDF
16. 1. Minds Intensely Unsettled
- Author
-
Christopher G. White
- Subjects
Philosophy ,Religious studies ,Christianity - Published
- 2019
- Full Text
- View/download PDF
17. Extraction of the U235 and Pu239 Antineutrino Spectra at Daya Bay
- Author
-
W. Wang, J. Park, Yuman Wang, S. Zeng, W. Q. Gu, Y. B. Hsiung, J. H. C. Lee, Hongzhao Yu, J. K. C. Leung, Minfang Yeh, Hanxiong Huang, L. Kang, V. Pec, S. Hans, Patrick Huber, S. H. Kettell, X. B. Ma, M. Qi, Yongzhu Chen, Alexander Olshevskiy, M. Bishai, Baobiao Yue, Jingyuan Guo, Jen-Chieh Peng, S. J. Patton, X. T. Zhang, Yunzhe Liu, J. Dove, Yuda Zeng, Miao He, H. H. Zhang, J. J. Ling, E. T. Worcester, M. V. Diwan, Shengxin Lin, Maxim Gonchar, Honghan Gong, F. Z. Qi, Michael Kramer, F. Li, B. Z. Hu, X. Q. Li, Xinglong Li, W. J. Wu, R. D. McKeown, H. L. Zhuang, R. A. Johnson, W. H. Tse, Vit Vorobel, Z. Y. Yu, Z. K. Cheng, Z. P. Zhang, D. C. Jones, Wei Li, A. B. Balantekin, Yuhang Guo, Y. Z. Yang, R. T. Lei, D. M. Xia, Siew Cheng Wong, Jiaheng Zou, Tadeas Dohnal, Jiawen Zhang, N. Dash, L. S. Littenberg, H. S. Chen, Y. X. Zhang, Yinhong Zhang, J. P. Cummings, Z. Guo, Jianrun Hu, Zhiyong Zhang, B. Roskovec, S. Kohn, X. C. Ruan, Rui Zhang, X. H. Guo, Xiaolu Ji, D. A. Martinez Caicedo, M. Dvořák, C. H. Wang, Feiyang Zhang, Kam-Biu Luk, K. M. Heeger, D. Cao, K. T. McDonald, Z. B. Li, J. J. Cherwinka, X. L. Ji, Richard Rosero, R. W. Hackenburg, D. E. Jaffe, Z. Wang, Yanhui Liu, N. Raper, Haifeng Li, E. Naumova, Juan Pedro Ochoa-Ricoux, Guey-Lin Lin, Jonathan S. Lu, Y. K. Hor, Lin Yang, J. M. Link, T. Hu, Y. Y. Ding, H. R. Band, Zhijian Zhang, Jianglai Liu, H. Liang, Yixue Chen, B. R. Littlejohn, K. Treskov, K. Whisnant, R. G. Wang, Shanfeng Li, J. Cheng, Jinmei Liu, Jing Zhao, Li Zhou, D. A. Dwyer, J. L. Sun, T. J. Langford, D. Adey, Yaoyu Zhang, Y. B. Huang, C. Li, Xin Qian, Liang Zhan, Simon Blyth, M. Z. Wang, S. Li, Ming Chung Chu, X. Y. Ma, Y. H. Chang, Guanghua Gong, Jing Wang, Chi Lin, L. Mora Lepin, Fengpeng An, Christopher L. Marshall, J. F. Chang, I. Mitchell, Artem Chukanov, Lawrence Pinsky, N. Y. Wang, B. Viren, Qingmin Zhang, A. Higuera, X. T. Huang, C. G. Yang, L. Guo, Zhi-zhong Xing, Chao Zhang, C. C. Zhang, L. H. Wei, Jinjuan Ren, Q. J. Li, Mengsu Yang, C. Lu, J. L. Xu, Christopher G. White, Qinglong Wu, Jim Napolitano, J. Lee, Tian Xue, Liangjian Wen, H. Y. Wei, Y. K. Heng, Guofu Cao, H. M. Steiner, H. L. H. Wong, Y. Q. Ma, H. R. Pan, C. E. Tull, F. S. Deng, M. Ye, Bing-Lin Young, Yufeng Li, K. L. Jen, Z. M. Wang, Chun S. J. Pun, Zhuojun Hu, Shaomin Chen, Jun Cao, S. F. Li, Dmitry V. Naumov, L. W. Koerner, X. Wang, Haoqi Lu, Y. F. Wang, Rupert Leitner, and X.F. Zhang
- Subjects
Physics ,Semileptonic decay ,Isotope ,Fission ,General Physics and Astronomy ,Inverse ,01 natural sciences ,Spectral line ,Nuclear physics ,Inverse beta decay ,0103 physical sciences ,010306 general physics ,Spectroscopy ,Energy (signal processing) - Abstract
This Letter reports the first extraction of individual antineutrino spectra from ^{235}U and ^{239}Pu fission and an improved measurement of the prompt energy spectrum of reactor antineutrinos at Daya Bay. The analysis uses 3.5×10^{6} inverse beta-decay candidates in four near antineutrino detectors in 1958 days. The individual antineutrino spectra of the two dominant isotopes, ^{235}U and ^{239}Pu, are extracted using the evolution of the prompt spectrum as a function of the isotope fission fractions. In the energy window of 4-6 MeV, a 7% (9%) excess of events is observed for the ^{235}U (^{239}Pu) spectrum compared with the normalized Huber-Mueller model prediction. The significance of discrepancy is 4.0σ for ^{235}U spectral shape compared with the Huber-Mueller model prediction. The shape of the measured inverse beta-decay prompt energy spectrum disagrees with the prediction of the Huber-Mueller model at 5.3σ. In the energy range of 4-6 MeV, a maximal local discrepancy of 6.3σ is observed.
- Published
- 2019
- Full Text
- View/download PDF
18. Improved measurement of the reactor antineutrino flux at Daya Bay
- Author
-
Yinhong Zhang, J. P. Cummings, Z. Guo, X. L. Ji, H. S. Chen, K. T. McDonald, H. Y. Wei, F. S. Deng, Christopher L. Marshall, J. F. Chang, Jing Wang, S. K. Lin, F. Li, Z. K. Cheng, Z. P. Zhang, Y. Malyshkin, Liangjian Wen, Guofu Cao, Bing-Lin Young, W. H. Tse, C. Lu, T. Wise, M. Qi, J. J. Cherwinka, Li Zhou, Lin Yang, N. Raper, Jinmei Liu, Jing Zhao, S. Li, Jianglai Liu, X. Y. Ma, Yang Yang, H. R. Band, I. Mitchell, Yi Chen, Artem Chukanov, Michael Kramer, K. M. Heeger, Y. Chang, B. Z. Hu, Lawrence Pinsky, Chun S. J. Pun, Zhuojun Hu, Chang-Wei Loh, L. Mora Lepin, S. Kohn, Shanfeng Li, C. Li, H. Liang, Yixue Chen, S. J. Patton, Hongliang Li, L. Lebanowski, Y. Y. Ding, W. R. Edwards, Shaomin Chen, Jun Cao, Xiao-yan Li, A. Higuera, C. G. Yang, E. Naumova, D. A. Dwyer, W. Wang, J. M. Link, T. J. Langford, H. L. Zhuang, Rupert Leitner, Zhi-zhong Xing, Christopher G. White, Jinjuan Ren, Y. C. Lin, T. Hu, S. F. Li, Q. J. Li, Y. L. Chan, L. W. Koerner, H. M. Steiner, X.F. Zhang, X. Wang, M. Ye, Dmitry V. Naumov, Y. B. Hsiung, M. T. Yang, Haoqi Lu, Minfang Yeh, Y. F. Wang, Y. Q. Ma, M. V. Diwan, Honghan Gong, D. C. Jones, R. M. Qiu, X. Q. Li, Haijun Yang, Baobiao Yue, J. Park, B. R. Littlejohn, W. J. Wu, D. A. Martinez Caicedo, W. Gu, Jia Xu, Yufeng Li, K. L. Jen, Yuhang Guo, Siew Cheng Wong, A. B. Balantekin, R. D. McKeown, R. G. Wang, Jiaheng Zou, Z. M. Wang, Wenju Huo, N. Y. Wang, Liang Zhan, B. Viren, Patrick Huber, Yaoyu Zhang, Y. B. Huang, X. T. Zhang, Juan Pedro Ochoa-Ricoux, Shengxin Lin, Miao He, Yunzhe Liu, S. H. Kettell, X. B. Ma, Richard Rosero, Simon Blyth, M. Z. Wang, Ming Chung Chu, Maxim Gonchar, L. H. Wei, G. Hussain, R. A. Johnson, Yang Liu, Rui Zhang, Jiawen Zhang, J. H. C. Lee, Hongzhao Yu, Hanxiong Huang, L. Kang, K. Whisnant, Guey-Lin Lin, Jonathan S. Lu, J. Cheng, J. K. C. Leung, Chunjie Wang, Z. Y. Yu, R. W. Hackenburg, L. Guo, Qinglong Wu, Kam Biu Luk, H. H. Zhang, Tian Xue, Z. Wang, Chao Zhang, Y. K. Heng, Zhibing Li, Jen-Chieh Peng, H. R. Pan, J. Dove, X. C. Ruan, Guanghua Gong, C. E. Tull, Chi Lin, D. Adey, Xiaohui Qian, J. Lee, S. Zeng, M. Dolgareva, H. L. H. Wong, J. L. Sun, E. T. Worcester, F. Z. Qi, Xiaolu Ji, B. Roskovec, D. M. Xia, X. H. Guo, P. Zheng, Feiyang Zhang, Qingmin Zhang, D. Cao, R. T. Lei, D. E. Jaffe, Alexander Olshevskiy, Jim Napolitano, J. J. Ling, Zhijian Zhang, K. Treskov, F. P. An, Y. X. Zhang, C. C. Zhang, Xingtao Huang, M. Bishai, L. S. Littenberg, V. Pec, S. Hans, Mengsu Yang, Vit Vorobel, Wei Li, and Zhiyong Zhang
- Subjects
Physics ,Physics - Instrumentation and Detectors ,hep-ex ,010308 nuclear & particles physics ,Fission ,Daya bay ,Astrophysics::High Energy Astrophysical Phenomena ,Analytical chemistry ,FOS: Physical sciences ,Flux ,Instrumentation and Detectors (physics.ins-det) ,Detailed data ,01 natural sciences ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,0103 physical sciences ,Yield ratio ,Neutron ,High Energy Physics::Experiment ,010306 general physics ,physics.ins-det - Abstract
This work reports a precise measurement of the reactor antineutrino flux using 2.2 million inverse beta decay (IBD) events collected with the Daya Bay near detectors in 1230 days. The dominant uncertainty on the neutron detection efficiency is reduced by 56% with respect to the previous measurement through a comprehensive neutron calibration and detailed data and simulation analysis. The new average IBD yield is determined to be $(5.91\pm0.09)\times10^{-43}~\rm{cm}^2/\rm{fission}$ with total uncertainty improved by 29%. The corresponding mean fission fractions from the four main fission isotopes $^{235}$U, $^{238}$U, $^{239}$Pu, and $^{241}$Pu are 0.564, 0.076, 0.304, and 0.056, respectively. The ratio of measured to predicted antineutrino yield is found to be $0.952\pm0.014\pm0.023$ ($1.001\pm0.015\pm0.027$) for the Huber-Mueller (ILL-Vogel) model, where the first and second uncertainty are experimental and theoretical model uncertainty, respectively. This measurement confirms the discrepancy between the world average of reactor antineutrino flux and the Huber-Mueller model., 10 pages, 9 figures, and 2 tables
- Published
- 2019
19. Measurement of the Antineutrino Spectrum from U235 Fission at HFIR with PROSPECT
- Author
-
D. Davee, G. Deichert, D. Norcini, Michael Febbraro, R. L. Varner, J. M. Minock, M. V. Diwan, Chao Zhang, M. P. Mendenhall, A. B. Hansell, X. Zhang, B. Viren, J. T. Matta, Hans P. Mumm, H. R. Band, B. T. Foust, A. Galindo-Uribarri, Anna Erickson, B. R. Littlejohn, J. Nikkel, J. Wilhelmi, Y-R Yen, D. C. Jones, J. Insler, J. J. Cherwinka, A. B. Balantekin, S. Nour, K. Gilje, T. Wise, C. E. Gilbert, P. T. Surukuchi, S. Hans, D. Berish, O. Kyzylova, K. M. Heeger, D. E. Jaffe, C. D. Bryan, M. J. Dolinski, E. Romero-Romero, Aiwu Zhang, A. J. Conant, R. Neilson, J. LaRosa, P. E. Mueller, M. A. Tyra, Richard Rosero, Jim Napolitano, Denis E. Bergeron, D. J. Dean, Dmitry A. Pushin, Minfang Yeh, C.D. Bass, R. D. McKeown, B. T. Hackett, Xin Lu, Andrew A. Cox, Xiaolu Ji, J. K. Gaison, J. P. Brodsky, Xin Qian, T. Classen, Dusan Sarenac, A. B. Telles, D. A. Martinez Caicedo, C. E. Lane, T. J. Langford, Christopher G. White, J. Ashenfelter, and Nathaniel Bowden
- Subjects
Semileptonic decay ,Physics ,Fission ,General Physics and Astronomy ,chemistry.chemical_element ,Inverse ,Uranium ,Enriched uranium ,01 natural sciences ,7. Clean energy ,Nuclear physics ,chemistry ,0103 physical sciences ,010306 general physics ,Neutrino oscillation ,Energy (signal processing) ,High Flux Isotope Reactor - Abstract
This Letter reports the first measurement of the ^{235}U ν[over ¯]_{e} energy spectrum by PROSPECT, the Precision Reactor Oscillation and Spectrum experiment, operating 7.9 m from the 85 MW_{th} highly enriched uranium (HEU) High Flux Isotope Reactor. With a surface-based, segmented detector, PROSPECT has observed 31678±304(stat) ν[over ¯]_{e}-induced inverse beta decays, the largest sample from HEU fission to date, 99% of which are attributed to ^{235}U. Despite broad agreement, comparison of the Huber ^{235}U model to the measured spectrum produces a χ^{2}/ndf=51.4/31, driven primarily by deviations in two localized energy regions. The measured ^{235}U spectrum shape is consistent with a deviation relative to prediction equal in size to that observed at low-enriched uranium power reactors in the ν[over ¯]_{e} energy region of 5-7 MeV.
- Published
- 2019
- Full Text
- View/download PDF
20. The Radioactive Source Calibration System of the PROSPECT Reactor Antineutrino Detector
- Author
-
R. Rosero, Denis E. Bergeron, T. J. Langford, R. L. Varner, R. D. McKeown, Chao Zhang, M. P. Mendenhall, J. Ashenfelter, M. V. Diwan, Xin Qian, Nathaniel Bowden, X. Lu, Aiwu Zhang, J. Wilhelmi, D. A. Martinez Caicedo, D. Norcini, J. T. Matta, A. B. Telles, Y-R Yen, G. Deichert, C. D. Bass, M. J. Dolinski, Hans P. Mumm, Jim Napolitano, C.E. Gilbert, J. P. Brodsky, D. C. Jones, J. Insler, A. B. Balantekin, O. Kyzylova, J. J. Cherwinka, R. Neilson, A. B. Hansell, K. M. Heeger, P. E. Mueller, B. Hackett, H. R. Band, B. T. Foust, S. Hans, C. E. Lane, X. Zhang, Dmitry A. Pushin, A. Galindo-Uribarri, B. R. Littlejohn, E. Romero-Romero, J. LaRosa, D. E. Jaffe, Minfang Yeh, S. Nour, P. T. Surukuchi, J. A. Nikkel, Anna Erickson, T. Wise, D. Berish, Christopher G. White, T. Classen, Dusan Sarenac, M. A. Tyra, Michael Febbraro, B. Viren, C. D. Bryan, A. J. Conant, J. K. Gaison, and D. J. Dean
- Subjects
Physics ,Nuclear and High Energy Physics ,Photomultiplier ,Physics - Instrumentation and Detectors ,010308 nuclear & particles physics ,Physics::Instrumentation and Detectors ,Radioactive source ,Nuclear engineering ,Detector ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Nuclear reactor ,Oak Ridge National Laboratory ,7. Clean energy ,01 natural sciences ,law.invention ,Physics::Geophysics ,law ,Inverse beta decay ,0103 physical sciences ,High Energy Physics::Experiment ,Neutrino ,010306 general physics ,Instrumentation ,High Flux Isotope Reactor - Abstract
The Precision Reactor Oscillation and Spectrum (PROSPECT) Experiment is a reactor neutrino experiment designed to search for sterile neutrinos with a mass on the order of 1 eV/c$^2$ and to measure the spectrum of electron antineutrinos from a highly-enriched $^{235}$U nuclear reactor. The PROSPECT detector consists of an 11 by 14 array of optical segments in $^{6}$Li-loaded liquid scintillator at the High Flux Isotope Reactor in Oak Ridge National Laboratory. Antineutrino events are identified via inverse beta decay and read out by photomultiplier tubes located at the ends of each segment. The detector response is characterized using a radioactive source calibration system. This paper describes the design, operation, and performance of the PROSPECT source calibration system.
- Published
- 2019
21. Search for sterile neutrinos in MINOS and MINOS+ using a two-detector fit
- Author
-
A. Radovic, Karol Lang, S. C. Tognini, T. J. Carroll, Harvey B Newman, S. Germani, X. Tian, A. V. Devan, A. Holin, G. M. Irwin, M. M. Medeiros, G. J. Feldman, Joao A B Coelho, M. V. Diwan, D. Cronin-Hennessy, S. Phan-Budd, A. Sousa, P. Gouffon, R. L. Talaga, M. Kordosky, Andrew Blake, L. Corwin, Leigh H. Whitehead, B. Viren, N. E. Devenish, A. Timmons, M. Y. Gabrielyan, P. J. Litchfield, S. V. Cao, A. E. Kreymer, P. Sail, R. Chen, Marvin L Marshak, J. K. De Jong, J. A. Nowak, Rakesh Sharma, J. M. Paley, P. Schreiner, R. B. Patterson, C. D. Moore, M. A. Thomson, D. Naples, Stanley G. Wojcicki, S. R. Mishra, A. C. Weber, J. O'Connor, D. D. Phan, J. J. Evans, N. Tagg, G.D. Barr, Junwei Huang, M. M. Pfützner, W. A. Mann, S. De Rijck, E. Falk, A. Perch, Z. Isvan, L. Mualem, J. Schneps, M. V. Frohne, H. R. Gallagher, J. Hylen, S. Moed Sher, Juergen Thomas, I. Anghel, C. M. Castromonte, S. Childress, N. Poonthottathil, W. H. Miller, J. K. Nelson, G. Tzanakos, Maury Goodman, Alec Habig, D. A. Jensen, G. Koizumi, R. J. Nichol, N. Mayer, T. Kafka, M. D. Messier, Gregory J Pawloski, C. James, Christopher G. White, L. W. Koerner, M. C. Sanchez, W. Flanagan, R. B. Pahlka, A. Schreckenberger, Carlos Escobar, R. K. Plunkett, J. Todd, X. Qiu, D. Torretta, P. Lucas, J. Hartnell, S. R. Hahn, G. J. Bock, H. A. Rubin, R. Toner, B. Rebel, R. Hatcher, M. Bishai, M. Orchanian, K. Grzelak, J. R. Meier, N. Graf, R. Gran, R. Mehdiyev, P. Vahle, C. L. McGivern, R. A. Gomes, C. Rosenfeld, P. Adamson, D. Bogert, S. M. S. Kasahara, R. Zwaska, R. C. Webb, J. Urheim, A. Aurisano, and J. A. Musser
- Subjects
Physics ,Sterile neutrino ,Particle physics ,Physics::Instrumentation and Detectors ,Solar neutrino ,Astrophysics::High Energy Astrophysical Phenomena ,High Energy Physics::Phenomenology ,FOS: Physical sciences ,General Physics and Astronomy ,Solar neutrino problem ,01 natural sciences ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Neutrino detector ,MINOS ,0103 physical sciences ,Measurements of neutrino speed ,High Energy Physics::Experiment ,Neutrino ,010306 general physics ,Neutrino oscillation ,QC - Abstract
A search for mixing between active neutrinos and light sterile neutrinos has been performed by looking for muon neutrino disappearance in two detectors at baselines of 1.04 km and 735 km, using a combined MINOS and MINOS+ exposure of $16.36\times10^{20}$ protons-on-target. A simultaneous fit to the charged-current muon neutrino and neutral-current neutrino energy spectra in the two detectors yields no evidence for sterile neutrino mixing using a 3+1 model. The most stringent limit to date is set on the mixing parameter $\sin^2\theta_{24}$ for most values of the sterile neutrino mass-splitting $\Delta m^2_{41} > 10^{-4}$ eV$^2$., Comment: 7 pages, 4 figures, additional analysis details and a data release in the ancillary materials
- Published
- 2019
- Full Text
- View/download PDF
22. 9. One Step Beyond
- Author
-
Christopher G. White
- Subjects
Computer science ,One-Step ,Algorithm - Published
- 2018
- Full Text
- View/download PDF
23. 3. New Heaven, New Earth
- Author
-
Christopher G. White
- Subjects
Philosophy ,media_common.quotation_subject ,Heaven ,Earth (chemistry) ,Astrobiology ,media_common - Published
- 2018
- Full Text
- View/download PDF
24. 8. Madeleine L’Engle Disturbs the Universe
- Author
-
Christopher G. White
- Subjects
Philosophy ,Theology - Published
- 2018
- Full Text
- View/download PDF
25. 7. Mirrors, Doorways, and Otherworldly Openings
- Author
-
Christopher G. White
- Published
- 2018
- Full Text
- View/download PDF
26. Introduction: Science, the Supernatural, and Higher Realms
- Author
-
Christopher G. White
- Published
- 2018
- Full Text
- View/download PDF
27. 5. Max Weber and the Art of an Invisible Geometry
- Author
-
Christopher G. White
- Subjects
media_common.quotation_subject ,Geometry ,Art ,media_common - Published
- 2018
- Full Text
- View/download PDF
28. 2. The Man Who Saw the Fourth Dimension
- Author
-
Christopher G. White
- Subjects
Philosophy ,Fourth Dimension ,Calculus - Published
- 2018
- Full Text
- View/download PDF
29. 1. Edwin Abbott’s Otherworldly Visions
- Author
-
Christopher G. White
- Subjects
Vision ,media_common.quotation_subject ,Art history ,Art ,media_common - Published
- 2018
- Full Text
- View/download PDF
30. 6. The Spacetime of Dreams
- Author
-
Christopher G. White
- Subjects
Physics ,Spacetime ,Mathematical physics - Published
- 2018
- Full Text
- View/download PDF
31. Measurement of the Electron Antineutrino Oscillation with 1958 Days of Operation at Daya Bay
- Author
-
Hongzhao Yu, Hanxiong Huang, L. Kang, J. K. C. Leung, Yanchu Wang, Li Zhou, Alexander Olshevskiy, D. Cao, S. H. Kettell, Miao He, J. J. Ling, S. J. Patton, D. E. Jaffe, Christopher G. White, X. B. Ma, Xingtao Huang, M. Bishai, Jinjuan Ren, Y. L. Chan, H. R. Band, H. Liang, Yixue Chen, H. L. Zhuang, S. Kohn, E. T. Worcester, M. Ye, Wenxiao Wang, Haifeng Li, F. Z. Qi, Jen-Chieh Peng, L. S. Littenberg, Juan Pedro Ochoa-Ricoux, T. Wise, Maxim Gonchar, Yanping Huang, R. T. Lei, Y. C. Lin, W. R. Edwards, D. Taychenachev, R. A. Johnson, G. Hussain, X. L. Ji, V. Vorobel, Jianrun Hu, Patrick Huber, X. Wang, Qingmin Zhang, Jiawen Zhang, Quanyin Li, Yinhong Zhang, Minfang Yeh, Chang-Wei Loh, B. R. Littlejohn, Xiaolu Ji, D. M. Xia, H. Y. Wei, F. S. Deng, X. T. Zhang, Z. Guo, B. Roskovec, R. Zhang, L. Lebanowski, Y. Y. Ding, Shengxin Lin, Z. K. Cheng, Z. P. Zhang, Jianglai Liu, Bing-Lin Young, Xiaohui Qian, D. Adey, Jim Napolitano, J. Lee, Honghan Gong, Yaoyu Zhang, Yang Yang, D. A. Martinez Caicedo, S. Zeng, M. Dolgareva, Michael Kramer, L. Mora Lepin, Y. H. Chang, E. Naumova, D. A. Dwyer, K. T. McDonald, H. L. H. Wong, T. J. Langford, Guey-Lin Lin, Jonathan S. Lu, Baobiao Yue, X.F. Zhang, Xiao-yan Li, A. Higuera, Zhi-zhong Xing, C. H. Wang, H. M. Steiner, X. C. Ruan, Huijun Zhang, P. Zheng, Feiyang Zhang, Haijun Yang, L. Guo, R. G. Wang, M. Qi, W. J. Wu, Siew Cheng Wong, R. D. McKeown, Ye Chen, Chao Zhang, J. Park, Liang Zhan, Changjian Lin, Yang Heng, Jiaheng Zou, Mengsu Yang, Haonan Lu, Shanfeng Li, H. R. Pan, T. Hu, Xiaohu Guo, M. T. Yang, J. H. C. Lee, B. Z. Hu, F. Li, Yunzhe Liu, C. E. Tull, W. H. Tse, Christopher L. Marshall, J. F. Chang, W. Gu, Z. Y. Yu, D. C. Jones, Zhibing Li, Yufeng Li, J. M. Link, J. P. Cummings, A. B. Balantekin, Rupert Leitner, Changgen Yang, K. M. Heeger, K. L. Jen, Jing Wang, C. Lu, J. L. Xu, Wenju Huo, S. K. Lin, Y. Malyshkin, Liangjian Wen, Guofu Cao, Qinglong Wu, Kam Biu Luk, Chun S. J. Pun, Artem Chukanov, Lawrence Pinsky, Zhuojun Hu, Shaomin Chen, Jun Cao, J. L. Sun, S. F. Li, Tian Xue, Y. X. Zhang, Simon Blyth, Dmitry V. Naumov, M. Z. Wang, Ming Chung Chu, C. Li, Richard Rosero, W. Tang, N. Y. Wang, B. Viren, L. H. Wei, Z. M. Wang, Yanhui Ma, K. Whisnant, J. Cheng, Yanlin Liu, Wei Li, Zhijian Zhang, K. Treskov, Zhiyong Zhang, F. P. An, C. C. Zhang, Hucheng Chen, V. Pec, S. Hans, R. W. Hackenburg, Z. Wang, Guanghua Gong, J. J. Cherwinka, N. Raper, L. W. Koerner, Yicheng Guo, Y. B. Hsiung, M. V. Diwan, R. M. Qiu, X. Q. Li, Lin Yang, Jinmei Liu, Jing Zhao, S. Li, X. Y. Ma, and I. Mitchell
- Subjects
Physics ,Physics - Instrumentation and Detectors ,010308 nuclear & particles physics ,Oscillation ,hep-ex ,Daya bay ,General Physics and Astronomy ,Inverse ,FOS: Physical sciences ,Daya Bay Reactor Neutrino Experiment ,Instrumentation and Detectors (physics.ins-det) ,01 natural sciences ,Spectral line ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,0103 physical sciences ,010306 general physics ,Electron neutrino ,physics.ins-det ,Energy (signal processing) - Abstract
We report a measurement of electron antineutrino oscillation from the Daya Bay Reactor Neutrino Experiment with nearly 4 million reactor $\overline{\nu}_{e}$ inverse beta decay candidates observed over 1958 days of data collection. The installation of a Flash-ADC readout system and a special calibration campaign using different source enclosures reduce uncertainties in the absolute energy calibration to less than 0.5% for visible energies larger than 2 MeV. The uncertainty in the cosmogenic $^9$Li and $^8$He background is reduced from 45% to 30% in the near detectors. A detailed investigation of the spent nuclear fuel history improves its uncertainty from 100% to 30%. Analysis of the relative $\overline{\nu}_{e}$ rates and energy spectra among detectors yields $\sin^{2}2\theta_{13} = 0.0856\pm 0.0029$ and $\Delta m^2_{32}=(2.471^{+0.068}_{-0.070})\times 10^{-3}~\mathrm{eV}^2$ assuming the normal hierarchy, and $\Delta m^2_{32}=-(2.575^{+0.068}_{-0.070})\times 10^{-3}~\mathrm{eV}^2$ assuming the inverted hierarchy., Comment: 6 pages, 4 figures, and 1 table. v4: the published version
- Published
- 2018
32. RF system for the MICE demonstration of ionisation cooling
- Author
-
A. J. Dick, D. Bowring, P. Hanlet, Patrick Smith, Colin G. Whyte, R. Schultz, K. Dumbell, T. Anderson, Kenneth Long, Saad Alsari, David Peterson, A. Kurup, Alastair Grant, Ben Freemire, Derun Li, J. Volk, A. DeMello, R.J. Anderson, Alfred Moretti, Yagmur Torun, Tianhuan Luo, A. R. Young, Christopher G. White, Stephen Griffiths, T. Stanley, Milorad Popovic, D. J. Summers, A. Bross, Andrew Moss, Ralph J. Pasquinelli, A. Lambert, Kevin Ronald, Particle Physics and Astronomy Research Council (PPARC), Science and Technology Facilities Council (STFC), Imperial College Trust, Commission of the European Communities, Council for the Central Laboratory of the Research Councils' (CCLRC), and The Royal Society
- Subjects
Accelerator Physics (physics.acc-ph) ,Technology ,TK ,FOS: Physical sciences ,Context (language use) ,01 natural sciences ,030218 nuclear medicine & medical imaging ,law.invention ,Nuclear physics ,03 medical and health sciences ,0302 clinical medicine ,Engineering ,law ,0103 physical sciences ,diagnostics ,Thermal emittance ,physics.acc-ph ,Physics ,Muon ,Science & Technology ,010308 nuclear & particles physics ,RF accelerators ,Particle accelerator ,Engineering, Electrical & Electronic ,muon accelerators ,Physics::Accelerator Physics ,Physics - Accelerator Physics ,High Energy Physics::Experiment ,Particle physics experiments ,Beam emittance ,Neutrino ,ionisation cooling ,Lepton - Abstract
Muon accelerators offer an attractive option for a range of future particle physics experiments. They can enable high energy (TeV+) high energy lepton colliders whilst mitigating the difficulty of synchrotron losses, and can provide intense beams of neutrinos for fundamental physics experiments investigating the physics of flavor. The method of production of muon beams results in high beam emittance which must be reduced for efficient acceleration. Conventional emittance control schemes take too long, given the very short (2.2 microsecond) rest lifetime of the muon. Ionisation cooling offers a much faster approach to reducing particle emittance, and the international MICE collaboration aims to demonstrate this technique for the first time. This paper will present the MICE RF system and its role in the context of the overall experiment., Comment: 2 pp
- Published
- 2018
33. Seasonal variation of the underground cosmic muon flux observed at Daya Bay
- Author
-
T. J. Langford, K. V. Tsang, H. M. Steiner, Y. Q. Ma, Artem Chukanov, Lawrence Pinsky, Michael Kramer, J. J. Cherwinka, Patrick Huber, S. J. Patton, W. Q. Gu, X. T. Zhang, Qinglong Wu, S. H. Kettell, X. B. Ma, Shengxin Lin, A. Khan, Tian Xue, W. J. Wu, Chang-Wei Loh, R. D. McKeown, Xiaohu Guo, Richard Rosero, L. Lebanowski, H. L. Zhuang, Y. K. Heng, Y. Y. Ding, M. Ye, T. Wise, J. F. Chang, M. Qi, Alexander Olshevskiy, M. T. Yang, Maxim Gonchar, D. C. Jones, D. Taychenachev, S. Hans, Changgen Yang, K. Whisnant, J. Cheng, E. T. Worcester, Y. Xu, E. C. Huang, A. B. Balantekin, G. Hussain, Y. Nakajima, H. S. Chen, C. Li, W. Tang, K. K. Kwan, Y. L. Chan, F. Z. Qi, Chun S. J. Pun, R. A. Johnson, M. W. Kwok, N. Y. Wang, C. Lu, B. Viren, J. J. Ling, Shaomin Chen, Jun Cao, N. Viaux, J. L. Xu, X. L. Ji, Christopher G. White, B. Z. Hu, Xin Qian, Jiawen Zhang, H. H. Zhang, Minfang Yeh, J. B. Jiao, Vit Vorobel, S. F. Li, W. R. Edwards, Guisen Li, Honghan Gong, Rupert Leitner, Zhijian Zhang, Z. Guo, Dmitry V. Naumov, H. R. Band, C. H. Wang, R. T. Lei, Hanxiong Huang, L. Kang, Xingtao Huang, Yang Yang, Y. C. Lin, B. Roskovec, Xiao-yan Li, K. Treskov, Wei Li, A. Higuera, S. Zeng, J. Park, Jen-Chieh Peng, Siew Cheng Wong, L. H. Whitehead, Zhi-zhong Xing, Z. Y. Yu, X. Wang, Li Zhou, H. Y. Wei, F. P. An, Wenju Huo, Yicheng Guo, K. T. McDonald, Haoqi Lu, H. Liang, Yixue Chen, Jiaheng Zou, Jinjuan Ren, D. A. Martinez Caicedo, M. Bishai, J. H. C. Lee, Haijun Yang, Q. J. Li, Dejun Li, Y. F. Wang, Yi Chen, Y. B. Hsiung, Shanfeng Li, Bing-Lin Young, J. Dove, B. R. Littlejohn, Wei Wang, C. C. Zhang, C. H. Wu, M. V. Diwan, L. S. Littenberg, R. M. Qiu, X. Q. Li, T. Kwok, Guey-Lin Lin, R. W. Hackenburg, R. G. Wang, Z. Wang, Simon Blyth, M. Z. Wang, Ming Chung Chu, Yufeng Li, K. L. Jen, N. Raper, Jonathan S. Lu, Z. Ye, Liang Zhan, Marco Grassi, Miao He, Y. X. Zhang, X. C. Ruan, Kam-Biu Luk, S. K. Lin, L. Guo, Y. H. Chang, F. Li, H. R. Pan, D. M. Xia, Chao Zhang, Z. B. Li, Zhiyong Zhang, S. Jetter, Y. Malyshkin, J. L. Sun, Lin Yang, Z. M. Wang, Jinmei Liu, C. Sebastiani, Liangjian Wen, Jing Zhao, X. Y. Ma, Guofu Cao, I. Mitchell, Jianglai Liu, S. Kohn, D. Cao, Guanghua Gong, C. E. Tull, Z. K. Cheng, Z. P. Zhang, D. E. Jaffe, Chi Lin, Juan Pedro Ochoa-Ricoux, Qingmin Zhang, Q. Y. Chen, Jim Napolitano, Y. M. Zhang, J. M. Link, J. P. Cummings, J. Lee, M. Dolgareva, H. L. H. Wong, Kwong Lau, K. M. Heeger, V. Pec, X. P. Ji, Mengsu Yang, J. K. Xia, T. Hu, H. Y. Ngai, R. L. Gill, E. Naumova, and D. A. Dwyer
- Subjects
Physics - Instrumentation and Detectors ,Correlation coefficient ,Physics::Instrumentation and Detectors ,cosmic ray experiments ,neutrino detectors ,neutrino experiments ,Flux ,FOS: Physical sciences ,Atmospheric sciences ,01 natural sciences ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,0103 physical sciences ,medicine ,010306 general physics ,Physics ,COSMIC cancer database ,Muon ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,Seasonality ,Atmospheric temperature ,medicine.disease ,Overburden ,Neutrino detector ,High Energy Physics::Experiment - Abstract
The Daya Bay Experiment consists of eight identically designed detectors located in three underground experimental halls named as EH1, EH2, EH3, with 250, 265 and 860 meters of water equivalent vertical overburden, respectively. Cosmic muon events have been recorded over a two-year period. The underground muon rate is observed to be positively correlated with the effective atmospheric temperature and to follow a seasonal modulation pattern. The correlation coefficient $\alpha$, describing how a variation in the muon rate relates to a variation in the effective atmospheric temperature, is found to be $\alpha_{\text{EH1}} = 0.362\pm0.031$, $\alpha_{\text{EH2}} = 0.433\pm0.038$ and $\alpha_{\text{EH3}} = 0.641\pm0.057$ for each experimental hall., Comment: Updated to be identical to the published version
- Published
- 2018
34. Performance of a segmented $^{6}$Li-loaded liquid scintillator detector for the PROSPECT experiment
- Author
-
Dmitry A. Pushin, M. A. Tyra, C. E. Lane, J. P. Brodsky, R. Rosero, Minfang Yeh, Denis E. Bergeron, T. J. Langford, Chao Zhang, M. P. Mendenhall, R. D. McKeown, A. B. Hansell, H. R. Band, S. Nour, Anna Erickson, J. Ashenfelter, D. Norcini, J. J. Cherwinka, T. Wise, D. Berish, K. Gilje, Hans P. Mumm, J. Wilhelmi, Christopher G. White, T. Classen, P. E. Mueller, M. V. Diwan, B. T. Foust, R. Neilson, D. Davee, Nathaniel Bowden, D. A. Martinez Caicedo, F. Lopez, B. Hackett, K. M. Heeger, Y-R Yen, Ke Han, Jim Napolitano, A. Galindo-Uribarri, B. R. Littlejohn, A. Bykadorova Telles, J. T. Matta, D. C. Jones, J. Insler, A. B. Balantekin, E. Romero-Romero, O. Kyzylova, S. Hans, P. T. Surukuchi, X. Zhang, K. Commeford, G. Deichert, D. E. Jaffe, Aiwu Zhang, J. A. Nikkel, C. D. Bass, M. J. Dolinski, J. M. Wagner, A. J. Conant, J. K. Gaison, B. Heffron, Xin Qian, C. Trinh, J. LaRosa, C. D. Bryan, and J. M. Minock
- Subjects
Scintillation ,Materials science ,Physics - Instrumentation and Detectors ,010308 nuclear & particles physics ,business.industry ,Physics::Instrumentation and Detectors ,Detector ,Attenuation length ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Scintillator ,01 natural sciences ,7. Clean energy ,High Energy Physics - Experiment ,Neutron capture ,High Energy Physics - Experiment (hep-ex) ,Optics ,Recoil ,Neutrino detector ,0103 physical sciences ,Neutron detection ,010306 general physics ,business ,Instrumentation ,Mathematical Physics - Abstract
This paper describes the design and performance of a 50 liter, two-segment $^{6}$Li-loaded liquid scintillator detector that was designed and operated as prototype for the PROSPECT (Precision Reactor Oscillation and Spectrum) Experiment. The two-segment detector was constructed according to the design specifications of the experiment. It features low-mass optical separators, an integrated source and optical calibration system, and materials that are compatible with the $^{6}$Li-doped scintillator developed by PROSPECT. We demonstrate a high light collection of 850$\pm$20 PE/MeV, an energy resolution of $\sigma$ = 4.0$\pm$0.2% at 1 MeV, and efficient pulse-shape discrimination of low $dE/dx$ (electronic recoil) and high $dE/dx$ (nuclear recoil) energy depositions. An effective scintillation attenuation length of 85$\pm$3 cm is measured in each segment. The 0.1% by mass concentration of $^{6}$Li in the scintillator results in a measured neutron capture time of $\tau$ = 42.8$\pm$0.2 $\mu s$. The long-term stability of the scintillator is also discussed. The detector response meets the criteria necessary for achieving the PROSPECT physics goals and demonstrates features that may find application in fast neutron detection., Comment: 16 pages, 13 figures; minor edits to design detail and references
- Published
- 2018
- Full Text
- View/download PDF
35. First search for short-baseline neutrino oscillations at HFIR with PROSPECT
- Author
-
R. Neilson, Lindsey J. Bignell, D. E. Jaffe, J. A. Nikkel, J. J. Cherwinka, K. Gilje, C. E. Gilbert, D. Davee, R. L. Varner, A. Galindo-Uribarri, B. R. Littlejohn, Minfang Yeh, D. A. Martinez Caicedo, K. Koehler, C. D. Bryan, D. C. Jones, J. Insler, B. Heffron, H. R. Band, C. D. Bass, M. J. Dolinski, A. B. Hansell, A. B. Balantekin, O. Kyzylova, D. Norcini, A. Bykadorova Telles, R. Sharma, J. LaRosa, J. M. Wagner, C. E. Lane, B. T. Foust, C. Baldenegro, Xin Lu, G. Deichert, P. T. Surukuchi, D. J. Dean, H. Yao, Dusan Sarenac, Michael Febbraro, Ke Han, J. P. Brodsky, R. Rosero, J. Wilhelmi, Andrew A. Cox, M. V. Diwan, Jim Napolitano, Denis E. Bergeron, B. Viren, B. R. White, Aiwu Zhang, Hans P. Mumm, J. Bricco, R. D. McKeown, Chao Zhang, K. Commeford, M. P. Mendenhall, Christopher G. White, Wei Wang, J. T. Matta, T. Classen, F. Lopez, K. M. Heeger, X. Zhang, H. J. Miller, T. J. Langford, J. Ashenfelter, X. Ji, Nathaniel Bowden, S. Hans, B. Seilhan, Dmitry A. Pushin, Xin Qian, S. Nour, Anna Erickson, T. Wise, D. Berish, M. A. Tyra, P. E. Mueller, Y-R Yen, A. Glenn, B. T. Hackett, J. K. Gaison, M. Zhao, E. Romero-Romero, A. J. Conant, J. M. Minock, B. W. Goddard, and C. Trinh
- Subjects
Physics ,Fission products ,Sterile neutrino ,010308 nuclear & particles physics ,Fission ,Oscillation ,General Physics and Astronomy ,FOS: Physical sciences ,Scintillator ,01 natural sciences ,High Energy Physics - Experiment ,Physics::Geophysics ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Inverse beta decay ,0103 physical sciences ,High Energy Physics::Experiment ,Physics::Chemical Physics ,010306 general physics ,Neutrino oscillation ,High Flux Isotope Reactor - Abstract
This Letter reports the first scientific results from the observation of antineutrinos emitted by fission products of $^{235}$U at the High Flux Isotope Reactor. PROSPECT, the Precision Reactor Oscillation and Spectrum Experiment, consists of a segmented 4 ton $^6$Li-doped liquid scintillator detector covering a baseline range of 7-9 m from the reactor and operating under less than 1 meter water equivalent overburden. Data collected during 33 live-days of reactor operation at a nominal power of 85 MW yields a detection of 25461 $\pm$ 283 (stat.) inverse beta decays. Observation of reactor antineutrinos can be achieved in PROSPECT at 5$\sigma$ statistical significance within two hours of on-surface reactor-on data-taking. A reactor-model independent analysis of the inverse beta decay prompt energy spectrum as a function of baseline constrains significant portions of the previously allowed sterile neutrino oscillation parameter space at 95% confidence level and disfavors the best fit of the Reactor Antineutrino Anomaly at 2.2$\sigma$ confidence level., Comment: 7 pages, 5 figures; v3: Added additional supplemental files
- Published
- 2018
- Full Text
- View/download PDF
36. The PROSPECT Reactor Antineutrino Experiment
- Author
-
J. J. Cherwinka, Aiwu Zhang, K. Gilje, G. Deichert, C. Baldenegro, A. Galindo-Uribarri, B. R. Littlejohn, R. Sharma, P. T. Surukuchi, Wei Wang, E. Romero-Romero, D. Norcini, R. L. Varner, K. Commeford, B. Hackett, C. E. Lane, M. Zhao, Minfang Yeh, H. R. Band, A. B. Hansell, D. A. Martinez Caicedo, A. J. Conant, X. Lu, M. V. Diwan, J. M. Minock, B. T. Foust, J. Boyle, Christopher G. White, S. Nour, T. Classen, Anna Erickson, R. Rosero, B. W. Goddard, J. T. Matta, J. K. Gaison, C.E. Gilbert, H. J. Miller, A. Bykadorova Telles, T. Wise, T. J. Langford, D. Berish, Y-R Yen, Denis E. Bergeron, R. Neilson, D. J. Dean, A. Glenn, Michael Febbraro, J. Ashenfelter, R. D. McKeown, B. Viren, Lindsey J. Bignell, Jim Napolitano, J. Bricco, J. P. Brodsky, P. E. Mueller, D. E. Jaffe, M. A. Tyra, X. Ji, Nathaniel Bowden, X. Zhang, J. A. Nikkel, Ke Han, Chao Zhang, H. Yao, C. Trinh, M. P. Mendenhall, C. D. Bryan, K. Koehler, Hans P. Mumm, F. Lopez, D. C. Jones, J. Insler, K. M. Heeger, A. B. Balantekin, O. Kyzylova, Andrew A. Cox, B. R. White, D. Davee, Dusan Sarenac, J. LaRosa, C. D. Bass, M. J. Dolinski, B. Heffron, J. M. Wagner, Xin Qian, J. Wilhelmi, B. Seilhan, Dmitry A. Pushin, and S. Hans
- Subjects
Physics ,Nuclear and High Energy Physics ,Sterile neutrino ,Physics - Instrumentation and Detectors ,010308 nuclear & particles physics ,Oscillation ,Physics::Instrumentation and Detectors ,Detector ,High Energy Physics::Phenomenology ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Parameter space ,Scintillator ,01 natural sciences ,7. Clean energy ,Physics::Geophysics ,Nuclear physics ,Inverse beta decay ,0103 physical sciences ,High Energy Physics::Experiment ,010306 general physics ,Neutrino oscillation ,Instrumentation ,High Flux Isotope Reactor - Abstract
The Precision Reactor Oscillation and Spectrum Experiment, PROSPECT, is designed to make both a precise measurement of the antineutrino spectrum from a highly-enriched uranium reactor and to probe eV-scale sterile neutrinos by searching for neutrino oscillations over meter-long baselines. PROSPECT utilizes a segmented $^6$Li-doped liquid scintillator detector for both efficient detection of reactor antineutrinos through the inverse beta decay reaction and excellent background discrimination. PROSPECT is a movable 4-ton antineutrino detector covering distances of 7m to 13m from the High Flux Isotope Reactor core. It will probe the best-fit point of the $\bar\nu_e$ disappearance experiments at 4$\sigma$ in 1 year and the favored regions of the sterile neutrino parameter space at more than 3$\sigma$ in 3 years. PROSPECT will test the origin of spectral deviations observed in recent $\theta_{13}$ experiments, search for sterile neutrinos, and address the hypothesis of sterile neutrinos as an explanation of the reactor anomaly. This paper describes the design, construction, and commissioning of PROSPECT and reports first data characterizing the performance of the PROSPECT antineutrino detector., Comment: 30 pages, 33 figures; updated with journal revision and reference
- Published
- 2018
- Full Text
- View/download PDF
37. A search for flavor-changing non-standard neutrino interactions using $ν_{e}$ appearance in MINOS
- Author
-
Christopher G. White, R. J. Nichol, S. Phan-Budd, X. Tian, Stanley G. Wojcicki, A. Sousa, S. V. Cao, D. Cronin-Hennessy, P. Gouffon, B. Viren, M. Bishai, R. A. Gomes, J. M. Paley, R. L. Talaga, J. O'Connor, J. Hylen, G. Tzanakos, M. M. Medeiros, M. C. Goodman, Mcd Sanchez, N. E. Devenish, N. Tagg, G.D. Barr, Junwei Huang, G. Koizumi, Carlos Escobar, M. Orchanian, A. Holin, M. V. Diwan, C. Rosenfeld, C. M. Castromonte, P. Schreiner, N. Mayer, K. Grzelak, J. K. Nelson, Joao A B Coelho, L. H. Whitehead, R. C. Webb, M. V. Frohne, P. Adamson, R. Chen, L. Whitehead, J. K. De Jong, Subhasmita Mishra, C. L. McGivern, A. Schreckenberger, S. Moed Sher, S. M. S. Kasahara, J. Urheim, R. Sharma, R. Toner, P. Vahle, J. A. Nowak, M. Kordosky, S. Childress, T. Kafka, J. C. Thomas, N. Graf, D. A. Jensen, J. Schneps, R. B. Patterson, C. D. Moore, B. Rebel, R. Hatcher, M. D. Messier, X. Qiu, P. Lucas, D. D. Phan, M. Y. Gabrielyan, R. Gran, Andrew Blake, E. Falk, A. Timmons, W. A. Mann, H. R. Gallagher, J. A. Musser, S. C. Tognini, J. J. Evans, M. M. Pfützner, T. J. Carroll, R. Mehdiyev, I. Anghel, W. Flanagan, P. J. Litchfield, S. R. Hahn, Harvey B Newman, R. B. Pahlka, R. K. Plunkett, N. Poonthottathil, A. C. Weber, A. E. Kreymer, L. Corwin, R. Zwaska, S. Germani, Marvin L Marshak, Warner A. Miller, A. Perch, G. M. Irwin, A. V. Devan, G. J. Feldman, P. Sail, J. R. Meier, D. Bogert, S. De Rijck, A. Aurisano, G. J. Bock, J. Todd, M. A. Thomson, D. Torretta, Gregory J Pawloski, L. Mualem, J. Hartnell, C. James, H. A. Rubin, D. Naples, Alec Habig, Z. Isvan, Karol Lang, and A. Radovic
- Subjects
Physics ,Particle physics ,010308 nuclear & particles physics ,Physics::Instrumentation and Detectors ,High Energy Physics::Phenomenology ,Phase (waves) ,DETETORES ,01 natural sciences ,High Energy Physics - Experiment ,Nuclear physics ,MINOS ,0103 physical sciences ,High Energy Physics::Experiment ,Neutrino ,010306 general physics ,Flavor ,Mixing (physics) ,QC - Abstract
We report new constraints on flavor-changing non-standard neutrino interactions from the MINOS long-baseline experiment using $\nu_{e}$ and $\bar{\nu}_{e}$ appearance candidate events from predominantly $\nu_{\mu}$ and $\bar{\nu}_{\mu}$ beams. We used a statistical selection algorithm to separate $\nu_{e}$ candidates from background events, enabling an analysis of the combined MINOS neutrino and antineutrino data. We observe no deviations from standard neutrino mixing, and thus place constraints on the non-standard interaction matter effect, $|\varepsilon_{e\tau}|$, and phase, $(\delta_{CP}+\delta_{e\tau})$, using a thirty-bin likelihood fit., Comment: 5 pages, 3 figures v2: References added, caption and probability calculation clarified. Result unchanged
- Published
- 2017
- Full Text
- View/download PDF
38. Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay
- Author
-
P. Jaffke, Y. K. Hor, L. Guo, H. H. Zhang, J. Lee, F. Li, Chao Zhang, S. Zeng, M. Dolgareva, Jen-Chieh Peng, C. Li, H. L. H. Wong, Y. X. Zhang, Marco Grassi, Miao He, J. Dove, J. P. Cummings, S. H. Kettell, X. B. Ma, J. J. Cherwinka, Z. M. Wang, S. J. Patton, W. Q. Gu, X. P. Ji, X. C. Ruan, J. B. Jiao, J. Joshi, Z. Guo, Michael Kramer, Chun S. J. Pun, Hanxiong Huang, L. Kang, Yi-Fang Zhao, Maxim Gonchar, K. M. Heeger, W. Tang, H. L. Zhuang, M. V. Diwan, Haosheng Chen, Shaomin Chen, Jun Cao, Rupert Leitner, K. T. McDonald, J. M. Link, S. K. Lin, R. A. Johnson, N. Y. Wang, M. Qi, Vit Vorobel, S. F. Li, C. H. Wu, W. J. Wu, Changgen Yang, Changjian Lin, B. Viren, Richard Rosero, R. D. McKeown, J. K. Xia, Jiawen Zhang, Yanchu Wang, Y. Malyshkin, Dmitry V. Naumov, R. T. Lei, H. R. Band, D. C. Jones, Wei Li, A. B. Balantekin, Kwong Lau, X. L. Ji, C. Lu, J. L. Xu, H. Y. Ngai, R. L. Gill, Meng Wang, H. Liang, Yixue Chen, G. X. Sun, N. Viaux, Liangjian Wen, Y. C. Lin, Guofu Cao, H. Y. Wei, T. Hu, Y. L. Chan, Mengsu Yang, Bing-Lin Young, Haijun Yang, X. Wang, M. Mooney, W. R. Cen, Xingtao Huang, D. W. Liu, Minfang Yeh, T. Kwok, M. Bishai, Qinglong Wu, Kam Biu Luk, D. M. Xia, Zhiyong Zhang, Haoqi Lu, Dejun Li, Guey-Lin Lin, Y. Nakajima, Jonathan S. Lu, Z. Ye, H. R. Pan, L. S. Littenberg, L. H. Whitehead, Yi Chen, Chunjie Wang, N. Raper, Tian Xue, J. H. Cheng, M. W. Kwok, E. Naumova, D. A. Dwyer, B. Roskovec, Zhi Ning, Y. Chang, Q. J. Li, Xiaohu Guo, M. T. Yang, Chang-Wei Loh, Xuefeng Ding, T. J. Langford, Y. K. Heng, Mengyun Guan, K. V. Tsang, Yufeng Li, K. L. Jen, Li Zhou, B. R. Littlejohn, C. E. Tull, Shanfeng Li, H. M. Steiner, L. Lebanowski, Y. Y. Ding, Z. K. Cheng, D. Cao, Y. Q. Ma, Z. P. Zhang, Zhijian Zhang, M. Ye, K. Whisnant, J. Cheng, Artem Chukanov, Juan Pedro Ochoa-Ricoux, Nan Zhou, Zhibing Li, K. Treskov, D. Taychenachev, Alexander Olshevskiy, Lawrence Pinsky, K. K. Kwan, G. Hussain, R. P. Guo, Y. Xu, E. C. Huang, Yaping Cheng, Qingmin Zhang, V. Pec, J. J. Ling, Q. W. Zhao, Q. Y. Chen, S. Hans, B. Z. Hu, Guisen Li, Jim Napolitano, Li Chang, W. L. Zhong, F. P. An, Honghan Gong, Qingming Ma, Siew Cheng Wong, W. R. Edwards, Y. B. Hsiung, Ran Han, Jiaheng Zou, Lin Yang, Jinmei Liu, Jing Zhao, X. Y. Ma, J. Y. Xu, I. Mitchell, S. Jetter, Wenju Huo, Simon Blyth, Ming Chung Chu, W. Hu, Zeyuan Yu, Xin Qian, S. Kohn, Xiao-yan Li, A. Higuera, Zhi-zhong Xing, Ziyan Deng, Jianglai Liu, Jinjuan Ren, W. H. Wang, R. W. Hackenburg, Z. Wang, Guanghua Gong, Y. M. Zhang, D. E. Jaffe, T. Wise, Patrick Huber, J. F. Chang, X. T. Zhang, Shengxin Lin, D. A. Martinez Caicedo, J. L. Sun, R. G. Wang, J. Park, J. H. C. Lee, Liang Zhan, E. T. Worcester, Z. Lv, F. Z. Qi, J. de Arcos, and Christopher G. White
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Daya bay ,energy spectrum ,Flux ,FOS: Physical sciences ,Daya Bay Reactor Neutrino Experiment ,antineutrino flux ,Daya Bay ,reactor ,01 natural sciences ,High Energy Physics - Experiment ,Positron energy ,Physics::Geophysics ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,0103 physical sciences ,Energy spectrum ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,Instrumentation ,Physics ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,Inverse beta decay ,High Energy Physics::Experiment - Abstract
A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9~GW$_{\mathrm{th}}$ nuclear reactors and detected by eight antineutrino detectors deployed in two near (560~m and 600~m flux-weighted baselines) and one far (1640~m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay (IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be $0.946\pm0.020$ ($0.992\pm0.021$) for the Huber+Mueller (ILL+Vogel) model. A 2.9~$\sigma$ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4-6~MeV was found in the measured spectrum, with a local significance of 4.4~$\sigma$. A reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent predictions., Comment: version published in Chinese Physics C
- Published
- 2017
39. Seeing Things: Science, the Fourth Dimension, and Modern Enchantment
- Author
-
Christopher G. White
- Subjects
Archeology ,History ,Museology ,Fourth Dimension ,Art history - Published
- 2014
- Full Text
- View/download PDF
40. Results from the Daya Bay Reactor Neutrino Experiment
- Author
-
Y. X. Zhang, Y. H. Tam, S. H. Zhang, D. M. Xia, Yue Meng, Q. J. Li, Kam-Biu Luk, Haoqi Lu, Y. F. Wang, L. E. Piilonen, C. Chasman, N. Tagg, H. K. Tanaka, Qinglong Wu, Miao He, S. Jetter, K. Shih, Jinjuan Ren, J. F. Chang, K. V. Tsang, Yi Wei, J. J. Ling, P. Hinrichs, Tian Xue, R. H.M. Tsang, Kirk T. McDonald, Huo Yan Chen, M. Qi, S. R. Ely, Y. K. Heng, J. Lee, W. C. Lai, C. Lu, J. L. Xu, M. Bishai, A. G. Olshevski, H. L. H. Wong, Hanxiong Huang, L. Kang, H. S. Chen, Q. W. Zhao, H. R. Band, W. R. Edwards, X. C. Chen, Yaolin Zhao, Jianbin Xu, L. S. Littenberg, L. Y. Wang, L. S. Pinsky, R. W. Hackenburg, S. D. Fang, N. Y. Wang, B. Viren, Z. Wang, Yan Zhang, H. Y. Ngai, R. L. Gill, L. S. Wang, J. B. Jiao, M. Ye, Igor Nemchenok, Zhijian Zhang, L. Zheng, D. M. Webber, L. H. Whitehead, B. B. Shao, Zhi Ning, J. K. C. Leung, F. H. Zhang, Yi Chen, Q. He, Juan Pedro Ochoa-Ricoux, A. B. Balantekin, Guisen Li, Honghan Gong, S. K. Lin, Chun S. J. Pun, X. L. Ji, H. Themann, R. T. Lei, H. Liang, Yixue Chen, S. J. Chen, Ziyan Deng, Mengyun Guan, Zhongyuan Zhou, Guanghua Gong, Jianglai Liu, B. R. Littlejohn, W. K. Ngai, B. Z. Hu, S. H. Kettell, Chi Lin, Shaomin Chen, Jun Cao, X. B. Ma, Rupert Leitner, Y. Xu, C. A. Lewis, Bing-Lin Young, D. E. Jaffe, J. J. Cherwinka, M. Z. Wang, Ming Chung Chu, Xiao Tang, Xin Qian, Y. H. Chang, Y. A. Gornushkin, K. Whisnant, Kwong Lau, Xurong Chen, J. Y. Fu, T. Wise, Jiaheng Zou, L. Lebanowski, Y. Y. Ding, D. A. Dwyer, Li Zhou, Kwok Yin Leung, G. X. Sun, L. Z. Wang, C. E. Tull, R. L. Hahn, X. T. Huang, C. G. Yang, M. C. McFarlane, Zhi-zhong Xing, H. Z. Huang, X. F. Du, Y. K. Hor, Richard Rosero, S. Trentalange, D. Mohapatra, Maxim Gonchar, Ching-Yao Lai, Xiaoyuan Chen, K. K. Kwan, H. M. Steiner, Xinglong Li, Dmitry V. Naumov, S. J. Patton, W. Q. Gu, V. Pec, Y. Q. Ma, Chao Zhang, R. A. Johnson, R. L. Brown, Fengpeng An, S. Hans, Wai Ting Chan, Jonathan M. Link, H. L. Zhuang, R. Carr, Jiawen Zhang, W. L. Zhong, Qiumei Ma, Vit Vorobel, Z. Isvan, J. P. Cummings, Wei Li, Y. S. Yeh, M. W. Kwok, Yagmur Torun, H. Y. Wei, S. Blyth, Y. B. Nie, Zhiyong Zhang, L. Q. Ge, Zai-Wei Fu, T. Kwok, Guey-Lin Lin, Y. C. Zhang, F. Li, Liangjian Wen, Z. M. Wang, Xuan Wang, E. Draeger, Guofu Cao, Yufeng Li, K. M. Heeger, Y. Williamson, Z. P. Zhang, Y. B. Liu, H. J. Jiang, Minfang Yeh, J. Z. Bai, Q. An, B. Roskovec, Wing-Hon Lai, X. B. Li, T. Hu, W. Beriguete, Jen-Chieh Peng, J. B. Xi, Michael Kramer, R. D. McKeown, E. T. Worcester, F. Z. Qi, R. G. Wang, Liang Zhan, A. Luk, X. H. Guo, C. H. Wang, X. P. Ji, J. L. Sun, Christopher G. White, N. Raper, Y. C. Tung, Patrick Huber, X. C. Ruan, D. W. Liu, Vadim Issakov, Y. Nakajima, Y. C. Lin, Z. Y. Yu, Qingmin Zhang, Jim Napolitano, M. V. Diwan, X. Q. Li, Hao Hao, Z. B. Li, Lin Yang, O. D. Tsai, Jinmei Liu, Jing Zhao, X. Y. Ma, W. Wang, Y. B. Hsiung, and F. F. Wu
- Subjects
Nuclear physics ,Physics ,Nuclear and High Energy Physics ,Particle physics ,Solar neutrino ,Daya bay ,Daya Bay Reactor Neutrino Experiment ,Solar neutrino problem ,Neutrino oscillation ,Atomic and Molecular Physics, and Optics - Abstract
The Daya Bay Reactor Neutrino Experiment was designed to achieve a sensitivity on the value of sin^2 2θ_(13) to better than 0.01 at 90% CL. The experiment consists of eight antineutrino detectors installed underground at different baselines from six nuclear reactors. With data collected with six antineutrino detectors for 55 days, Daya Bay announced the discovery of a non-zero value for sin^2 2θ_(13) with a significance of 5.2 standard deviations in March 2012. The most recent analysis with 139 days of data acquired in a six-detector configuration yields sin^2 2θ_(13) = 0.089 ± 0.010 (stat.) ± 0.005 (syst.), which is the most precise measurement of sin^2 2θ_(13) to date.
- Published
- 2014
- Full Text
- View/download PDF
41. Krister Dylan Knapp. William James: Psychical Research and the Challenge of Modernity
- Author
-
Christopher G. White
- Subjects
Archeology ,History ,media_common.quotation_subject ,Modernity ,Museology ,Art history ,Art ,media_common - Published
- 2018
- Full Text
- View/download PDF
42. A low mass optical grid for the PROSPECT reactor antineutrino detector
- Author
-
M. V. Diwan, J. J. Cherwinka, Hans P. Mumm, K. Gilje, D. Norcini, Michael Febbraro, B. Viren, J. T. Matta, D. E. Jaffe, K. M. Heeger, Y-R Yen, J. A. Nikkel, A. B. Hansell, K. H. Hermanek, X. Lu, T. J. Langford, D. Davee, J. Wilhelmi, D. C. Jones, J. Insler, A.E. Detweiler, J. Ashenfelter, Dmitry A. Pushin, A. J. Conant, A. B. Balantekin, D. A. Martinez Caicedo, O. Kyzylova, H. R. Band, E. Romero-Romero, C. D. Bass, B. T. Foust, M. J. Dolinski, Nathaniel Bowden, C.E. Gilbert, Minfang Yeh, P. E. Mueller, M. A. Tyra, D. J. Dean, C. E. Lane, R. Rosero, J. M. Minock, Xin Qian, Denis E. Bergeron, G. Deichert, R. L. Varner, R. D. McKeown, J. P. Brodsky, Chao Zhang, M. P. Mendenhall, S. Hans, R. Neilson, S. Nour, Anna Erickson, J. LaRosa, T. Wise, D. Berish, Y. Gebre, Jim Napolitano, Aiwu Zhang, A. Galindo-Uribarri, B. R. Littlejohn, P. T. Surukuchi, X. Zhang, B. Hackett, Dusan Sarenac, Ian Gustafson, Christopher G. White, T. Classen, J. K. Gaison, and C. D. Bryan
- Subjects
Physics ,Physics - Instrumentation and Detectors ,Optics ,business.industry ,Detector ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,business ,Low Mass ,Grid ,Instrumentation ,Mathematical Physics - Abstract
PROSPECT, the Precision Reactor Oscillation and SPECTrum experiment, is a short-baseline reactor antineutrino experiment designed to provide precision measurements of the $^{235}$U product $\overline{\nu}_e$ spectrum of utilizing an optically segmented 4-ton liquid scintillator detector. PROSPECT's segmentation system, the optical grid, plays a central role in reconstructing the position and energy of $\overline{\nu}_e$ interactions in the detector. This paper is the technical reference for this PROSPECT subsystem, describing its design, fabrication, quality assurance, transportation and assembly in detail. In addition, the dimensional, optical and mechanical characterizations of optical grid components and the assembled PROSPECT target are also presented. The technical information and characterizations detailed here will inform geometry-related inputs for PROSPECT physics analysis, and can guide a variety of future particle detection development efforts, such as those using optically reflecting materials or filament-based 3D printing., Comment: 31 pages, 28 figures
- Published
- 2019
- Full Text
- View/download PDF
43. Lithium-loaded liquid scintillator production for the PROSPECT experiment
- Author
-
R. L. Varner, X. Lu, M. V. Diwan, P. E. Mueller, B. Hackett, J. LaRosa, R. Neilson, D. A. Martinez Caicedo, A. J. Conant, A. B. Hansell, D. Davee, Aiwu Zhang, Lindsey J. Bignell, J. T. Matta, X. Zhang, J. J. Cherwinka, B. T. Foust, D. E. Jaffe, A. Galindo-Uribarri, B. R. Littlejohn, P. T. Surukuchi, Y-R Yen, G. Deichert, J. A. Nikkel, Dmitry A. Pushin, J. Wilhelmi, C. Camilo Reyes, T. J. Langford, Christopher G. White, C. D. Bryan, T. Classen, J. Ashenfelter, H. R. Band, Michael Febbraro, S. Campos, B. Hayes, J. K. Gaison, B. Viren, Nathaniel Bowden, M. A. Tyra, Dusan Sarenac, R. Diaz Perez, Xin Qian, C.E. Gilbert, S. Nour, Anna Erickson, T. Wise, D. Berish, C. D. Bass, M. J. Dolinski, S. Hans, J. P. Brodsky, R. Rosero, Denis E. Bergeron, R. D. McKeown, E. Romero-Romero, Minfang Yeh, D. Norcini, Hans P. Mumm, D. J. Dean, K. M. Heeger, Jim Napolitano, D. C. Jones, J. Insler, A. B. Balantekin, O. Kyzylova, C. E. Lane, Chao Zhang, and M. P. Mendenhall
- Subjects
Optical absorbance ,Physics - Instrumentation and Detectors ,Materials science ,Fabrication ,010308 nuclear & particles physics ,Analytical chemistry ,FOS: Physical sciences ,chemistry.chemical_element ,Instrumentation and Detectors (physics.ins-det) ,Scintillator ,7. Clean energy ,01 natural sciences ,Photon yield ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,chemistry ,Yield (chemistry) ,0103 physical sciences ,Lithium ,Instrumentation ,Mass fraction ,Mathematical Physics - Abstract
This work reports the production and characterization of lithium-loaded liquid scintillator (LiLS) for the Precision Reactor Oscillation and Spectrum Experiment (PROSPECT). Fifty-nine 90 liter batches of LiLS (${}^6{\rm Li}$ mass fraction 0.082%$\pm$0.001%) were produced and samples from all batches were characterized by measuring their optical absorbance relative to air, light yield relative to a pure liquid scintillator reference, and pulse shape discrimination capability. Fifty-seven batches passed the quality assurance criteria and were used for the PROSPECT experiment., 16 pages, 15 figures
- Published
- 2019
- Full Text
- View/download PDF
44. Measurement of singleπ0production by coherent neutral-currentνFe interactions in the MINOS Near Detector
- Author
-
N. Graf, R. Gran, P. J. Litchfield, M. Bishai, M. Orchanian, K. Grzelak, L. Mualem, S. De Rijck, D. Torretta, M. Kordosky, D. Cronin-Hennessy, R. K. Plunkett, L. Corwin, Carlos Escobar, S. Phan-Budd, Andrew Blake, R. J. Nichol, A. Sousa, M. A. Thomson, J. K. De Jong, A. Perch, J. Hartnell, A. Timmons, H. R. Gallagher, P. Sail, P. Gouffon, S. Moed Sher, N. E. Devenish, A. Holin, R. Zwaska, R. C. Webb, B. Viren, C. Rosenfeld, G. M. Irwin, P. Schreiner, R. Chen, R. Toner, Gregory J Pawloski, M. V. Frohne, P. Adamson, C. M. Castromonte, B. Rebel, M. D. Messier, G. J. Feldman, L. Whitehead, S. Childress, R. L. Talaga, G. Tzanakos, C. James, S. V. Cao, S. M. S. Kasahara, Subhasmita Mishra, C. L. McGivern, G. Koizumi, C. D. Moore, D. A. Jensen, Joao A B Coelho, X. Tian, X. Qiu, A. Schreckenberger, J. Schneps, N. Mayer, D. Cherdack, J. C. Thomas, J. J. Evans, M. M. Pfützner, S. Germani, T. Kafka, A. E. Kreymer, J. K. Nelson, E. Falk, J. Todd, Warner A. Miller, Mcd Sanchez, H. A. Rubin, Z. Isvan, Marvin L Marshak, Christopher G. White, D. Naples, J. M. Paley, A. V. Devan, J. Urheim, R. Sharma, R. B. Pahlka, L. H. Whitehead, D. D. Phan, W. P. Oliver, P. Vahle, M. Y. Gabrielyan, R. A. Gomes, N. Tagg, Alec Habig, Karol Lang, W. A. Mann, W. Flanagan, G.D. Barr, Junwei Huang, M. M. Medeiros, J. A. Musser, R. Hatcher, N. Poonthottathil, P. Lucas, T. J. Carroll, S. C. Tognini, G. J. Bock, Harvey B Newman, R. Mehdiyev, S. R. Hahn, R. B. Patterson, J. R. Meier, A. Radovic, D. Bogert, A. Aurisano, Stanley G. Wojcicki, J. O'Connor, J. Hylen, M. C. Goodman, M. V. Diwan, J. A. Nowak, I. Anghel, and A. C. Weber
- Subjects
Physics ,Neutral current ,010308 nuclear & particles physics ,Scattering ,Detector ,01 natural sciences ,NuMI ,Nuclear physics ,MINOS ,0103 physical sciences ,Fermilab ,Neutrino ,010306 general physics ,Coherence (physics) - Abstract
Forward single π^0 production by coherent neutral-current interactions, νA→νAπ^0, is investigated using a 2.8×10^(20) protons-on-target exposure of the MINOS Near Detector. For single-shower topologies, the event distribution in production angle exhibits a clear excess above the estimated background at very forward angles for visible energy in the range 1–8 GeV. Cross sections are obtained for the detector medium comprised of 80% iron and 20% carbon nuclei with ⟨A⟩=48, the highest-⟨A⟩ target used to date in the study of this coherent reaction. The total cross section for coherent neutral-current single π^0 production initiated by the ν_μ flux of the NuMI low-energy beam with mean (mode) E_ν of 4.9 GeV (3.0 GeV), is 77.6±5.0(stat)^(+15.0)_(−16.8)(syst)×10^(−40) cm^2 pernucleus. The results are in good agreement with predictions of the Berger-Sehgal model.
- Published
- 2016
- Full Text
- View/download PDF
45. A search for sterile neutrinos mixing with muon neutrinos in MINOS
- Author
-
R. Hatcher, S. De Rijck, X. Tian, Joao A B Coelho, P. Schreiner, G. M. Irwin, H. A. Rubin, Alec Habig, C. Rosenfeld, G. J. Feldman, M. D. Messier, G. Tzanakos, D. Cronin-Hennessy, E. Falk, N. Graf, P. Adamson, J. R. Meier, Christopher G. White, R. Gran, M. Kordosky, P. Gouffon, M. C. Sanchez, Andrew Blake, T. Kafka, A. C. Weber, Z. Isvan, G. Koizumi, B. Viren, S. M. S. Kasahara, A. Timmons, R. B. Pahlka, L. Mualem, R. Chen, Rakesh Sharma, R. L. Talaga, M. V. Frohne, Gregory J Pawloski, A. E. Kreymer, N. Tagg, S. Childress, L. H. Whitehead, J. K. Nelson, T. J. Carroll, R. C. Webb, C. James, C. M. Castromonte, S. Germani, G.D. Barr, Junwei Huang, Harvey B Newman, A. Holin, M. Bishai, N. Poonthottathil, C. D. Moore, D. Torretta, Marvin L Marshak, Warner A. Miller, R. Mehdiyev, W. Flanagan, P. Lucas, A. Radovic, G. J. Bock, A. V. Devan, M. Orchanian, Juergen Thomas, R. B. Patterson, S. V. Cao, J. J. Evans, M. M. Pfützner, L. Corwin, K. Grzelak, J. Schneps, H. R. Gallagher, R. A. Gomes, J. M. Paley, P. Sail, S. R. Mishra, S. Phan-Budd, A. Sousa, R. Toner, B. Rebel, J. Hartnell, D. D. Phan, S. R. Hahn, N. E. Devenish, J. K. De Jong, I. Anghel, W. A. Mann, M. V. Diwan, P. J. Litchfield, M. M. Medeiros, A. Perch, S. Moed Sher, R. J. Nichol, N. Mayer, A. Schreckenberger, J. Urheim, Karol Lang, R. Zwaska, Carlos Escobar, R. K. Plunkett, X. Qiu, J. A. Nowak, M. A. Thomson, J. A. Musser, D. Naples, Stanley G. Wojcicki, J. Todd, J. O'Connor, J. Hylen, M. C. Goodman, Leigh H. Whitehead, M. Y. Gabrielyan, S. C. Tognini, D. A. Jensen, C. L. McGivern, P. Vahle, D. Bogert, and A. Aurisano
- Subjects
Physics ,Sterile neutrino ,Particle physics ,Muon ,010308 nuclear & particles physics ,High Energy Physics::Phenomenology ,FOS: Physical sciences ,General Physics and Astronomy ,01 natural sciences ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Phenomenology ,High Energy Physics - Experiment (hep-ex) ,Matrix (mathematics) ,High Energy Physics - Phenomenology (hep-ph) ,MINOS ,0103 physical sciences ,Phenomenological model ,High Energy Physics::Experiment ,Neutrino ,010306 general physics ,Mixing (physics) ,Beam (structure) ,QC - Abstract
We report results of a search for oscillations involving a light sterile neutrino over distances of 1.04 and $735\,\mathrm{km}$ in a $\nu_{\mu}$-dominated beam with a peak energy of $3\,\mathrm{GeV}$. The data, from an exposure of $10.56\times 10^{20}\,\textrm{protons on target}$, are analyzed using a phenomenological model with one sterile neutrino. We constrain the mixing parameters $\theta_{24}$ and $\Delta m^{2}_{41}$ and set limits on parameters of the four-dimensional Pontecorvo-Maki-Nakagawa-Sakata matrix, $|U_{\mu 4}|^{2}$ and $|U_{\tau 4}|^{2}$, under the assumption that mixing between $\nu_{e}$ and $\nu_{s}$ is negligible ($|U_{e4}|^{2}=0$). No evidence for $\nu_{\mu} \to \nu_{s}$ transitions is found and we set a world-leading limit on $\theta_{24}$ for values of $\Delta m^{2}_{41} \lesssim 1\,\mathrm{eV}^{2}$., Comment: 7 pages, 4 figures
- Published
- 2016
- Full Text
- View/download PDF
46. Active to sterile neutrino mixing limits from neutral-current interactions in MINOS
- Author
-
R. B. Patterson, M. D. Messier, M. Kordosky, Andrew Blake, D. J. Auty, Christopher G. White, A. M. McGowan, R. Toner, D. S. Ayres, J. J. Evans, P. Schreiner, B. Rebel, J. R. Meier, N. Graf, Carlos Escobar, R. Zwaska, R. K. Plunkett, Xian-Rong Huang, M. V. Diwan, Sacha E Kopp, R. Gran, E. Falk, R. Pittam, M. V. Frohne, Matthew L Strait, W. A. Mann, G. M. Irwin, P. Stamoulis, Daniel P Cronin-Hennessy, Joao A B Coelho, Rakesh Sharma, G. J. Feldman, M. Dorman, P. Vahle, S. Cavanaugh, E. Tetteh-Lartey, D. J. Boehnlein, D. Cherdack, A. E. Kreymer, G. F. Pearce, Maury Goodman, J. A. Nowak, J. K. De Jong, M. Bishai, R. A. Gomes, C. Rosenfeld, X. Qiu, P. Lucas, J. Ratchford, C. D. Moore, W. H. Miller, L. Loiacono, H. R. Gallagher, Marvin L Marshak, C. Backhouse, M. Orchanian, S. Phan-Budd, A. Sousa, R. L. Talaga, J. K. Nelson, G. J. Bock, K. Grzelak, M. A. Thomson, D. Naples, P. Adamson, L. Whitehead, Stanley G. Wojcicki, J. Urheim, A. C. Weber, D. A. Harris, P. A. Rodrigues, S. M. S. Kasahara, G. Tinti, J. J. Walding, N. E. Devenish, G. Lefeuvre, S. Childress, D. A. Jensen, Gregory J Pawloski, A. Holin, L. Corwin, P. J. Litchfield, Jorge G. Morfin, N. Mayer, N. Grant, S. L. Mufson, J. A. Musser, C. James, Harvey B Newman, T. Kafka, D. Bogert, G. Tzanakos, T. C. Nicholls, R. Hatcher, R. C. Webb, G. Koizumi, J. Schneps, I. Z. Danko, H. A. Rubin, R. Mehdiyev, W. P. Oliver, D. Torretta, J. Hartnell, P. Gouffon, B. Viren, J. Ilic, S. J. Coleman, J. M. Paley, N. Tagg, G.D. Barr, M. C. Sanchez, David Petyt, Juergen Thomas, T. M. Raufer, S. R. Mishra, R. J. Nichol, Alec Habig, John C. Mitchell, D. E. Jaffe, J. Hylen, A. Himmel, Z. Isvan, L. Mualem, P. Shanahan, and Karol Lang
- Subjects
Physics ,Sterile neutrino ,Particle physics ,Physics::Instrumentation and Detectors ,High Energy Physics::Phenomenology ,General Physics and Astronomy ,FOS: Physical sciences ,NuMI ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,MINOS ,Measurements of neutrino speed ,Muon neutrino ,High Energy Physics::Experiment ,Neutrino ,Neutrino oscillation ,Lepton - Abstract
Results are reported from a search for active to sterile neutrino oscillations in the MINOS long-baseline experiment, based on the observation of neutral-current neutrino interactions, from an exposure to the NuMI neutrino beam of $7.07\times10^{20}$ protons on target. A total of 802 neutral-current event candidates is observed in the Far Detector, compared to an expected number of $754\pm28\rm{(stat.)}\pm{37}\rm{(syst.)}$ for oscillations among three active flavors. The fraction $f_s$ of disappearing \numu that may transition to $\nu_s$ is found to be less than 22% at the 90% C.L., Comment: 5 pages, 3 tables, 2 figures. Published in Physical Review Letters
- Published
- 2016
47. The NuMI neutrino beam
- Author
-
J. Urheim, David Petyt, S. Moed Sher, S. Phan-Budd, A. Sousa, Francisco Yumiceva, R. L. Talaga, N. E. Devenish, P. J. Litchfield, S. R. Mishra, M.L. Wong-Squires, J. A. Musser, S. Avvakumov, R. Reilly, M. Olsen, William L. Barrett, T. Yang, D. E. Jaffe, G. Tzanakos, R. H. Milburn, J. Hylen, B. Viren, S. C. Tognini, G. Koizumi, Niki Saoulidou, W. A. Mann, S. Murgia, J. K. Nelson, Maury Goodman, B. Baller, A. Perch, D. Michael, C. M. Castromonte, S. Childress, J. Johnstone, J. Biggs, R. J. Nichol, Alec Habig, P. Schreiner, D. A. Jensen, M. M. Medeiros, M. A. Thomson, K. Vaziri, Stanley G. Wojcicki, J. P. Cravens, R. H. Bernstein, A. Para, A. V. Devan, J. J. Evans, M. M. Pfützner, P. Shanahan, A. Holin, D. Crane, H. R. Gallagher, N. Tagg, Christopher G. White, R. C. Webb, J. A. Thompson, E. Falk, A. Radovic, C. Rosenfeld, D. A. Harris, M. P. Andrews, M. C. Sanchez, R. B. Pahlka, Brajesh C Choudhary, E. A. Peterson, R. Ford, Leigh H. Whitehead, N. Poonthottathil, A. C. Weber, A. R. Erwin, G.D. Barr, Junwei Huang, L. Loiacono, J. Schneps, D. Bogert, D. S. Ayres, R. Hatcher, K. Bourkland, L. H. Whitehead, J. K. De Jong, J.H. Cobb, Karol Lang, G. Vogel, Harvey B Newman, R. Andrews, P. Adamson, D. J. Harding, D. Pushka, A. Marchionni, Scott Osprey, X. Tian, I. Anghel, I. Trostin, Gregory J Pawloski, R. A. Rameika, John Miller, S. M. S. Kasahara, M. V. Diwan, Jorge G. Morfin, Juergen Thomas, N. Mayer, Ahmed Ibrahim, S. V. Cao, A. Aurisano, G. M. Irwin, C. James, Kevin Anderson, G. J. Feldman, J. R. Meier, N. Graf, R. Webber, Caleb Smith, J. M. Paley, W. Smart, A. A. Wehmann, D. Cronin-Hennessy, A. Stefanik, J. A. Nowak, D. Tinsley, P. Gouffon, R. Mehdiyev, P. Vahle, R. A. Gomes, T. Patzak, G. Tassotto, D. J. Boehnlein, T. H. Fields, C. Laughton, E. Villegas, L. Sauer, R. Zwaska, D. Naples, S. Hays, J. O׳Connor, M. D. Messier, C. L. McGivern, D. Indurthy, Rakesh Sharma, J. Ratchford, C. D. Moore, Z. Isvan, L. Mualem, W. H. Miller, G. J. Bock, D. Torretta, Sacha E Kopp, R. Gran, L. Corwin, S. L. Mufson, G. Lefeuvre, V. Zarucheisky, V. Bocean, T. Kafka, M. Bishai, M. Orchanian, K. Grzelak, M. V. Frohne, P. Prieto, J. Hartnell, B. C. Barish, R. Ducar, Philip Harris, H. A. Rubin, R. B. Patterson, K. Ruddick, Joao A B Coelho, V. Garkusha, D. Augustine, Ž Pavlović, D. Schoo, A. E. Kreymer, P. Lucas, W. P. Oliver, Marvin L Marshak, Ken Heller, M. J. Murtagh, M. Kordosky, S. R. Hahn, Andrew Blake, N. Grossman, A. Timmons, A. Schreckenberger, Carlos Escobar, R. K. Plunkett, X. Qiu, R. Toner, B. Rebel, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
Accelerator Physics (physics.acc-ph) ,Target ,Nuclear and High Energy Physics ,Particle physics ,beam monitoring ,Physics::Instrumentation and Detectors ,[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,FOS: Physical sciences ,beam transport ,neutrino: beam ,Neutrino beam ,7. Clean energy ,01 natural sciences ,NuMI ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,beam: alignment ,Long Baseline ,[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex] ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,hardware ,Fermilab ,[ PHYS.PHYS.PHYS-ACC-PH ] Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,Neutrinos ,010306 general physics ,Instrumentation ,activity report ,Physics ,010308 nuclear & particles physics ,Monitoring system ,Beam ,Main injector ,Main Injector ,Physics::Accelerator Physics ,Physics - Accelerator Physics ,High Energy Physics::Experiment ,Neutrino ,Beam (structure) ,performance - Abstract
International audience; This paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important design details of individual components are described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.
- Published
- 2016
- Full Text
- View/download PDF
48. Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment
- Author
-
W. Tang, Hanxiong Huang, L. Kang, J. K. C. Leung, Simon Blyth, M. Z. Wang, Ming Chung Chu, N. Y. Wang, Jiawen Zhang, B. Viren, W. Hu, Jen-Chieh Peng, Yanchu Wang, Vit Vorobel, Guisen Li, Wei Li, J. J. Cherwinka, J. Dove, X. C. Ruan, J. P. Cummings, Honghan Gong, D. Cao, H. Y. Wei, Zhijian Zhang, Qingming Ma, M. Qi, C. Li, Kwong Lau, Qinglong Wu, Kam Biu Luk, K. Treskov, Bing-Lin Young, Y. K. Hor, Siew Cheng Wong, K. T. McDonald, G. X. Sun, Tian Xue, Guanghua Gong, D. A. Martinez Caicedo, Ning Zhou, L. Guo, Ran Han, Jiaheng Zou, J. Cheng, Michael Kramer, Mengsu Yang, Zhiyong Zhang, Y. K. Heng, F. P. An, S. Hans, Mengyun Guan, L. Lebanowski, Y. Y. Ding, Y. M. Zhang, F. Li, T. Kwok, Chao Zhang, Guey-Lin Lin, M. Ye, S. J. Patton, W. Q. Gu, Jonathan S. Lu, Dongmei Xia, C. H. Wu, D. E. Jaffe, Li Chang, Z. Ye, Yi-Fang Zhao, W. J. Wu, R. D. McKeown, Richard Rosero, Ziyan Deng, K. K. Kwan, K. Whisnant, R. G. Wang, Jianglai Liu, D. Taychenachev, T. Wise, Chunjie Wang, Qingmin Zhang, Y. B. Hsiung, G. Hussain, R. P. Guo, H. L. Zhuang, Xin Qian, Q. Y. Chen, Liang Zhan, B. Z. Hu, M. V. Diwan, P. Jaffke, J. L. Sun, Alexander Olshevskiy, Z. K. Cheng, Z. P. Zhang, Jim Napolitano, Y. Nakajima, Xiao-yan Li, A. Higuera, Haosheng Chen, Juan Pedro Ochoa-Ricoux, E. T. Worcester, Z. Lv, Y. Xu, Zhi-zhong Xing, E. C. Huang, F. Z. Qi, S. H. Kettell, M. W. Kwok, X. B. Ma, Jinjuan Ren, Xiaohu Guo, M. T. Yang, H. H. Zhang, X. L. Ji, J. M. Link, J. de Arcos, Marco Grassi, J. J. Ling, Miao He, W. R. Cen, W. R. Edwards, H. R. Pan, K. V. Tsang, Xingtao Huang, Q. W. Zhao, Yi Chen, E. Naumova, D. A. Dwyer, Q. J. Li, C. W. Loh, M. Bishai, Artem Chukanov, T. J. Langford, K. L. Jen, V. Pec, Yaping Cheng, Lin Yang, J. Joshi, R. W. Hackenburg, Maxim Gonchar, Z. Y. Yu, L. S. Littenberg, Lawrence Pinsky, J. B. Jiao, Z. Wang, H. M. Steiner, Y. Q. Ma, C. E. Tull, J. Park, Jinmei Liu, Rupert Leitner, Jing Zhao, Zhibing Li, X. Y. Ma, J. Y. Xu, Christopher G. White, Zhi Ning, Xuefeng Ding, S. Kohn, S. Jetter, W. L. Zhong, Li Zhou, I. Mitchell, R. A. Johnson, J. H. C. Lee, R. T. Lei, J. Lee, H. R. Band, K. M. Heeger, Y. L. Chan, H. Liang, Yixue Chen, A. B. Balantekin, S. K. Lin, Wei Wang, S. Zeng, M. Dolgareva, H. L. H. Wong, Y. X. Zhang, N. Raper, Y. Malyshkin, D. W. Liu, Liangjian Wen, Guofu Cao, Zengcai V. Guo, X. P. Ji, Minfang Yeh, B. Roskovec, Patrick Huber, X. T. Zhang, H. Y. Ngai, R. L. Gill, N. Viaux, J. K. Xia, T. Hu, Shengxin Lin, Changjian Lin, Haijun Yang, L. H. Whitehead, Yufeng Li, M. Mooney, Y. Chang, Chun S. J. Pun, Shaomin Chen, Jun Cao, Shanfeng Li, S. F. Li, Dmitry V. Naumov, J. H. Cheng, Y. C. Lin, J. F. Chang, B. R. Littlejohn, X. Wang, Changgen Yang, Haoqi Lu, Dejun Li, C. Lu, J. L. Xu, Zhiyuan Wang, and Wenju Huo
- Subjects
Physics ,Range (particle radiation) ,Sterile neutrino ,Particle physics ,010308 nuclear & particles physics ,Daya bay ,General Physics and Astronomy ,FOS: Physical sciences ,Daya Bay Reactor Neutrino Experiment ,01 natural sciences ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,0103 physical sciences ,Calibration ,Neutrino ,010306 general physics ,Electron neutrino ,Mixing (physics) - Abstract
This Letter reports an improved search for light sterile neutrino mixing in the electron antineutrino disappearance channel with the full configuration of the Daya Bay Reactor Neutrino Experiment. With an additional 404 days of data collected in eight antineutrino detectors, this search benefits from 3.6 times the statistics available to the previous publication, as well as from improvements in energy calibration and background reduction. A relative comparison of the rate and energy spectrum of reactor antineutrinos in the three experimental halls yields no evidence of sterile neutrino mixing in the $2\times10^{-4} \lesssim |\Delta m^{2}_{41}| \lesssim 0.3$ eV$^{2}$ mass range. The resulting limits on $\sin^{2}2\theta_{14}$ are improved by approximately a factor of 2 over previous results and constitute the most stringent constraints to date in the $|\Delta m^{2}_{41}| \lesssim 0.2$ eV$^{2}$ region., Comment: 6 pages, 3 figures, 1 table
- Published
- 2016
- Full Text
- View/download PDF
49. Observation in the MINOS far detector of the shadowing of cosmic rays by the sun and moon
- Author
-
Xian-Rong Huang, T.C. Nicholls, Mcd Sanchez, R. A. Gomes, V. K. Semenov, J. K. Nelson, S. R. Mishra, P. Vahle, S. Cavanaugh, R. J. Nichol, M. V. Diwan, D. J. Boehnlein, T. M. Raufer, John Marshall, D. A. Jensen, A. Holin, C. Backhouse, G. M. Irwin, T. Yang, Alec Habig, R. Zwaska, P. Gouffon, G. J. Feldman, D. Bogert, C. Rosenfeld, M. D. Messier, P. Adamson, L. Whitehead, S. M. S. Kasahara, Karol Lang, S. Budd, Christopher G. White, R. Toner, D. G. Michael, B. Rebel, Gregory J Pawloski, J. Ilic, Harvey B Newman, J. L. Thron, A. Himmel, Z. Isvan, L. Mualem, C. James, E. Falk, G. J. Bock, E. A. Peterson, M. Dorman, D. Cherdack, V.A. Ryabov, R. Hatcher, P. A. Rodrigues, C. Andreopoulos, G. Lefeuvre, M. A. Thomson, D. Naples, P. Shanahan, L. Loiacono, T. Kafka, P. Lucas, Stanley G. Wojcicki, R. P. Litchfield, N. Grant, J. Hylen, M. C. Goodman, J. R. Meier, N. Tagg, J. Schneps, G.D. Barr, I. Z. Danko, G.F. Pearce, J. J. Evans, Juergen Thomas, Carlos Escobar, S. J. Coleman, R. Mehdiyev, Warner A. Miller, J. M. Paley, R. K. Plunkett, B. Viren, R. L. Talaga, A. Sousa, N. E. Devenish, P. J. Litchfield, J. K. De Jong, J.H. Cobb, P. Schreiner, R. C. Webb, E. Grashorn, J. Urheim, C. R. Bower, Philip Harris, J. A. Musser, A. Godley, R. Pittam, B. C. Choudhary, M. V. Frohne, H. A. Rubin, R. B. Patterson, M. Bishai, S. Childress, W. P. Oliver, A. M. McGowan, A. C. Weber, J. Ratchford, C. D. Moore, Douglas Wright, William L. Barrett, L. Corwin, S. L. Mufson, B. Bock, M. Orchanian, A. E. Kreymer, Marvin L Marshak, Z. Krahn, D. E. Jaffe, G. Tinti, N. Mayer, M. Kordosky, Andrew Blake, W. A. Mann, John C. Mitchell, G. Tzanakos, Matthew L Strait, K. Grzelak, G. Koizumi, Joao A B Coelho, Sacha E Kopp, J. Reichenbacher, R. Gran, J. Hartnell, Daniel P Cronin-Hennessy, D. S. Ayres, H. R. Gallagher, and D. A. Harris
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,Muon ,Detector ,FOS: Physical sciences ,Astronomy ,Astronomy and Astrophysics ,Cosmic ray ,Astrophysics ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Astrophysics - Solar and Stellar Astrophysics ,MINOS ,Celestial coordinate system ,Physics::Space Physics ,Shadow ,High Energy Physics::Experiment ,Angular resolution ,Astrophysics::Earth and Planetary Astrophysics ,Interplanetary magnetic field ,Astrophysics - High Energy Astrophysical Phenomena ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
The shadowing of cosmic ray primaries by the the moon and sun was observed by the MINOS far detector at a depth of \unit[2070]{mwe} using 83.54 million cosmic ray muons accumulated over 1857.91 live-days. The shadow of the moon was detected at the \unit[5.6]{$\sigma$} level and the shadow of the sun at the \unit[3.8]{$\sigma$} level using a log-likelihood search in celestial coordinates. The moon shadow was used to quantify the absolute astrophysical pointing of the detector to be 0.17\pm 0.12^\circ. Hints of Interplanetary Magnetic Field effects were observed in both the sun and moon shadow., Comment: Submitted to AstroParticle Physics
- Published
- 2011
- Full Text
- View/download PDF
50. Study of the rare hyperon decay
- Author
-
Daniel M. Kaplan, H. K. Park, E. C. Dukes, H. A. Rubin, N. Solomey, Y. Fu, M. J. Longo, P. Zyla, Christopher G. White, C. James, H. R. Gustafson, T. Holmstrom, Y. C. Chen, Juan C. Felix, Kam Biu Luk, A. Chakravorty, J. P. Perroud, S.L. White, C. Durandet, W. Luebke, R. A. Burnstein, K. Clark, D. Rajaram, W. S. Choong, L. C. Lu, J. Volk, G. Gidal, K. S. Nelson, M. Huang, O. Kamaev, T.D. Jones, and C. M. Jenkins
- Subjects
Physics ,Nuclear physics ,Nuclear and High Energy Physics ,Particle decay ,Pion ,Branching fraction ,Hyperon ,CP violation ,Atomic physics ,Omega baryon ,Xi baryon ,Dimensionless quantity - Abstract
We report a new measurement of the decay Ω − → Ξ − π + π − with 76 events and a first observation of the decay Ω ¯ + → Ξ ¯ + π + π − with 24 events, yielding a combined branching ratio ( 3.74 − 0.56 + 0.67 ) × 10 − 4 . This represents a factor 25 increase in statistics over the best previous measurement. No evidence is seen for CP violation, with B ( Ω − → Ξ − π + π − ) = 4.04 − 0.71 + 0.83 × 10 − 4 and B ( Ω ¯ + → Ξ ¯ + π + π − ) = 3.15 − 0.89 + 1.12 × 10 − 4 . Contrary to theoretical expectation, we see little evidence for the decays Ω − → Ξ 1530 ∗ 0 π − and Ω ¯ + → Ξ ¯ 1530 ∗ 0 π + and place a 90% C.L. upper limit on the combined branching ratio B ( Ω − ( Ω ¯ + ) → Ξ 1530 ∗ 0 ( Ξ ¯ 1530 ∗ 0 ) π ∓ ) 7.0 × 10 − 5 .
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.