23 results on '"Clairquin R"'
Search Results
2. Water Vapor Vertical Profiles on Mars in Dust Storms Observed by TGO/NOMAD
- Author
-
Aoki, Shohei, Vandaele, Ann Carine, Daerden, Frank, Villanueva, Geronimo L., Liuzzi, Giuliano, Thomas, Ian R., Erwin, Justin T., Trompet, L., Robert, S., Neary, L., Viscardy, S., Ristic, Bojan, Patel, Manish R., Bellucci, Giancarlo, Bauduin, S., López-Moreno, José Juan, Alonso-Rodrigo, G., Fussen, D., Bolsée, D., Carrozzo, G., Clancy, R. Todd, Cloutis, E., Crismani, M., Da Pieve, F., D'Aversa, E., Kaminski, J., Depiesse, C., Garcia-Comas, M., Etiope, G., Fedorova, A.A., Funke, Bernd, Geminale, A., Gérard, Jean-Claude, Giuranna, M., Karatekin, O., Gkouvelis, L., González-Galindo, F., Holmes, J., Hubert, B., Mumma, M.J., Ignatiev, N.I., Kasaba, Y., Kass, D., Kleinböhl, A., Lanciano, O., Lefèvre, F., Lewis, S., López-Puertas, M., Schneider, Nicholas, Nakagawa, H., Hidalgo López, Ana, Mahieux, A., Mason, J., Mege, D., Neefs, E., Novak, R.E., Oliva, F., Sindoni, G., Piccialli, A., Renotte, E., Ritter, B., Willame, Y., Schmidt, F., Smith, M.D., Teanby, N.A., Thiemann, E., Trokhimovskiy, A., Auwera, J.V., Wolff, M.J., Clairquin, R., Whiteway, J., Wilquet, V., Wolkenberg, P., Yelle, R., del Moral Beatriz, A., Barzin, P., Beeckman, B., Cubas, J., BenMoussa, A., Berkenbosch, S., Orban, A., Biondi, D., Bonnewijn, S., Candini, G.P., Giordanengo, B., Gissot, S., Gomez, A., Hathi, B., Zafra, J.J., Leese, M., Maes, J., Pastor-Morales, M., Mazy, E., Mazzoli, A., Meseguer, J., Morales, R., Perez-grande, I., Queirolo, C., Ristic, R., Gomez, J.R., Saggin, B., Samain, V., Sanz Andres, A., Altieri, F., Sanz, R., Simar, J.-F., Thibert, T., the NOMAD team, López-Valverde, M. A., Hill, Brittany, Belgian Science Policy Office, European Space Agency, Ministerio de Ciencia e Innovación (España), European Commission, UK Space Agency, Agenzia Spaziale Italiana, Ministerio de Ciencia, Innovación y Universidades (España), Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), National Aeronautics and Space Administration (US), and Canadian Space Agency
- Subjects
010504 meteorology & atmospheric sciences ,Storm ,Atmosphere of Mars ,Mars Exploration Program ,Atmospheric sciences ,01 natural sciences ,Trace gas ,Atmosphere ,Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,Dust storm ,Earth and Planetary Sciences (miscellaneous) ,Environmental science ,Hadley cell ,Water vapor ,0105 earth and related environmental sciences - Abstract
It has been suggested that dust storms efficiently transport water vapor from the near-surface to the middle atmosphere on Mars. Knowledge of the water vapor vertical profile during dust storms is important to understand water escape. During Martian Year 34, two dust storms occurred on Mars: a global dust storm (June to mid-September 2018) and a regional storm (January 2019). Here we present water vapor vertical profiles in the periods of the two dust storms (Ls = 162–260° and Ls = 298–345°) from the solar occultation measurements by Nadir and Occultation for Mars Discovery (NOMAD) onboard ExoMars Trace Gas Orbiter (TGO). We show a significant increase of water vapor abundance in the middle atmosphere (40–100 km) during the global dust storm. The water enhancement rapidly occurs following the onset of the storm (Ls~190°) and has a peak at the most active period (Ls~200°). Water vapor reaches very high altitudes (up to 100 km) with a volume mixing ratio of ~50 ppm. The water vapor abundance in the middle atmosphere shows high values consistently at 60°S-60°N at the growth phase of the dust storm (Ls = 195°–220°), and peaks at latitudes greater than 60°S at the decay phase (Ls = 220°–260°). This is explained by the seasonal change of meridional circulation: from equinoctial Hadley circulation (two cells) to the solstitial one (a single pole-to-pole cell). We also find a conspicuous increase of water vapor density in the middle atmosphere at the period of the regional dust storm (Ls = 322–327°), in particular at latitudes greater than 60°S. ©2019. American Geophysical Union. All Rights Reserved., S. A. is >Charge de Recherches> of the F.R.S.-FNRS. ExoMars is a space mission of the European Space Agency and Roscosmos. The NOMAD experiment is led by the Royal Belgian Institute for Space Aeronomy (IASBBIRA), assisted by Co-PI teams from Spain (IAA-CSIC), Italy (INAF-IAPS), and the United Kingdom (Open University). This project acknowledges funding by the Belgian Science Policy Office, with the financial and contractual coordination by the European Space Agency Prodex Office (PEA 4000103401 and 4000121493), by the Spanish MICINN through its Plan Nacional and by European funds under grants PGC2018-101836-B-I00 and ESP2017-87143-R (MINECO/FEDER), as well as by UK Space Agency through grants ST/R005761/1, ST/P001262/1, ST/R001405/1, and ST/S00145X/1 and Italian Space Agency through grant 2018-2-HH.0. The IAA/CSIC team acknowledges financial support from the State Agency for Research of the Spanish MCIU through the >Center of Excellence Severo Ochoa> award for the Instituto de Astrofisica de Andalucia (SEV-2017-0709). This work was supported by the Belgian Fonds de la Recherche Scientifique-FNRS under grant numbers 30442502 (ET_HOME) and T.0171.16 (CRAMIC) and Belgian Science Policy Office BrainBe SCOOP Project. U.S. investigators were supported by the National Aeronautics and Space Administration. Canadian investigators were supported by the Canadian Space Agency. The results retrieved from the NOMAD measurements used in this article are available on the BIRA-IASB data repository: http://repository.aeronomie.be/?doi= 10.18758/71021054 (Aoki et al., 2019).
- Published
- 2019
3. Water Vapor Vertical Profiles on Mars in Dust Storms Observed by TGO/NOMAD
- Author
-
Belgian Science Policy Office, European Space Agency, Ministerio de Ciencia e Innovación (España), European Commission, UK Space Agency, Agenzia Spaziale Italiana, Ministerio de Ciencia, Innovación y Universidades (España), Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), National Aeronautics and Space Administration (US), Canadian Space Agency, Aoki, Shohei, Vandaele, Ann Carine, Daerden, Frank, Villanueva, Geronimo L., Liuzzi, Giuliano, Thomas, Ian R., Erwin, Justin T., Trompet, L., Robert, S., Neary, L., Viscardy, S., Hathi, B., Zafra, J.J., Leese, M., Maes, J., Pastor-Morales, M., Mazy, E., Mazzoli, A., Meseguer, J., Morales, Rafael, Pérez Grande, Isabel, Ristic, Bojan, Queirolo, C., Ristic, R., Gomez, J.R., Saggin, B., Smith, M.D., Samain, V., Sanz Andres, A., Altieri, F., Sanz, R., Simar, J.-F., Patel, Manish R., Thibert, T., the NOMAD team, López-Valverde, M. A., Hill, Brittany, Bellucci, Giancarlo, Bauduin, S., López-Moreno, José Juan, Alonso-Rodrigo, G., Fussen, D., Bolsée, D., Carrozzo, G., Clancy, R. Todd, Cloutis, E., Crismani, M., Da Pieve, F., D'Aversa, E., Kaminski, J., Depiesse, C., Garcia-Comas, M., Etiope, G., Fedorova, A.A., Funke, Bernd, Geminale, A., Gérard, Jean-Claude, Giuranna, M., Karatekin, O., Gkouvelis, L., González-Galindo, F., Holmes, J., Hubert, B., Mumma, M.J., Ignatiev, N.I., Kasaba, Y., Kass, D., Kleinböhl, A., Lanciano, O., Lefèvre, F., Lewis, S., López-Puertas, M., Schneider, Nicholas, Nakagawa, H., Hidalgo López, Ana, Mahieux, A., Mason, J., Mege, D., Neefs, E., Novak, R.E., Oliva, F., Sindoni, G., Piccialli, A., Renotte, E., Ritter, B., Willame, Y., Schmidt, F., Teanby, N.A., Thiemann, E., Trokhimovskiy, A., Auwera, J.V., Wolff, M.J., Clairquin, R., Whiteway, J., Wilquet, V., Wolkenberg, P., Yelle, R., del Moral Beatriz, A., Barzin, P., Beeckman, B., Cubas, J., BenMoussa, A., Berkenbosch, S., Orban, A., Biondi, D., Bonnewijn, S., Candini, G.P., Giordanengo, B., Gissot, Samuel, Gomez, A., Belgian Science Policy Office, European Space Agency, Ministerio de Ciencia e Innovación (España), European Commission, UK Space Agency, Agenzia Spaziale Italiana, Ministerio de Ciencia, Innovación y Universidades (España), Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), National Aeronautics and Space Administration (US), Canadian Space Agency, Aoki, Shohei, Vandaele, Ann Carine, Daerden, Frank, Villanueva, Geronimo L., Liuzzi, Giuliano, Thomas, Ian R., Erwin, Justin T., Trompet, L., Robert, S., Neary, L., Viscardy, S., Hathi, B., Zafra, J.J., Leese, M., Maes, J., Pastor-Morales, M., Mazy, E., Mazzoli, A., Meseguer, J., Morales, Rafael, Pérez Grande, Isabel, Ristic, Bojan, Queirolo, C., Ristic, R., Gomez, J.R., Saggin, B., Smith, M.D., Samain, V., Sanz Andres, A., Altieri, F., Sanz, R., Simar, J.-F., Patel, Manish R., Thibert, T., the NOMAD team, López-Valverde, M. A., Hill, Brittany, Bellucci, Giancarlo, Bauduin, S., López-Moreno, José Juan, Alonso-Rodrigo, G., Fussen, D., Bolsée, D., Carrozzo, G., Clancy, R. Todd, Cloutis, E., Crismani, M., Da Pieve, F., D'Aversa, E., Kaminski, J., Depiesse, C., Garcia-Comas, M., Etiope, G., Fedorova, A.A., Funke, Bernd, Geminale, A., Gérard, Jean-Claude, Giuranna, M., Karatekin, O., Gkouvelis, L., González-Galindo, F., Holmes, J., Hubert, B., Mumma, M.J., Ignatiev, N.I., Kasaba, Y., Kass, D., Kleinböhl, A., Lanciano, O., Lefèvre, F., Lewis, S., López-Puertas, M., Schneider, Nicholas, Nakagawa, H., Hidalgo López, Ana, Mahieux, A., Mason, J., Mege, D., Neefs, E., Novak, R.E., Oliva, F., Sindoni, G., Piccialli, A., Renotte, E., Ritter, B., Willame, Y., Schmidt, F., Teanby, N.A., Thiemann, E., Trokhimovskiy, A., Auwera, J.V., Wolff, M.J., Clairquin, R., Whiteway, J., Wilquet, V., Wolkenberg, P., Yelle, R., del Moral Beatriz, A., Barzin, P., Beeckman, B., Cubas, J., BenMoussa, A., Berkenbosch, S., Orban, A., Biondi, D., Bonnewijn, S., Candini, G.P., Giordanengo, B., Gissot, Samuel, and Gomez, A.
- Abstract
It has been suggested that dust storms efficiently transport water vapor from the near-surface to the middle atmosphere on Mars. Knowledge of the water vapor vertical profile during dust storms is important to understand water escape. During Martian Year 34, two dust storms occurred on Mars: a global dust storm (June to mid-September 2018) and a regional storm (January 2019). Here we present water vapor vertical profiles in the periods of the two dust storms (Ls = 162–260° and Ls = 298–345°) from the solar occultation measurements by Nadir and Occultation for Mars Discovery (NOMAD) onboard ExoMars Trace Gas Orbiter (TGO). We show a significant increase of water vapor abundance in the middle atmosphere (40–100 km) during the global dust storm. The water enhancement rapidly occurs following the onset of the storm (Ls~190°) and has a peak at the most active period (Ls~200°). Water vapor reaches very high altitudes (up to 100 km) with a volume mixing ratio of ~50 ppm. The water vapor abundance in the middle atmosphere shows high values consistently at 60°S-60°N at the growth phase of the dust storm (Ls = 195°–220°), and peaks at latitudes greater than 60°S at the decay phase (Ls = 220°–260°). This is explained by the seasonal change of meridional circulation: from equinoctial Hadley circulation (two cells) to the solstitial one (a single pole-to-pole cell). We also find a conspicuous increase of water vapor density in the middle atmosphere at the period of the regional dust storm (Ls = 322–327°), in particular at latitudes greater than 60°S. ©2019. American Geophysical Union. All Rights Reserved.
- Published
- 2019
4. No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations
- Author
-
Belgian Science Policy Office, Ministerio de Ciencia e Innovación (España), European Commission, UK Space Agency, Centre National de la Recherche Scientifique (France), Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), Roscosmos, Russian Government, Agenzia Spaziale Italiana, European Space Agency, Korablev, O., Vandaele, Ann Carine, Montmessin, Franck, Fedorova, A. A., Trokhimovskiy, A., Forget, François, Lefèvre, F., Daerden, Frank, Thomas, Ian R., Trompet, L., Erwin, Justin T., Aoki, Shohei, Robert, S., Neary, L., Viscardy, S., Grigoriev, A.V., Ignatiev, N. I., Shakun, Alexey, Patrakeev, A., Belyaev, D.A., Bertaux, J.L., Olsen, K. S., Baggio, L., Alday, J., Ivanov, Y. S., Ristic, Bojan, Mason, J., Willame, Y., Depiesse, C., Hetey, L., Berkenbosch, S., Clairquin, R., Queirolo, C., Beeckman, B., Neefs, E., Patel, Manish R., Bellucci, Giancarlo, López-Moreno, José Juan, Wilson, C. F., Etiope, G., Zelenyi, Lev, Svedhem, H., Vago, J. L., Alonso-Rodrigo, G., Altieri, F., Anufreychik, K., Arnold, G., Bauduin, S., Bolsée, D., Funke, Bernd, García Comas, Maia, González-Galindo, F., López-Puertas, Manuel, López-Valverde, M. A., Martín-Torres, F. J., Vazquez, L., Zorzano, María Paz, Belgian Science Policy Office, Ministerio de Ciencia e Innovación (España), European Commission, UK Space Agency, Centre National de la Recherche Scientifique (France), Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), Roscosmos, Russian Government, Agenzia Spaziale Italiana, European Space Agency, Korablev, O., Vandaele, Ann Carine, Montmessin, Franck, Fedorova, A. A., Trokhimovskiy, A., Forget, François, Lefèvre, F., Daerden, Frank, Thomas, Ian R., Trompet, L., Erwin, Justin T., Aoki, Shohei, Robert, S., Neary, L., Viscardy, S., Grigoriev, A.V., Ignatiev, N. I., Shakun, Alexey, Patrakeev, A., Belyaev, D.A., Bertaux, J.L., Olsen, K. S., Baggio, L., Alday, J., Ivanov, Y. S., Ristic, Bojan, Mason, J., Willame, Y., Depiesse, C., Hetey, L., Berkenbosch, S., Clairquin, R., Queirolo, C., Beeckman, B., Neefs, E., Patel, Manish R., Bellucci, Giancarlo, López-Moreno, José Juan, Wilson, C. F., Etiope, G., Zelenyi, Lev, Svedhem, H., Vago, J. L., Alonso-Rodrigo, G., Altieri, F., Anufreychik, K., Arnold, G., Bauduin, S., Bolsée, D., Funke, Bernd, García Comas, Maia, González-Galindo, F., López-Puertas, Manuel, López-Valverde, M. A., Martín-Torres, F. J., Vazquez, L., and Zorzano, María Paz
- Abstract
The detection of methane on Mars has been interpreted as indicating that geochemical or biotic activities could persist on Mars today1. A number of different measurements of methane show evidence of transient, locally elevated methane concentrations and seasonal variations in background methane concentrations2–5. These measurements, however, are difficult to reconcile with our current understanding of the chemistry and physics of the Martian atmosphere6,7, which—given methane’s lifetime of several centuries—predicts an even, well mixed distribution of methane1,6,8. Here we report highly sensitive measurements of the atmosphere of Mars in an attempt to detect methane, using the ACS and NOMAD instruments onboard the ESA-Roscosmos ExoMars Trace Gas Orbiter from April to August 2018. We did not detect any methane over a range of latitudes in both hemispheres, obtaining an upper limit for methane of about 0.05 parts per billion by volume, which is 10 to 100 times lower than previously reported positive detections2,4. We suggest that reconciliation between the present findings and the background methane concentrations found in the Gale crater4 would require an unknown process that can rapidly remove or sequester methane from the lower atmosphere before it spreads globally. © 2019, The Author(s), under exclusive licence to Springer Nature Limited.
- Published
- 2019
5. NOMAD, an Integrated Suite of Three Spectrometers for the ExoMars Trace Gas Mission: Technical Description, Science Objectives and Expected Performance
- Author
-
Vandaele, Ann Carine, López-Moreno, José Juan, Patel, Manish R., Bellucci, Giancarlo, Daerden, Frank, Ristic, Bojan, Robert, S., Thomas, Ian R., Wilquet, V., Allen, M., Alonso-Rodrigo, G., Altieri, F., Aoki, Shohei, Bolsée, D., Clancy, T., Cloutis, E., Depiesse, C., Drummond, R., Fedorova, A., Formisano, V., Funke, Bernd, González-Galindo, F., Geminale, A., Gérard, Jean-Claude, Giuranna, M., Hetey, L., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Leese, M., Lefèvre, F., Lewis, S. R., López-Puertas, Manuel, López-Valverde, M. A., Mahieux, A., Mason, J., McConnell, J., Mumma, M., Neary, L., Neefs, E., Renotte, E., Rodriguez-Gomez, J., Sindoni, G., Smith, M., Stiepen, A., Trokhimovsky, A., Vander Auwera, J., Villanueva, Geronimo L., Viscardy, S., Whiteway, J., Willame, Y., Wolff, Michael T., Patel, M., D’aversa, E., Fussen, D., García Comas, Maia, Hewson, W., McConnel, J., Novak, R., Oliva, F., Piccialli, A., Aparicio del Moral, Beatriz, Barzin, P., BenMoussa, A., Berkenbosch, S., Biondi, D., Bonnewijn, S., Candini, G. P., Clairquin, R., Cubas, J., De-Lanoye, S., Giordanengo, B., Gissot, S., Gomez, A., Maes, J., Mazy, E., Mazzoli, A., Meseguer, J., Morales, Rafael, Orban, A., Pastor, Carmen, Perez-Grande, I., Queirolo, C., Saggin, B., Samain, V., Sanz Andres, A., Sanz Mesa, Rosario, Simar, J.-F., Thibert, T., Jerónimo, José María, The NOMAD Team, Belgian Institute for Space Aeronomy / Institut d'Aéronomie Spatiale de Belgique (BIRA-IASB), Instituto de Astrofísica de Andalucía (IAA), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), School of Physical Sciences [Milton Keynes], Faculty of Science, Technology, Engineering and Mathematics [Milton Keynes], The Open University [Milton Keynes] (OU)-The Open University [Milton Keynes] (OU), Space Science and Technology Department [Didcot] (RAL Space), STFC Rutherford Appleton Laboratory (RAL), Science and Technology Facilities Council (STFC)-Science and Technology Facilities Council (STFC), Istituto di Astrofisica e Planetologia Spaziali - INAF (IAPS), Istituto Nazionale di Astrofisica (INAF), Jet Propulsion Laboratory (JPL), California Institute of Technology (CALTECH)-NASA, Instituto Universitario de Microgravedad 'Ignacio Da Riva' (IDR), Universidad Politécnica de Madrid (UPM), Space Science Institute [Boulder] (SSI), Department of Geography [Winnipeg], University of Winnipeg, Space Research Institute of the Russian Academy of Sciences (IKI), Russian Academy of Sciences [Moscow] (RAS), Laboratoire de Physique Atmosphérique et Planétaire (LPAP), Université de Liège, Institute of Geophysics [Warsaw], Polska Akademia Nauk = Polish Academy of Sciences (PAN), Royal Observatory of Belgium [Brussels] (ROB), Tohoku University [Sendai], PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Fonds National de la Recherche Scientifique [Bruxelles] (FNRS), York University [Toronto], NASA Goddard Space Flight Center (GSFC), Centre Spatial de Liège (CSL), Laboratory for Atmospheric and Space Physics [Boulder] (LASP), University of Colorado [Boulder], Service de Chimie Quantique et Photophysique, Université libre de Bruxelles (ULB), Catholic University of America, Belgian Science Policy Office, European Space Agency, Ministerio de Ciencia e Innovación (España), European Commission, UK Space Agency, Agenzia Spaziale Italiana, and Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles)
- Subjects
010504 meteorology & atmospheric sciences ,Solar occultation ,education ,Physique atomique et moléculaire ,Exploration of Mars ,01 natural sciences ,Occultation ,law.invention ,Orbiter ,Mars atmosphere ,law ,0103 physical sciences ,Nadir ,Chimie ,natural sciences ,010303 astronomy & astrophysics ,Spectroscopy ,0105 earth and related environmental sciences ,Remote sensing ,Ultraviolet ,Martian ,Astronomy and Astrophysics ,Dust ,Atmosphere of Mars ,Mars Exploration Program ,Nadir observations ,ExoMars ,Trace gas ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Spectroscopie [électromagnétisme, optique, acoustique] ,13. Climate action ,Space and Planetary Science ,Visible ,Environmental science ,Infrared ,Methane ,Composition - Abstract
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), The NOMAD (“Nadir and Occultation for MArs Discovery”) spectrometer suite on board the ExoMars Trace Gas Orbiter (TGO) has been designed to investigate the composition of Mars’ atmosphere, with a particular focus on trace gases, clouds and dust. The detection sensitivity for trace gases is considerably improved compared to previous Mars missions, compliant with the science objectives of the TGO mission. This will allow for a major leap in our knowledge and understanding of the Martian atmospheric composition and the related physical and chemical processes. The instrument is a combination of three spectrometers, covering a spectral range from the UV to the mid-IR, and can perform solar occultation, nadir and limb observations. In this paper, we present the science objectives of the instrument and explain the technical principles of the three spectrometers. We also discuss the expected performance of the instrument in terms of spatial and temporal coverage and detection sensitivity.© 2018, The Author(s)., The NOMAD experiment is led by the Royal Belgian Institute for Space Aeronomy (IASB-BIRA), assisted by Co-PI teams from Spain (IAA-CSIC), Italy (INAF-IAPS), and the United Kingdom (Open University). This project acknowledges funding by the Belgian Science Policy Office (BELSPO), with the financial and contractual coordination by the ESA Prodex Office (PEA 4000103401, 4000121493), by Spanish MICINN through its Plan Nacional and by European funds under grant ESP2015-65064-C2-1-P (MINECO/FEDER), as well as by UK Space Agency through grants ST/R005761/1, ST/P001262/1, ST/R001405/1 and ST/R001405/1 and Italian Space Agency through grant 2018-2-HH.0. The research was performed as part of the >Excellence of Science> project >Evolution and Tracers of Habitability on Mars and the Earth> (30442502). SA acknowledge support from the FNRS, Be.
- Published
- 2018
6. NOMAD, an Integrated Suite of Three Spectrometers for the ExoMars Trace Gas Mission: Technical Description, Science Objectives and Expected Performance
- Author
-
Vandaele, A. C., López-Moreno, José Juan, Patel, M. R., Bellucci, G., Daerden, F., Ristic, B., Robert, S., Thomas, I. R., Wilquet, V., Allen, M., Alonso-Rodrigo, G., Altieri, F., Aoki, S., Bolsée, D., Clancy, T., Cloutis, E., Depiesse, C., Drummond, R., Fedorova, A., Formisano, V., Funke, Bernd, González-Galindo, F., Geminale, A., Gérard, Jean-Claude, Giuranna, M., Hetey, L., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Leese, M., Lefèvre, F., Lewis, S. R., López-Puertas, Manuel, López-Valverde, M. A., Mahieux, A., Mason, J., McConnell, J., Mumma, M., Neary, L., Neefs, E., Renotte, E., Rodriguez-Gomez, J., Sindoni, G., Smith, M., Stiepen, A., Trokhimovsky, A., Vander Auwera, J., Villanueva, G., Viscardy, S., Whiteway, J., Willame, Y., Wolff, Michael T., Patel, M., D’aversa, E., Fussen, D., García Comas, Maia, Hewson, W., McConnel, J., Novak, R., Oliva, F., Piccialli, A., Aparicio del Moral, Beatriz, Barzin, P., BenMoussa, A., Berkenbosch, S., Biondi, D., Bonnewijn, S., Candini, G. P., Clairquin, R., Cubas, J., De-Lanoye, S., Giordanengo, B., Gissot, S., Gomez, A., Maes, J., Mazy, E., Mazzoli, A., Meseguer, J., Morales, Rafael, Orban, A., Pastor, Carmen, Perez-Grande, I., Queirolo, C., Saggin, B., Samain, V., Sanz Andres, A., Sanz Mesa, Rosario, Simar, J.-F., Thibert, T., Jerónimo, José María, The NOMAD Team, Belgian Science Policy Office, European Space Agency, Ministerio de Ciencia e Innovación (España), European Commission, UK Space Agency, Agenzia Spaziale Italiana, and Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles)
- Subjects
Mars atmosphere ,Solar occultation ,Visible ,Dust ,Infrared ,Methane ,ExoMars ,Nadir observations ,Spectroscopy ,Composition ,Ultraviolet - Abstract
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/) The NOMAD (“Nadir and Occultation for MArs Discovery”) spectrometer suite on board the ExoMars Trace Gas Orbiter (TGO) has been designed to investigate the composition of Mars’ atmosphere, with a particular focus on trace gases, clouds and dust. The detection sensitivity for trace gases is considerably improved compared to previous Mars missions, compliant with the science objectives of the TGO mission. This will allow for a major leap in our knowledge and understanding of the Martian atmospheric composition and the related physical and chemical processes. The instrument is a combination of three spectrometers, covering a spectral range from the UV to the mid-IR, and can perform solar occultation, nadir and limb observations. In this paper, we present the science objectives of the instrument and explain the technical principles of the three spectrometers. We also discuss the expected performance of the instrument in terms of spatial and temporal coverage and detection sensitivity.© 2018, The Author(s). The NOMAD experiment is led by the Royal Belgian Institute for Space Aeronomy (IASB-BIRA), assisted by Co-PI teams from Spain (IAA-CSIC), Italy (INAF-IAPS), and the United Kingdom (Open University). This project acknowledges funding by the Belgian Science Policy Office (BELSPO), with the financial and contractual coordination by the ESA Prodex Office (PEA 4000103401, 4000121493), by Spanish MICINN through its Plan Nacional and by European funds under grant ESP2015-65064-C2-1-P (MINECO/FEDER), as well as by UK Space Agency through grants ST/R005761/1, ST/P001262/1, ST/R001405/1 and ST/R001405/1 and Italian Space Agency through grant 2018-2-HH.0. The research was performed as part of the >Excellence of Science> project >Evolution and Tracers of Habitability on Mars and the Earth> (30442502). SA acknowledge support from the FNRS, Be.
- Published
- 2018
7. NOMAD, an Integrated Suite of Three Spectrometers for the ExoMars Trace Gas Mission: Technical Description, Science Objectives and Expected Performance
- Author
-
Belgian Science Policy Office, European Space Agency, Ministerio de Ciencia e Innovación (España), European Commission, UK Space Agency, Agenzia Spaziale Italiana, Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), Vandaele, Ann Carine, López-Moreno, José Juan, Patel, Manish R., Bellucci, Giancarlo, Daerden, Frank, Ristic, Bojan, Robert, S., Thomas, Ian R., Wilquet, V., Allen, M., Alonso-Rodrigo, G., Altieri, F., Aoki, Shohei, Bolsée, D., Clancy, T., Cloutis, E., Depiesse, C., Drummond, R., Fedorova, A., Formisano, V., Funke, Bernd, González-Galindo, F., Geminale, A., Gérard, Jean-Claude, Giuranna, M., Hetey, L., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Leese, M., Lefèvre, F., Lewis, S. R., López-Puertas, Manuel, López-Valverde, M. A., Mahieux, A., Mason, J., McConnell, J., Mumma, M., Neary, L., Neefs, E., Renotte, E., Rodriguez-Gomez, J., Sindoni, G., Smith, M., Stiepen, A., Trokhimovsky, A., Vander Auwera, J., Villanueva, Geronimo L., Viscardy, S., Whiteway, J., Willame, Y., Wolff, Michael T., Patel, M., D’aversa, E., Fussen, D., García Comas, Maia, Hewson, W., McConnel, J., Novak, R., Oliva, F., Piccialli, A., Aparicio del Moral, Beatriz, Barzin, P., BenMoussa, A., Berkenbosch, S., Biondi, D., Bonnewijn, S., Candini, G. P., Clairquin, R., Cubas, J., De-Lanoye, S., Giordanengo, B., Gissot, Samuel, Gomez, A., Maes, J., Mazy, E., Mazzoli, A., Meseguer, J., Morales, Rafael, Orban, A., Pastor, Carmen, Pérez Grande, Isabel, Queirolo, C., Saggin, B., Samain, V., Sanz Andres, A., Sanz Mesa, Rosario, Simar, J.-F., Thibert, T., Jerónimo, José María, The NOMAD Team, Belgian Science Policy Office, European Space Agency, Ministerio de Ciencia e Innovación (España), European Commission, UK Space Agency, Agenzia Spaziale Italiana, Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), Vandaele, Ann Carine, López-Moreno, José Juan, Patel, Manish R., Bellucci, Giancarlo, Daerden, Frank, Ristic, Bojan, Robert, S., Thomas, Ian R., Wilquet, V., Allen, M., Alonso-Rodrigo, G., Altieri, F., Aoki, Shohei, Bolsée, D., Clancy, T., Cloutis, E., Depiesse, C., Drummond, R., Fedorova, A., Formisano, V., Funke, Bernd, González-Galindo, F., Geminale, A., Gérard, Jean-Claude, Giuranna, M., Hetey, L., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Leese, M., Lefèvre, F., Lewis, S. R., López-Puertas, Manuel, López-Valverde, M. A., Mahieux, A., Mason, J., McConnell, J., Mumma, M., Neary, L., Neefs, E., Renotte, E., Rodriguez-Gomez, J., Sindoni, G., Smith, M., Stiepen, A., Trokhimovsky, A., Vander Auwera, J., Villanueva, Geronimo L., Viscardy, S., Whiteway, J., Willame, Y., Wolff, Michael T., Patel, M., D’aversa, E., Fussen, D., García Comas, Maia, Hewson, W., McConnel, J., Novak, R., Oliva, F., Piccialli, A., Aparicio del Moral, Beatriz, Barzin, P., BenMoussa, A., Berkenbosch, S., Biondi, D., Bonnewijn, S., Candini, G. P., Clairquin, R., Cubas, J., De-Lanoye, S., Giordanengo, B., Gissot, Samuel, Gomez, A., Maes, J., Mazy, E., Mazzoli, A., Meseguer, J., Morales, Rafael, Orban, A., Pastor, Carmen, Pérez Grande, Isabel, Queirolo, C., Saggin, B., Samain, V., Sanz Andres, A., Sanz Mesa, Rosario, Simar, J.-F., Thibert, T., Jerónimo, José María, and The NOMAD Team
- Abstract
The NOMAD (“Nadir and Occultation for MArs Discovery”) spectrometer suite on board the ExoMars Trace Gas Orbiter (TGO) has been designed to investigate the composition of Mars’ atmosphere, with a particular focus on trace gases, clouds and dust. The detection sensitivity for trace gases is considerably improved compared to previous Mars missions, compliant with the science objectives of the TGO mission. This will allow for a major leap in our knowledge and understanding of the Martian atmospheric composition and the related physical and chemical processes. The instrument is a combination of three spectrometers, covering a spectral range from the UV to the mid-IR, and can perform solar occultation, nadir and limb observations. In this paper, we present the science objectives of the instrument and explain the technical principles of the three spectrometers. We also discuss the expected performance of the instrument in terms of spatial and temporal coverage and detection sensitivity.© 2018, The Author(s).
- Published
- 2018
8. Expected performances of the NOMAD/ExoMars instrument
- Author
-
Robert, S, Vandaele, A. C., Thomas, I., Willame, Y., Daerden, F., Delanoye, S., Depiesse, C., Drummond, R., Neefs, E., Neary, L., Ristic, B., Mason, J., Lopez Moreno, J. J., Rodriguez Gomez, J., Patel, M. R., Bellucci, G., Patel, M., Allen, M., Altieri, F., Aoki, S., Bolsée, D., Clancy, T., Cloutis, E., Fedorova, A., Formisano, V., Funke, B., Fussen, D., Garcia Comas, M., Geminale, A., Gérard, J. C., Gillotay, D., Giuranna, M., Gonzalez Galindo, F., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Lefèvre, F., Lewis, S., López Puertas, M., López Valverde, M., Mahieux, A., Mcconnell, J., Mumma, M., Novak, R., Renotte, E., Robert, S., Sindoni, G., Smith, M., Thomas, I. R., Trokhimovskiy, A., Vander Auwera, J., Villanueva, G., Viscardy, S., Whiteway, J., Wilquet, V., Wolff, M., Alonso Rodrigo, G., Aparicio Del Moral, B., Barzin, P., Ben Moussa, A., Berkenbosch, S., Biondi, D., Bonnewijn, S., Candini, G., Clairquin, R., Cubas, J., Giordanengo, B., Gissot, S., Gomez, A., Zafra, J. J., Leese, M., Maes, J., Mazy, E., Mazzoli, A., Meseguer, J., Morales, R., Orban, A., Pastor Morales, M., Perez Grande, I., Saggin, Bortolino, Samain, V., Sanz Andres, A., Sanz, R., Simar, J. F., Thibert, T., UK Space Agency, Belgian Science Policy Office, European Commission, and European Space Agency
- Subjects
ExoMars ESA mission ,010504 meteorology & atmospheric sciences ,Mars ,NOMAD instrument ,01 natural sciences ,Occultation ,law.invention ,Orbiter ,law ,0103 physical sciences ,Nadir ,Radiative transfer ,Abundances ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Remote sensing ,atmosphere [Mars] ,Spectrometer ,Mars, atmosphere ,Astronomy and Astrophysics ,Space and Planetary Science ,Astronomy ,Mars Exploration Program ,Atmosphere of Mars ,Trace gas ,13. Climate action ,atmosphere ,Mars: atmosphere ,Environmental science - Abstract
NOMAD (Nadir and Occultation for MArs Discovery) is one of the four instruments on board the ExoMars Trace Gas Orbiter, scheduled for launch in March 2016. It consists of a suite of three high-resolution spectrometers - SO (Solar Occultation), LNO (Limb, Nadir and Occultation) and UVIS (Ultraviolet and Visible Spectrometer). Based upon the characteristics of the channels and the values of Signal-to-Noise Ratio obtained from radiometric models discussed in (Vandaele et al., 2015a, 2015b; Thomas et al., 2016), the expected performances of the instrument in terms of sensitivity to detection have been investigated. The analysis led to the determination of detection limits for 18 molecules, namely CO, HO, HDO, CH, CH, CH, HCO, CH, SO, HS, HCl, HCN, HO, NH, NO, NO, OCS, O. NOMAD should have the ability to measure methane concentrations, NOMAD has been made possible thanks to funding by the Belgian Science Policy Office (BELSPO) and financial and contractual coordination by the ESA Prodex Office (PlanetADAM no 4000107727). The research was performed as part of the >Inter-university Attraction Poles> programme financed by the Belgian Government (Planet TOPERS no P7-15) and a BRAIN Research Grant BR/143/A2/SCOOP. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement no. 607177 CrossDrive. UK funding is acknowledged under the UK Space Agency Grant ST/I003061/1.
- Published
- 2016
9. Optical and radiometric models of the NOMAD instrument part II: The infrared channels - SO and LNO
- Author
-
Thomas, I. R., Vandaele, A. C., Robert, S., Neefs, E., Drummond, R., Daerden, F., Delanoye, S., Ristic, B., Berkenbosch, S., Clairquin, R., Maes, J., Bonnewijn, S., Depiesse, C., Mahieux, A., Trompet, L., Neary, L., Willame, Y., Wilquet, V., Nevejans, D., Aballea, L., Moelans, W., De Vos, L., Lesschaeve, S., Van Vooren, N., Lopez Moreno, J. J., Patel, M. R., Bellucci, G., Vandaele, Ann Carine, Moreno, Lopez, Juan, Jose, Bellucci, Giancarlo, Patel, Manish, Allen, Mark, Altieri, Francesca, Aoki, Shohei, Bolsée, David, Clancy, Todd, Cloutis, Edward, Daerden, Frank, Depiesse, Cédric, Fedorova, Anna, Formisano, Vittorio, Funke, Bernd, Fussen, Didier, Garcia Comas, Maya, Geminale, Anna, Gérard, Jean Claude, Gillotay, Didier, Giuranna, Marco, Gonzalez Galindo, Francisco, Ignatiev, Nicolai, Kaminski, Jacek, Karatekin, Ozgur, Kasaba, Yasumasa, Lefèvre, Franck, Lewis, Stephen, López Puertas, Manuel, López Valverde, Miguel, Mahieux, Arnaud, Mason, Jon, Mcconnell, Jack, Mumma, Mike, Neary, Lori, Neefs, Eddy, Novak, Robert, Renotte, Etienne, Robert, Séverine, Sindoni, Giuseppe, Smith, Mike, Thomas, Ian R., Trokhimovsky, Sacha, Vander Auwera, Jean, Villanueva, Geronimo, Whiteway, Jim, Willame, Yannick, Wilquet, Valerie, Wolff, Mike, Alonso Rodrigo, Gustavo, Aparicio Del Moral, Beatriz, Barzin, Pascal, Benmoussa, Ali, Berkenbosch, Sophie, Biondi, David, Bonnewijn, Sabrina, Candini, Gian Paolo, Clairquin, Roland, Cubas, Javier, Delanoye, Sofie, Giordanengo, Boris, Gissot, Samuel, Gomez, Alejandro, Zafra, Jose Jeronimo, Leese, Mark, Maes, Jeroen, Mazy, Emmanuel, Mazzoli, Alexandra, Meseguer, Jose, Morales, Rafael, Orban, Anne, Del Carmen Pastor Morales, Maria, Perez Grande, Isabel, Ristic, Bojan, Rodriguez Gomez, Julio, Saggin, Bortolino, Samain, Valérie, Sanz Andres, Angel, Sanz, Rosario, Simar, Juan Felipe, Thibert, Tanguy, Belgian Science Policy Office, European Space Agency, and UK Space Agency
- Subjects
Physics ,Martian ,010504 meteorology & atmospheric sciences ,Spectrometer ,Atmospheric composition ,Spectrometers and spectroscopic instrumentation ,01 natural sciences ,Occultation ,Atomic and Molecular Physics, and Optics ,Trace gas ,law.invention ,Remote sensing and sensors ,Orbiter ,Space instrumentation ,Atmosphere of Earth ,law ,Atomic and Molecular Physics ,Martian surface ,0103 physical sciences ,Nadir ,Radiative transfer ,and Optics ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Remote sensing - Abstract
NOMAD is a suite of three spectrometers that will be launched in 2016 as part of the joint ESA-Roscosmos ExoMars Trace Gas Orbiter mission. The instrument contains three channels that cover the IR and UV spectral ranges and can perform solar occultation, nadir and limb observations, to detect and map a wide variety of Martian atmospheric gases and trace species. Part I of this work described the models of the UVIS channel; in this second part, we present the optical models representing the two IR channels, SO (Solar Occultation) and LNO (Limb, Nadir and Occultation), and use them to determine signal to noise ratios (SNRs) for many expected observational cases. In solar occultation mode, both the SO and LNO channel exhibit very high SNRs >5000. SNRs of around 100 were found for the LNO channel in nadir mode, depending on the atmospheric conditions, Martian surface properties, and observation geometry., NOMAD has been made possible thanks to funding by the Belgian Science Policy Office (BELSPO) and financial and contractual coordination by the ESA Prodex Office. The research was performed as part of the “Interuniversity Attraction Poles” programme financed by the Belgian government (Planet TOPERS). UK funding is acknowledged under the UK Space Agency grant ST/I003061/1.
- Published
- 2016
10. Optical and radiometric models of the NOMAD instrument part I: the UVIS channel
- Author
-
Vandaele, Ann C., Willame, Yannick, Depiesse, Cédric, Thomas, Ian R., Robert, Séverine, Bolsée, David, Patel, Manish R., Mason, Jon P., Leese, Mark, Lesschaeve, Stefan, Antoine, Philippe, Daerden, Frank, Delanoye, Sofie, Drummond, Rachel, Neefs, Eddy, Ristic, Bojan, Lopez Moreno, José Juan, Bellucci, Giancarlo, Allen, M., Altieri, F., Aoki, S., Clancy, T., Cloutis, E., Fedorova, A., Formisano, V., Funke, B., Fussen, D., Garcia Comas, M., Geminale, A., Gérard, J. C., Gillotay, D., Giuranna, M., Gonzalez Galindo, F., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Lefèvre, F., Lewis, S., López Puertas, M., López Valverde, M., Mahieux, A., Mumma, M., Neary, L., Novak, R., Renotte, E., Sindoni, G., Smith, M., Trokhimovskiy, A., Vander Auwera, J., Villanueva, G., Viscardy, S., Whiteway, J., Wilquet, V., Wolff, M., Alonso Rodrigo, G., Aparicio Del Moral, B., Barzin, P., Benmoussa, A., Berkenbosch, S., Biondi, D., Bonnewijn, S., Candini, G., Clairquin, R., Cubas, J., Giordanengo, B., Gissot, S., Gomez, A., Zafra, J. J., Maes, J., Mazy, E., Mazzoli, A., Meseguer, J., Morales, R., Orban, A., Pastor Morales, M., Perez Grande, I., Rodriguez Gomez, J., Saggin, Bortolino, Samain, V., Sanz Andres, A., Sanz, R., Simar, J. F., Thibert, T., European Space Agency, UK Space Agency, and Belgian Science Policy Office
- Subjects
Solar occultation ,Radiometric model ,Occultation ,Signal ,law.invention ,Orbiter ,Optics ,law ,Atomic and Molecular Physics ,Nadir ,Optical constants ,Science objectives ,Remote sensing ,Physics ,Martian ,business.industry ,Signal to noise ,Atmosphere of Mars ,IR spectral range ,Atomic and Molecular Physics, and Optics ,Trace gas ,Wavelength ,Optical models ,Atmospheric absorption ,and Optics ,business ,Martian atmospheres - Abstract
The NOMAD instrument has been designed to best fulfil the science objectives of the ExoMars Trace Gas Orbiter mission that will be launched in 2016. The instrument is a combination of three channels that cover the UV, visible and IR spectral ranges and can perform solar occultation, nadir and limb observations. In this series of two papers, we present the optical models representing the three channels of the instrument and use them to determine signal to noise levels for different observation modes and Martian conditions. In this first part, we focus on the UVIS channel, which will sound the Martian atmosphere using nadir and solar occultation viewing modes, covering the 200-650nm spectral range. High SNR levels (, NOMAD has been made possible thanks to funding by the Belgian Science Policy Office (BELSPO) and financial and contractual coordination by the ESA Prodex Office (contracts no 4000107727 and 4000103401). The research was performed as part of the >Interuniversity Attraction Poles> programme financed by the Belgian government (Planet TOPERS, contract PAI no P7/15). UK funding is acknowledged under the UK Space Agency grant ST/I003061/1.
- Published
- 2015
11. Expected performances of the NOMAD/ExoMars instrument
- Author
-
UK Space Agency, Belgian Science Policy Office, European Commission, European Space Agency, Vandaele, Ann Carine, López-Moreno, José Juan, Bellucci, Giancarlo, Patel, M., Allen, M., Altieri, F., Aoki, Shohei, Bolsée, D., Clancy, T., Cloutis, E., Daerden, Frank, Depiesse, C., Fedorova, A., Formisano, V., Funke, Bernd, Fussen, D., García Comas, Maia, Geminale, A., Gérard, Jean-Claude, Gillotay, D., Giuranna, M., González-Galindo, F., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Lefèvre, F., Lewis, S., López-Puertas, Manuel, López-Valverde, M. A., Mahieux, A., Mason, J., McConnell, J., Mumma, M., Neary, L., Neefs, E., Novak, R., Renotte, E., Robert, S., Sindoni, G., Smith, M., Thomas, Ian R., Trokhimovskiy, A., Vander Auwera, J., Villanueva, Geronimo L., Viscardy, S., Whiteway, J., Willame, Y., Wilquet, V., Wolff, Michael T., Aparicio del Moral, Beatriz, Barzin, P., BenMoussa, A., Berkenbosch, S., Biondi, D., Bonnewijn, S., Candini, G., Clairquin, R., Cubas, J., Delanoye, S., Giordanengo, B., Gissot, Samuel, Gomez, A., Zafra, J.-J., Leese, M., Maes, J., Mazy, E., Mazzoli, A., Meseguer, J., Morales, Rafael, Orban, A., Pastor, Carmen, Pérez Grande, Isabel, Ristic, Bojan, Rodríguez Gómez, Julio, Saggin, B., Samain, V., Sanz Andres, A., Sanz, R., Simar, J.-F., Thibert, T., Alonso-Rodrigo, G., UK Space Agency, Belgian Science Policy Office, European Commission, European Space Agency, Vandaele, Ann Carine, López-Moreno, José Juan, Bellucci, Giancarlo, Patel, M., Allen, M., Altieri, F., Aoki, Shohei, Bolsée, D., Clancy, T., Cloutis, E., Daerden, Frank, Depiesse, C., Fedorova, A., Formisano, V., Funke, Bernd, Fussen, D., García Comas, Maia, Geminale, A., Gérard, Jean-Claude, Gillotay, D., Giuranna, M., González-Galindo, F., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Lefèvre, F., Lewis, S., López-Puertas, Manuel, López-Valverde, M. A., Mahieux, A., Mason, J., McConnell, J., Mumma, M., Neary, L., Neefs, E., Novak, R., Renotte, E., Robert, S., Sindoni, G., Smith, M., Thomas, Ian R., Trokhimovskiy, A., Vander Auwera, J., Villanueva, Geronimo L., Viscardy, S., Whiteway, J., Willame, Y., Wilquet, V., Wolff, Michael T., Aparicio del Moral, Beatriz, Barzin, P., BenMoussa, A., Berkenbosch, S., Biondi, D., Bonnewijn, S., Candini, G., Clairquin, R., Cubas, J., Delanoye, S., Giordanengo, B., Gissot, Samuel, Gomez, A., Zafra, J.-J., Leese, M., Maes, J., Mazy, E., Mazzoli, A., Meseguer, J., Morales, Rafael, Orban, A., Pastor, Carmen, Pérez Grande, Isabel, Ristic, Bojan, Rodríguez Gómez, Julio, Saggin, B., Samain, V., Sanz Andres, A., Sanz, R., Simar, J.-F., Thibert, T., and Alonso-Rodrigo, G.
- Abstract
NOMAD (Nadir and Occultation for MArs Discovery) is one of the four instruments on board the ExoMars Trace Gas Orbiter, scheduled for launch in March 2016. It consists of a suite of three high-resolution spectrometers - SO (Solar Occultation), LNO (Limb, Nadir and Occultation) and UVIS (Ultraviolet and Visible Spectrometer). Based upon the characteristics of the channels and the values of Signal-to-Noise Ratio obtained from radiometric models discussed in (Vandaele et al., 2015a, 2015b; Thomas et al., 2016), the expected performances of the instrument in terms of sensitivity to detection have been investigated. The analysis led to the determination of detection limits for 18 molecules, namely CO, HO, HDO, CH, CH, CH, HCO, CH, SO, HS, HCl, HCN, HO, NH, NO, NO, OCS, O. NOMAD should have the ability to measure methane concentrations <25 parts per trillion (ppt) in solar occultation mode, and 11 parts per billion in nadir mode. Occultation detections as low as 10 ppt could be made if spectra are averaged (Drummond et al., 2011). Results have been obtained for all three channels in nadir and in solar occultation.© 2016 The Authors. Published by Elsevier Ltd.
- Published
- 2016
12. Optical and radiometric models of the NOMAD instrument part II: The infrared channels - SO and LNO
- Author
-
Belgian Science Policy Office, European Space Agency, UK Space Agency, Thomas, Ian R., Vandaele, Ann Carine, Robert, S., Neefs, E., Drummond, R., Daerden, Frank, Delanoye, S., Ristic, Bojan, Berkenbosch, S., Clairquin, R., Maes, J., Bonnewijn, S., Depiesse, C., Mahieux, A., Trompet, L., Neary, L., Willame, Y., Wilquet, V., Nevejans, D., Aballea, L., Moelans, W., De Vos, L., Lesschaeve, S., Van Vooren, N., López-Moreno, José Juan, Patel, Manish R., Bellucci, Giancarlo, Moreno, L., Juan, J., Patel, M., Allen, M., Altieri, F., Aoki, Shohei, Bolsée, D., Clancy, T., Cloutis, E., Fedorova, A., Formisano, V., Funke, Bernd, Fussen, D., García Comas, Maia, Geminale, A., Gérard, Jean-Claude, Gillotay, D., Giuranna, M., Belgian Science Policy Office, European Space Agency, UK Space Agency, Thomas, Ian R., Vandaele, Ann Carine, Robert, S., Neefs, E., Drummond, R., Daerden, Frank, Delanoye, S., Ristic, Bojan, Berkenbosch, S., Clairquin, R., Maes, J., Bonnewijn, S., Depiesse, C., Mahieux, A., Trompet, L., Neary, L., Willame, Y., Wilquet, V., Nevejans, D., Aballea, L., Moelans, W., De Vos, L., Lesschaeve, S., Van Vooren, N., López-Moreno, José Juan, Patel, Manish R., Bellucci, Giancarlo, Moreno, L., Juan, J., Patel, M., Allen, M., Altieri, F., Aoki, Shohei, Bolsée, D., Clancy, T., Cloutis, E., Fedorova, A., Formisano, V., Funke, Bernd, Fussen, D., García Comas, Maia, Geminale, A., Gérard, Jean-Claude, Gillotay, D., and Giuranna, M.
- Abstract
NOMAD is a suite of three spectrometers that will be launched in 2016 as part of the joint ESA-Roscosmos ExoMars Trace Gas Orbiter mission. The instrument contains three channels that cover the IR and UV spectral ranges and can perform solar occultation, nadir and limb observations, to detect and map a wide variety of Martian atmospheric gases and trace species. Part I of this work described the models of the UVIS channel; in this second part, we present the optical models representing the two IR channels, SO (Solar Occultation) and LNO (Limb, Nadir and Occultation), and use them to determine signal to noise ratios (SNRs) for many expected observational cases. In solar occultation mode, both the SO and LNO channel exhibit very high SNRs >5000. SNRs of around 100 were found for the LNO channel in nadir mode, depending on the atmospheric conditions, Martian surface properties, and observation geometry.
- Published
- 2016
13. Exploration of planetary subsurfaces with a bi-static HF GPR: results from the TAPIR GPR in the White Egyptian Desert
- Author
-
Le Gall, Alice, Ciarletti, Valérie, Berthelier, Jean-Jacques, Reineix, Alain, Corbel, Charlotte, Ney, R., Dolon, F., Clairquin, R., Lebraud, Sophie, Centre d'étude des environnements terrestre et planétaires (CETP), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), OSA, XLIM (XLIM), and Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS)-Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU] Sciences of the Universe [physics] ,[SDU]Sciences of the Universe [physics] - Published
- 2006
14. Initial results of the Netlander imaging ground-penetrating radaroperated on the Antarctic Ice Shelf
- Author
-
Berthelier, Jean-Jacques, Bonaimé, S., Ciarletti, Valérie, Clairquin, R., Dolon, F., Le Gall, Alice, Nevejans, D., Ney, Richard, Reineix, Alain, Centre d'étude des environnements terrestre et planétaires (CETP), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique du Globe de Paris (IPGP), Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Université Paris Diderot - Paris 7 (UPD7)-IPG PARIS-Institut national des sciences de l'Univers (INSU - CNRS), Belgian Institute for Space Aeronomy / Institut d'Aéronomie Spatiale de Belgique (BIRA-IASB), OSA, XLIM (XLIM), Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS)-Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS), CNES (grants 793/CNES/99/7947 and 737/CNES/00/8261), and Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SPI.ELEC]Engineering Sciences [physics]/Electromagnetism ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing - Abstract
The objective of the Netlander mission was to land 4 small geophysical stations on the surface of Mars to study the deep interior, subsurface, surface and atmosphere of the planet. Included in the payload was a ground penetrating radar (GPR) designed to retrieve not only the distance but also the direction of the reflectors, thus providing a simplified 3D imaging of the subsurface. In this paper we report initial results obtained during the RANETA campaign on the Antarctic ice shelf. Data from two soundings of the ice-bed rock interface are analyzed, demonstrating the capability of the radar to disentangle echoes from different reflecting facets of the bed rock.
- Published
- 2006
15. Initial results of the Netlander imaging ground-penetrating radar operated on the Antarctic Ice Shelf
- Author
-
Berthelier, J. J., primary, Bonaimé, S., additional, Ciarletti, V., additional, Clairquin, R., additional, Dolon, F., additional, Le Gall, A., additional, Nevejans, D., additional, Ney, R., additional, and Reineix, A., additional
- Published
- 2005
- Full Text
- View/download PDF
16. Sinbad electronic models of the interface and control system for the nomad spectrometer on board esa exomars trace gas orbiter mission
- Author
-
Jerónimo Zafra, J. M., Mesa, R. S., Del Moral, B. A., Candini, G. P., Rodríguezgómez, J. F., Munõz, N. R., Munõz, R. M., Morales, M. C. P., López, J. M. G., López-Moreno, J. -J, Vandaele, A. C., Neefs, E., Drummond, R., Delanoye, S., Berkenbosch, S., Clairquin, R., Ristic, B., Maes, J., Bonnewijn, S., Patel, M. R., and Leese, M.
17. Publisher Correction: No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations.
- Author
-
Korablev O, Vandaele AC, Montmessin F, Fedorova AA, Trokhimovskiy A, Forget F, Lefèvre F, Daerden F, Thomas IR, Trompet L, Erwin JT, Aoki S, Robert S, Neary L, Viscardy S, Grigoriev AV, Ignatiev NI, Shakun A, Patrakeev A, Belyaev DA, Bertaux JL, Olsen KS, Baggio L, Alday J, Ivanov YS, Ristic B, Mason J, Willame Y, Depiesse C, Hetey L, Berkenbosch S, Clairquin R, Queirolo C, Beeckman B, Neefs E, Patel MR, Bellucci G, López-Moreno JJ, Wilson CF, Etiope G, Zelenyi L, Svedhem H, and Vago JL
- Abstract
The surname of author Cathy Quantin-Nataf was misspelled 'Quantin-Nata', authors Ehouarn Millour and Roland Young were missing from the ACS and NOMAD Science Teams list, and minor changes have been made to the author and affiliation lists; see accompanying Amendment. These errors have been corrected online.
- Published
- 2019
- Full Text
- View/download PDF
18. No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations.
- Author
-
Korablev O, Vandaele AC, Montmessin F, Fedorova AA, Trokhimovskiy A, Forget F, Lefèvre F, Daerden F, Thomas IR, Trompet L, Erwin JT, Aoki S, Robert S, Neary L, Viscardy S, Grigoriev AV, Ignatiev NI, Shakun A, Patrakeev A, Belyaev DA, Bertaux JL, Olsen KS, Baggio L, Alday J, Ivanov YS, Ristic B, Mason J, Willame Y, Depiesse C, Hetey L, Berkenbosch S, Clairquin R, Queirolo C, Beeckman B, Neefs E, Patel MR, Bellucci G, López-Moreno JJ, Wilson CF, Etiope G, Zelenyi L, Svedhem H, and Vago JL
- Abstract
The detection of methane on Mars has been interpreted as indicating that geochemical or biotic activities could persist on Mars today
1 . A number of different measurements of methane show evidence of transient, locally elevated methane concentrations and seasonal variations in background methane concentrations2-5 . These measurements, however, are difficult to reconcile with our current understanding of the chemistry and physics of the Martian atmosphere6,7 , which-given methane's lifetime of several centuries-predicts an even, well mixed distribution of methane1,6,8 . Here we report highly sensitive measurements of the atmosphere of Mars in an attempt to detect methane, using the ACS and NOMAD instruments onboard the ESA-Roscosmos ExoMars Trace Gas Orbiter from April to August 2018. We did not detect any methane over a range of latitudes in both hemispheres, obtaining an upper limit for methane of about 0.05 parts per billion by volume, which is 10 to 100 times lower than previously reported positive detections2,4 . We suggest that reconciliation between the present findings and the background methane concentrations found in the Gale crater4 would require an unknown process that can rapidly remove or sequester methane from the lower atmosphere before it spreads globally.- Published
- 2019
- Full Text
- View/download PDF
19. Optical and radiometric models of the NOMAD instrument part II: the infrared channels - SO and LNO.
- Author
-
Thomas IR, Vandaele AC, Robert S, Neefs E, Drummond R, Daerden F, Delanoye S, Ristic B, Berkenbosch S, Clairquin R, Maes J, Bonnewijn S, Depiesse C, Mahieux A, Trompet L, Neary L, Willame Y, Wilque V, Nevejans D, Aballea L, Moelans W, De Vos L, Lesschaeve S, Van Vooren N, Lopez-Moreno JJ, Patel MR, and Bellucci G
- Abstract
NOMAD is a suite of three spectrometers that will be launched in 2016 as part of the joint ESA-Roscosmos ExoMars Trace Gas Orbiter mission. The instrument contains three channels that cover the IR and UV spectral ranges and can perform solar occultation, nadir and limb observations, to detect and map a wide variety of Martian atmospheric gases and trace species. Part I of this work described the models of the UVIS channel; in this second part, we present the optical models representing the two IR channels, SO (Solar Occultation) and LNO (Limb, Nadir and Occultation), and use them to determine signal to noise ratios (SNRs) for many expected observational cases. In solar occultation mode, both the SO and LNO channel exhibit very high SNRs >5000. SNRs of around 100 were found for the LNO channel in nadir mode, depending on the atmospheric conditions, Martian surface properties, and observation geometry.
- Published
- 2016
- Full Text
- View/download PDF
20. NOMAD spectrometer on the ExoMars trace gas orbiter mission: part 1--design, manufacturing and testing of the infrared channels.
- Author
-
Neefs E, Vandaele AC, Drummond R, Thomas IR, Berkenbosch S, Clairquin R, Delanoye S, Ristic B, Maes J, Bonnewijn S, Pieck G, Equeter E, Depiesse C, Daerden F, Van Ransbeeck E, Nevejans D, Rodriguez-Gómez J, López-Moreno JJ, Sanz R, Morales R, Candini GP, Pastor-Morales MC, Aparicio del Moral B, Jeronimo-Zafra JM, Gómez-López JM, Alonso-Rodrigo G, Pérez-Grande I, Cubas J, Gomez-Sanjuan AM, Navarro-Medina F, Thibert T, Patel MR, Bellucci G, De Vos L, Lesschaeve S, Van Vooren N, Moelans W, Aballea L, Glorieux S, Baeke A, Kendall D, De Neef J, Soenen A, Puech PY, Ward J, Jamoye JF, Diez D, Vicario-Arroyo A, and Jankowski M
- Abstract
NOMAD is a spectrometer suite on board ESA's ExoMars trace gas orbiter due for launch in January 2016. NOMAD consists of two infrared channels and one ultraviolet and visible channel allowing the instrument to perform observations quasi-constantly, by taking nadir measurements at dayside and nightside, and during solar occultations. In this paper, the design, manufacturing, and testing of the two infrared channels are described. We focus upon the optical working principle in these channels, where an echelle grating, used as a diffractive element, is combined with an acousto-optical tunable filter, used as a diffraction order sorter.
- Published
- 2015
- Full Text
- View/download PDF
21. Improved calibration of SOIR/Venus Express spectra.
- Author
-
Vandaele AC, Mahieux A, Robert S, Berkenbosch S, Clairquin R, Drummond R, Letocart V, Neefs E, Ristic B, Wilquet V, Colomer F, Belyaev D, and Bertaux JL
- Abstract
The SOIR instrument on board the ESA Venus Express mission has been operational since the insertion of the satellite around Venus in April 2006. Since then, it has delivered high quality IR solar occultation spectra of the atmosphere of Venus. The different steps from raw spectra to archived data are described and explained in detail here. These consist of corrections for the dark current and for the non-linearity of the detector; removing bad pixels, as well as deriving noise. The spectral calibration procedure is described, along with all ancillary data necessary for the understanding and interpretation of the SOIR data. These include the full characterization of the AOTF filter, one of the major elements of the instrument. All these data can be found in the ESA PSA archive.
- Published
- 2013
- Full Text
- View/download PDF
22. In-flight performance and calibration of SPICAV SOIR onboard Venus Express.
- Author
-
Mahieux A, Berkenbosch S, Clairquin R, Fussen D, Mateshvili N, Neefs E, Nevejans D, Ristic B, Vandaele AC, Wilquet V, Belyaev D, Fedorova A, Korablev O, Villard E, Montmessin F, and Bertaux JL
- Abstract
Solar occultation in the infrared, part of the Spectoscopy for Investigation of Characteristics of the Atmosphere of Venus (SPICAV) instrument onboard Venus Express, combines an echelle grating spectrometer with an acousto-optic tunable filter (AOTF). It performs solar occultation measurements in the IR region at high spectral resolution. The wavelength range probed allows a detailed chemical inventory of Venus's atmosphere above the cloud layer, highlighting the vertical distribution of gases. A general description of the instrument and its in-flight performance is given. Different calibrations and data corrections are investigated, in particular the dark current and thermal background, the nonlinearity and pixel-to-pixel variability of the detector, the sensitivity of the instrument, the AOTF properties, and the spectral calibration and resolution.
- Published
- 2008
- Full Text
- View/download PDF
23. Compact high-resolution spaceborne echelle grating spectrometer with acousto-optical tunable filter based order sorting for the infrared domain from 2.2 to 4.3 microm.
- Author
-
Nevejans D, Neefs E, Van Ransbeeck E, Berkenbosch S, Clairquin R, De Vos L, Moelans W, Glorieux S, Baeke A, Korablev O, Vinogradov I, Kalinnikov Y, Bach B, Dubois JP, and Villard E
- Abstract
A new compact spaceborne high-resolution spectrometer developed for the European Space Agency's Venus Express spacecraft is described. It operates in the IR wavelength range of 2.2 to 4.3 microm and measures absorption spectra of minor constituents in the Venusian atmosphere. It uses a novel echelle grating with a groove density of 4 lines/mm in a Littrow configuration in combination with an IR acousto-optic tunable filter for order sorting and an actively cooled HgCdTe focal plane array of 256 by 320 pixels. It is designed to obtain an instrument line profile of 0.2 cm(-1). First results on optical and spectral properties are reported.
- Published
- 2006
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.