1. Identification of FBLL1 as a neuron-specific RNA 2'-O-methyltransferase mediating neuronal differentiation.
- Author
-
Zhang D, Li B, Xu H, Li J, Ma C, Ge W, Lu C, and Cao X
- Subjects
- Humans, Animals, Methylation, Mice, Chromosomal Proteins, Non-Histone metabolism, Chromosomal Proteins, Non-Histone genetics, Brain metabolism, Brain cytology, Ribonucleoproteins, Small Nucleolar metabolism, Ribonucleoproteins, Small Nucleolar genetics, Neurons metabolism, Neurons cytology, Cell Differentiation, Methyltransferases metabolism, Methyltransferases genetics
- Abstract
2'-O-methylation is one of the most prevalent RNA modifications found in different RNA types. However, the identities of enzymes participating in the transfer of methyl groups are not well defined. To date, fibrillarin (FBL) is the only known small nucleolar ribonucleoprotein (snoRNP) 2'-O-methyltransferase. Whether other snoRNP 2'-O-methyltransferases exist and their functions in targeting RNAs to determine cell differentiation and function need to be elucidated. Here, we identify FBL-like protein 1 (FBLL1) as a 2'-O-methyltransferase and find its function in promoting neuronal differentiation. We show that FBLL1 is a key snoRNP complex enzyme that transfers methyl groups to substrate RNAs both in vitro and in vivo. Moreover, FBLL1 exhibits different 2'-O-methyltransferase site selectivity from FBL and tissue-specific distribution. FBLL1 is preferentially expressed in the brain, especially in human neuron cells, and promotes neuronal differentiation through 2'-O-methylation of GAP43 messenger RNA (mRNA). Knockdown of FBLL1, but not FBL, reduced 2'-O-methylation levels in GAP43 mRNA, decreased expression of GAP43 proteins, and eventually repressed neuronal differentiation. Our finding of neuron-specific FBLL1 adds insights into RNA modification in neurobiology and provides clues for understanding 2'-O-methylation in health and disease., Competing Interests: Competing interests statement:The authors declare no competing interest.
- Published
- 2024
- Full Text
- View/download PDF