3 results on '"Clos-García M"'
Search Results
2. The outcome of boosting mitochondrial activity in alcohol-associated liver disease is organ-dependent.
- Author
-
Goikoetxea-Usandizaga N, Bravo M, Egia-Mendikute L, Abecia L, Serrano-Maciá M, Urdinguio RG, Clos-García M, Rodríguez-Agudo R, Araujo-Legido R, López-Bermudo L, Delgado TC, Lachiondo-Ortega S, González-Recio I, Gil-Pitarch C, Peña-Cearra A, Simón J, Benedé-Ubieto R, Ariño S, Herranz JM, Azkargorta M, Salazar-Bermeo J, Martí N, Varela-Rey M, Falcón-Pérez JM, Lorenzo Ó, Nogueiras R, Elortza F, Nevzorova YA, Cubero FJ, Saura D, Martínez-Cruz LA, Sabio G, Palazón A, Sancho-Bru P, Elguezabal N, Fraga MF, Ávila MA, Bataller R, Marín JJG, Martín F, and Martínez-Chantar ML
- Subjects
- Animals, Mice, Mice, Inbred C57BL, Liver metabolism, Ethanol adverse effects, Mitochondria metabolism, Molecular Chaperones metabolism, Mitochondrial Proteins metabolism, Liver Diseases, Alcoholic metabolism
- Abstract
Background and Aims: Alcohol-associated liver disease (ALD) accounts for 70% of liver-related deaths in Europe, with no effective approved therapies. Although mitochondrial dysfunction is one of the earliest manifestations of alcohol-induced injury, restoring mitochondrial activity remains a problematic strategy due to oxidative stress. Here, we identify methylation-controlled J protein (MCJ) as a mediator for ALD progression and hypothesize that targeting MCJ may help in recovering mitochondrial fitness without collateral oxidative damage., Approach and Results: C57BL/6 mice [wild-type (Wt)] Mcj knockout and Mcj liver-specific silencing (MCJ-LSS) underwent the NIAAA dietary protocol (Lieber-DeCarli diet containing 5% (vol/vol) ethanol for 10 days, plus a single binge ethanol feeding at day 11). To evaluate the impact of a restored mitochondrial activity in ALD, the liver, gut, and pancreas were characterized, focusing on lipid metabolism, glucose homeostasis, intestinal permeability, and microbiota composition. MCJ, a protein acting as an endogenous negative regulator of mitochondrial respiration, is downregulated in the early stages of ALD and increases with the severity of the disease. Whole-body deficiency of MCJ is detrimental during ALD because it exacerbates the systemic effects of alcohol abuse through altered intestinal permeability, increased endotoxemia, and dysregulation of pancreatic function, which overall worsens liver injury. On the other hand, liver-specific Mcj silencing prevents main ALD hallmarks, that is, mitochondrial dysfunction, steatosis, inflammation, and oxidative stress, as it restores the NAD + /NADH ratio and SIRT1 function, hence preventing de novo lipogenesis and improving lipid oxidation., Conclusions: Improving mitochondrial respiration by liver-specific Mcj silencing might become a novel therapeutic approach for treating ALD., (Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc.)
- Published
- 2023
- Full Text
- View/download PDF
3. microRNA-based signatures obtained from endometrial fluid identify implantative endometrium.
- Author
-
Ibañez-Perez J, Díaz-Nuñez M, Clos-García M, Lainz L, Iglesias M, Díez-Zapirain M, Rabanal A, Bárcena L, González M, Lozano JJ, Marigorta UM, González E, Royo F, Aransay AM, Subiran N, Matorras R, and Falcón-Pérez JM
- Subjects
- Biomarkers, Female, Humans, Polymers, Pregnancy, Prospective Studies, Transforming Growth Factors, Endometrium, MicroRNAs genetics
- Abstract
Study Question: Is it possible to use free and extracellular vesicle-associated microRNAs (miRNAs) from human endometrial fluid (EF) samples as non-invasive biomarkers for implantative endometrium?, Summary Answer: The free and extracellular vesicle-associated miRNAs can be used to detect implantative endometrium in a non-invasive manner., What Is Known Already: miRNAs and extracellular vesicles (EVs) from EF have been described as mediators of the embryo-endometrium crosstalk. Therefore, the analysis of miRNA from this fluid could become a non-invasive technique for recognizing implantative endometrium. This analysis could potentially help improve the implantation rates in ART., Study Design, Size, Duration: In this prospective study, we first optimized different protocols for EVs and miRNA analyses using the EF of a setup cohort (n = 72). Then, we examined differentially expressed miRNAs in the EF of women with successful embryo implantation (discovery cohort n = 15/validation cohort n = 30) in comparison with those for whom the implantation had failed (discovery cohort n = 15/validation cohort n = 30). Successful embryo implantation was considered when pregnancy was confirmed by vaginal ultrasound showing a gestational sac 4 weeks after embryo transfer (ET)., Participants/materials, Setting, Methods: The EF of the setup cohort was obtained before starting fertility treatment during the natural cycle, 16-21 days after the beginning of menstruation. For the discovery and validation cohorts, the EF was collected from women undergoing frozen ET on Day 5, and the samples were collected immediately before ET. In this study, we compared five different methods; two of them based on direct extraction of RNA and the other three with an EV enrichment step before the RNA extraction. Small RNA sequencing was performed to determine the most efficient method and find a predictive model differentiating between implantative and non-implantative endometrium. The models were confirmed using quantitative PCR in two sets of samples (discovery and validation cohorts) with different implantation outcomes., Main Results and the Role of Chance: The protocols using EV enrichment detected more miRNAs than the methods based on direct RNA extraction. The two most efficient protocols (using polymer-based precipitation (PBP): PBP-M and PBP-N) were used to obtain two predictive models (based on three miRNAs) allowing us to distinguish between an implantative and non-implantative endometrium. The first Model 1 (PBP-M) (discovery: AUC = 0.93; P-value = 0.003; validation: AUC = 0.69; P-value = 0.019) used hsa-miR-200b-3p, hsa-miR-24-3p and hsa-miR-148b-3p. Model 2 (PBP-N) (discovery: AUC = 0.92; P-value = 0.0002; validation: AUC = 0.78; P-value = 0.0002) used hsa-miR-200b-3p, hsa-miR-24-3p and hsa-miR-99b-5p. Functional analysis of these miRNAs showed strong association with key implantation processes such as in utero embryonic development or transforming growth factor-beta signaling., Large Scale Data: The FASTQ data are available in the GEO database (access number GSE178917)., Limitations, Reasons for Caution: One important factor to consider is the inherent variability among the women involved in the trial and among the transferred embryos. The embryos were pre-selected based on morphology, but neither genetic nor molecular studies were conducted, which would have improved the accuracy of our tests. In addition, a limitation in miRNA library construction is the low amount of input RNA., Wider Implications of the Findings: We describe new non-invasive protocols to analyze miRNAs from small volumes of EF. These protocols could be implemented in clinical practice to assess the status of the endometrium before attempting ET. Such evaluation could help to avoid the loss of embryos transferred to a non-implantative endometrium., Study Funding/competing Interest(s): J.I.-P. was supported by a predoctoral grant from the Basque Government (PRE_2017_0204). This study was partially funded by the Grant for Fertility Innovation (GFI, 2011) from Merck (Darmstadt, Germany). It was also supported by the Spanish Ministry of Economy and Competitiveness MINECO within the National Plan RTI2018-094969-B-I00, the European Union's Horizon 2020 research and innovation program (860303), the Severo Ochoa Centre of Excellence Innovative Research Grant (SEV-2016-0644) and the Instituto de Salud Carlos III (PI20/01131). The funding entities did not play any role in the study design, collection, analysis and interpretation of data, writing of the report or the decision to submit the article for publication. The authors declare no competing interests., (© The Author(s) 2022. Published by Oxford University Press on behalf of European Society of Human Reproduction and Embryology.)
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.