6 results on '"Cochand F"'
Search Results
2. Dynamiques du stockage en eau souterraine et du régime hydrologique des bassins versants Alpins face aux changements climatiques
- Author
-
Arnoux, A., Hunkeler, D., Cochand, F., Brunner, P., and Schaefli, B.
- Subjects
910 Geography & travel - Abstract
Le changement climatique aura un impact particulièrement fort sur le bilan hydrique des régions alpines. L'augmentation de la température entraîne un recul des glaciers, la proportion des précipitations qui tombent en forme de neige diminue, et la fonte des neiges se produit plus tôt dans l'année. Ces changements peuvent entraîner une diminution des débits des cours d’eau en été et en automne et éventuellement des pénuries d'eau régionales. La façon dont le régime hydrologique des bassins versants alpins changent dépend de la quantité d'eau de fonte et de précipitation qui est temporairement stockée sous forme d'eau souterraine. Dans une certaine mesure, le stockage souterrain de l'eau pourrait compenser la diminution du stockage sous forme de neige et de glace. Cependant, on en sait relativement peu à ce jour sur le fonctionnement hydrogéologique des zones alpines. Le projet poursuivait deux objectifs. D'une part, nous avons étudié la relation entre les caractéristiques géologiques des bassins, le stockage des eaux souterraines et l’écoulement de surface dans les conditions actuelles. D'autre part, nous avons étudié comment le changement climatique pourrait affecter la dynamique des eaux souterraines et des cours d'eau, en mettant l'accent sur les périodes d’étiages estivales. En particulier, nous avons cherché à savoir si les bassins versants comportant des réservoirs d'eaux souterraines plus importants vont subir moins de changement de leur régime hydrologique. Les recherches se sont concentrées sur les petits bassins versants des hautes Alpes dont le bilan hydrique est dominé par la neige et pour lesquels on dispose principalement de données pluriannuelles pour les cours d’eau. Les recherches sur l'influence de la géologie ont montré que les débits d’étiages augmentent avec l'augmentation de la surface des sédiments non consolidés et sont également influencés dans une moindre mesure par les roches solides à plus forte perméabilité. De vastes dépôts de roche meuble favorisent probablement l'infiltration. Ils peuvent stocker des quantités importantes d'eau et compenser partiellement les déficits saisonniers. Le stockage saisonnier des eaux souterraines dans de tels formations géologiques a été confirmé par des mesures gravimétriques et isotopiques dans un bassin versant de recherche. Nous avons étudié l'effet du changement climatique sur la dynamique des eaux souterraines et les débits des cours d’eau en couplant les modèles climatiques et les modèles hydro(géo)logiques. Pour un bassin de recherche, un modèle a été utilisé qui simule de manière couplée les processus des eaux souterraines et des eaux de surface. Pour les autres bassins versants, un modèle hydrologique conceptuel a été utilisé. Les simulations ont montré qu'en raison de la fonte des neiges plus précoce, la quantité d'eau souterraine stockée et le les débits des cours d’eaux auront tendance à être plus faibles à la fin de l'été/début de l'automne. Toutefois, la diminution relative du volume des eaux souterraines est bien moindre que pour les débits des cours d’eaux. Dans un avenir lointain, le débit des cours d’eaux minimal se déplacera de l'hiver vers les mois d'été. Toutefois, le débit minimal futur en été/automne reste supérieur au minimum actuel en hiver. En outre, les bassins versants présentant des formations géologiques étendues avec une bonne capacité de stockage de l'eau présentent un débit minimal plus élevé. Cela illustre les effets d'équilibrage des processus liés aux eaux souterraines. Le projet montre que les processus hydrogéologiques jouent un rôle important dans la régulation du bilan hydrique des bassins versants alpins, en particulier dans le contexte du changement climatique. En fonction des conditions géologiques, il est possible d'estimer comment les bassins versants pourraient réagir à une fonte des neiges plus précoce et à des périodes de sécheresse estivales. Les débits d’étiages actuels en hiver fournissent également des informations importantes sur l’importance réservoirs d'eaux souterraines dans un bassin versant et leur capabilité de stocker et libérer de l’eau sur une échelle de temps de plusieurs mois. À ce jour, cependant, il n'existe que quelques sites de surveillance dans la région alpine où la dynamique des réservoirs d'eaux souterraines peut être observée directement, ce qui a entraîné des incertitudes dans le projet actuel. En outre, les données sur les précipitations dans la région alpine présentent également de grandes incertitudes. Compte tenu des grands changements attendus, la base de données pour les zones alpines devrait être améliorée.
- Published
- 2020
3. Soil and unsaturated zone as a long-term source for pesticide metabolites in groundwater.
- Author
-
Hintze S, Cochand F, Glauser G, and Hunkeler D
- Subjects
- Environmental Monitoring, Herbicides analysis, Groundwater chemistry, Soil chemistry, Water Pollutants, Chemical analysis, Pesticides analysis
- Abstract
Pesticide metabolites are frequently detected in groundwater, often exceeding the concentrations of their parent pesticides. Ceasing the application of certain pesticides has often not led to the expected decrease in metabolite concentrations in groundwater, which is potentially caused by residues in soil. Whereas pesticide residues in soils are well-documented, there are only few studies about metabolite residues. We investigated if the soil/unsaturated zone can act as a long-term source for metabolites in groundwater by combining soil analysis, groundwater analysis and numerical modelling. The field study focused on the herbicide chloridazon (CLZ) and its frequently detected metabolites desphenyl-chloridazon (DPC) and methyl-desphenyl-chloridazon (MDPC) while in the model additional pesticides and metabolites were considered. In soil samples from an agricultural area, where the last CLZ application was 5 to 10 years ago, we observed 10 times (DPC: 0.22 - 7.4 µg kg
-1 ) and 6 times (MDPC: 0.12 - 3.1 µg kg-1 ) higher metabolite concentrations compared to CLZ (< 0.050 - 1.0 µg kg-1 ). Calculations suggested that the majority of the metabolites (DPC: 63 - 96%, MDPC: 74 - 97%) were sorbed despite their lower sorption tendency. The metabolite retention was in particular related to the organic carbon content. The calculated pore water concentrations were highest in the deepest part of the soil profile (75 - 100 cm) with median concentrations of 3.6 and 1.7 µg L-1 for DPC and MDPC, respectively. The groundwater concentrations of DPC and MDPC were 3 to 3.5 times higher in monitoring wells downgradient from the agricultural zone than upgradient of it. This increase highlights the potential of soil and unsaturated zone as a long-term metabolite source after the application stop of pesticides, consistent with the calculated elevated pore water concentrations. Numerical flow and transport model simulations suggested that this input from soil and unsaturated zone can cause elevated metabolite concentrations (> 0.1 µg L-1 ) in groundwater over more than one decade. The study highlights that soil and unsaturated zone can act as a long-term source of pesticide metabolites even if they have much higher mobility than the parent compound., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Daniel Hunkeler reports financial support was provided by Federal Office for the Environment. Daniel Hunkeler reports financial support was provided by Swiss Gas and Water Industry Association (SGWA). Daniel Hunkeler reports financial support was provided by Canton of Zürich., (Copyright © 2024. Published by Elsevier Ltd.)- Published
- 2024
- Full Text
- View/download PDF
4. Exploring Geological and Topographical Controls on Low Flows with Hydrogeological Models.
- Author
-
Carlier C, Wirth SB, Cochand F, Hunkeler D, and Brunner P
- Subjects
- Geological Phenomena, Hydrology, Models, Theoretical, Rivers, Geology, Groundwater
- Abstract
This study investigates how catchment properties influence low-flow dynamics. With 496 synthetic models composed of a bedrock and an alluvial aquifer, we systematically assess the impact of the hydraulic conductivity of both lithologies, of the hillslope and of the river slope on catchment dynamics. The physically based hydrogeological simulator HydroGeoSphere is employed, which allows obtaining a range of low-flow indicators. The hydraulic conductivity of the bedrock K
bedrock , a proxy for transmissivity, is the only catchment property exerting an overall control on low flows and explains 60% of the variance of Q95/Q50. The difference in dynamics of catchments with same Kbedrock depends on hillslope gradients and the alluvial aquifer properties. The buffering capacity of the bedrock is mainly related to Kbedrock and the hillslope gradient. We thus propose the dimensionless bedrock productivity index (BPI) that combines these characteristics with the mean net precipitation. For bedrock only models, the BPI explains 82% of the variance of the ratio of Q95 to mean net precipitation. The alluvial aquifer can significantly influence low flows when the bedrock productivity is limited. Although our synthetic catchment setup is simple, it is far more complex than the available analytical approaches or conceptual hydrological models. The direct application of the results to existing catchments requires nevertheless careful consideration of the local geological topographic and climatic conditions. This study provides quantitative insight into the complex interrelations between geology, topography and low-flow dynamics and challenges previous studies which neglect or oversimplify geological characteristics in the assessment of low flows., (© 2018, National Ground Water Association.)- Published
- 2019
- Full Text
- View/download PDF
5. Integrated Hydrological Modeling of Climate Change Impacts in a Snow-Influenced Catchment.
- Author
-
Cochand F, Therrien R, and Lemieux JM
- Subjects
- Canada, Climate Change, Hydrology, Groundwater, Snow
- Abstract
The potential impact of climate change on water resources has been intensively studied for different regions and climates across the world. In regions where winter processes such as snowfall and melting play a significant role, anticipated changes in temperature might significantly affect hydrological systems. To address this impact, modifications have been made to the fully integrated surface-subsurface flow model HydroGeoSphere (HGS) to allow the simulation of snow accumulation and melting. The modified HGS model was used to assess the potential impact of climate change on surface and subsurface flow in the Saint-Charles River catchment, Quebec (Canada) for the period 2070 to 2100. The model was first developed and calibrated to reproduce observed streamflow and hydraulic heads for current climate conditions. The calibrated model was then used with three different climate scenarios to simulate surface flow and groundwater dynamics for the 2070 to 2100 period. Winter stream discharges are predicted to increase by about 80, 120, and 150% for the three scenarios due to warmer winters, leading to more liquid precipitation and more snowmelt. Conversely, the summer stream discharges are predicted to fall by about 10, 15, and 20% due to an increase in evapotranspiration. However, the annual mean stream discharge should remain stable (±0.1 m
3 /s). The predicted increase in hydraulic heads in winter may reach 15 m and the maximum decrease in summer may reach 3 m. Simulations show that winter processes play a key role in the seasonal modifications anticipated for surface and subsurface flow dynamics., (© 2018, National Ground Water Association.)- Published
- 2019
- Full Text
- View/download PDF
6. Channel representation in physically based models coupling groundwater and surface water: pitfalls and how to avoid them.
- Author
-
Käser D, Graf T, Cochand F, McLaren R, Therrien R, and Brunner P
- Subjects
- Groundwater analysis, Models, Theoretical, Rivers, Water Movements
- Abstract
Recent models that couple three-dimensional subsurface flow with two-dimensional overland flow are valuable tools for quantifying complex groundwater/stream interactions and for evaluating their influence on watershed processes. For the modeler who is used to defining streams as a boundary condition, the representation of channels in integrated models raises a number of conceptual and technical issues. These models are far more sensitive to channel topography than conventional groundwater models. On all spatial scales, both the topography of a channel and its connection with the floodplain are important. For example, the geometry of river banks influences bank storage and overbank flooding; the slope of the river is a primary control on the behavior of a catchment; and at the finer scale bedform characteristics affect hyporheic exchange. Accurate data on streambed topography, however, are seldom available, and the spatial resolution of digital elevation models is typically too coarse in river environments, resulting in unrealistic or undulating streambeds. Modelers therefore perform some kind of manual yet often cumbersome correction to the available topography. In this context, the paper identifies some common pitfalls, and provides guidance to overcome these. Both aspects of topographic representation and mesh discretization are addressed. Additionally, two tutorials are provided to illustrate: (1) the interpolation of channel cross-sectional data and (2) the refinement of a mesh along a stream in areas of high topographic variability., (© 2014, National Ground Water Association.)
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.