176 results on '"Codron, Francis"'
Search Results
2. The Extraordinary March 2022 East Antarctica âHeatâ Wave. Part II: Impacts on the Antarctic Ice Sheet
- Author
-
Wille, Jonathan D, Alexander, Simon P, Amory, Charles, Baiman, Rebecca, Barthélemy, Léonard, Bergstrom, Dana M, Berne, Alexis, Binder, Hanin, Blanchet, Juliette, Bozkurt, Deniz, Bracegirdle, Thomas J, Casado, Mathieu, Choi, Taejin, Clem, Kyle R, Codron, Francis, Datta, Rajashree, Battista, Stefano D, Favier, Vincent, Francis, Diana, Fraser, Alexander D, Fourré, Elise, Garreaud, René D, Genthon, Christophe, Gorodetskaya, Irina V, González-Herrero, Sergi, Heinrich, Victoria J, Hubert, Guillaume, Joos, Hanna, Kim, Seong-Joong, King, John C, Kittel, Christoph, Landais, Amaelle, Lazzara, Matthew, Leonard, Gregory H, Lieser, Jan L, Maclennan, Michelle, Mikolajczyk, David, Neff, Peter, Ollivier, Inès, Picard, Ghislain, Pohl, Benjamin, Ralph, F. Martin, Rowe, Penny, Schlosser, Elisabeth, Shields, Christine A, Smith, Inga J, Sprenger, Michael, Trusel, Luke, Udy, Danielle, Vance, Tessa, Vignon, Étienne, Walker, Catherine, Wever, Nander, and Zou, Xun
- Published
- 2024
3. Atmospheric forcing dominates winter Barents-Kara sea ice variability on interannual to decadal time scales
- Author
-
Liu, Zhongfang, Risi, Camille, Codron, Francis, Jian, Zhimin, Wei, Zhongwang, He, Xiaogang, Poulsen, Christopher J., Wang, Yue, Chen, Dong, Ma, Wentao, Cheng, Yanyan, and Bowen, Gabriel J.
- Published
- 2022
4. Transient Climate Response to Arctic Sea Ice Loss with Two Ice-Constraining Methods
- Author
-
Simon, Amélie, Gastineau, Guillaume, Frankignoul, Claude, Rousset, Clément, and Codron, Francis
- Published
- 2021
5. Intense atmospheric rivers can weaken ice shelf stability at the Antarctic Peninsula
- Author
-
Wille, Jonathan D., Favier, Vincent, Jourdain, Nicolas C., Kittel, Christoph, Turton, Jenny V., Agosta, Cécile, Gorodetskaya, Irina V., Picard, Ghislain, Codron, Francis, Santos, Christophe Leroy-Dos, Amory, Charles, Fettweis, Xavier, Blanchet, Juliette, Jomelli, Vincent, and Berchet, Antoine
- Published
- 2022
- Full Text
- View/download PDF
6. Future Atmospheric Rivers in Antarctica : intensity and impacts
- Author
-
Barthélemy, Léonard, primary, Codron, Francis, additional, Favier, Vincent, additional, and Wille, Jonathan, additional
- Published
- 2024
- Full Text
- View/download PDF
7. EXTRATROPICAL–TROPICAL INTERACTION MODEL INTERCOMPARISON PROJECT (ETIN-MIP) : Protocol and Initial Results
- Author
-
Kang, Sarah M., Hawcroft, Matt, Xiang, Baoqiang, Hwang, Yen-Ting, Cazes, Gabriel, Codron, Francis, Crueger, Traute, Deser, Clara, Hodnebrog, Øivind, Kim, Hanjun, Kim, Jiyeong, Kosaka, Yu, Losada, Teresa, Mechoso, Carlos R., Myhre, Gunnar, Seland, Øyvind, Stevens, Bjorn, Watanabe, Masahiro, and Yu, Sungduk
- Published
- 2019
8. AMOC and summer sea ice as key drivers of the spread in mid-holocene winter temperature patterns over Europe in PMIP3 models
- Author
-
Găinuşă-Bogdan, Alina, Swingedouw, Didier, Yiou, Pascal, Cattiaux, Julien, Codron, Francis, and Michel, Simon
- Published
- 2020
- Full Text
- View/download PDF
9. The Extraordinary March 2022 East Antarctica 'Heat' Wave. Part I: Observations and Meteorological Drivers
- Author
-
Wille, Jonathan D., Alexander, Simon P., Amory, Charles, Baiman, Rebecca, Barthélemy, Léonard, Bergstrom, Dana M., Berne, Alexis, Binder, Hanin, Blanchet, Juliette, Bozkurt, Deniz, Bracegirdle, Thomas J., Casado, Mathieu, Choi, Taejin, Clem, Kyle R., Codron, Francis, Datta, Rajashree, Di Battista, Stefano, Favier, Vincent, Francis, Diana, Fraser, Alexander D., Fourré, Elise, Garreaud, René D., Genthon, Christophe, Gorodetskaya, Irina V., González-Herrero, Sergi, Heinrich, Victoria J., Hubert, Guillaume, Joos, Hanna, Kim, Seong-Joong, King, John C., Kittel, Christoph, Landais, Amaelle, Lazzara, Matthew, Leonard, Gregory H., Lieser, Jan L., Maclennan, Michelle, Mikolajczyk, David, Neff, Peter, Ollivier, Inès, Sprenger, Michael, Trusel, Luke, Udy, Danielle, Vance, Tessa, Vignon, Étienne, Walker, Catherine, Weaver, Nander, Zou, Xun, Wille, Jonathan D., Alexander, Simon P., Amory, Charles, Baiman, Rebecca, Barthélemy, Léonard, Bergstrom, Dana M., Berne, Alexis, Binder, Hanin, Blanchet, Juliette, Bozkurt, Deniz, Bracegirdle, Thomas J., Casado, Mathieu, Choi, Taejin, Clem, Kyle R., Codron, Francis, Datta, Rajashree, Di Battista, Stefano, Favier, Vincent, Francis, Diana, Fraser, Alexander D., Fourré, Elise, Garreaud, René D., Genthon, Christophe, Gorodetskaya, Irina V., González-Herrero, Sergi, Heinrich, Victoria J., Hubert, Guillaume, Joos, Hanna, Kim, Seong-Joong, King, John C., Kittel, Christoph, Landais, Amaelle, Lazzara, Matthew, Leonard, Gregory H., Lieser, Jan L., Maclennan, Michelle, Mikolajczyk, David, Neff, Peter, Ollivier, Inès, Sprenger, Michael, Trusel, Luke, Udy, Danielle, Vance, Tessa, Vignon, Étienne, Walker, Catherine, Weaver, Nander, and Zou, Xun
- Abstract
Between 15 and 19 March 2022, East Antarctica experienced an exceptional heat wave with widespread 30°–40°C temperature anomalies across the ice sheet. This record-shattering event saw numerous monthly temperature records being broken including a new all-time temperature record of −9.4°C on 18 March at Concordia Station despite March typically being a transition month to the Antarctic coreless winter. The driver for these temperature extremes was an intense atmospheric river advecting subtropical/midlatitude heat and moisture deep into the Antarctic interior. The scope of the temperature records spurred a large, diverse collaborative effort to study the heat wave’s meteorological drivers, impacts, and historical climate context. Here we focus on describing those temperature records along with the intricate meteorological drivers that led to the most intense atmospheric river observed over East Antarctica. These efforts describe the Rossby wave activity forced from intense tropical convection over the Indian Ocean. This led to an atmospheric river and warm conveyor belt intensification near the coastline, which reinforced atmospheric blocking deep into East Antarctica. The resulting moisture flux and upper-level warm-air advection eroded the typical surface temperature inversions over the ice sheet. At the peak of the heat wave, an area of 3.3 million km2 in East Antarctica exceeded previous March monthly temperature records. Despite a temperature anomaly return time of about 100 years, a closer recurrence of such an event is possible under future climate projections. In Part II we describe the various impacts this extreme event had on the East Antarctic cryosphere.
- Published
- 2024
10. The Extraordinary March 2022 East Antarctica 'Heat' Wave. Part II: Impacts on the Antarctic Ice Sheet
- Author
-
Wille, Jonathan D., Alexander, Simon P., Amory, Charles, Baiman, Rebecca, Barthélemy, Léonard, Bergstrom, Dana M., Berne, Alexis, Binder, Hanin, Blanchet, Juliette, Bozkurt, Deniz, Bracegirdle, Thomas J., Casado, Mathieu, Choi, Taejin, Clem, Kyle R., Codron, Francis, Datta, Rajashree, Di Battista, Stefano, Favier, Vincent, Francis, Diana, Fraser, Alexander D., Fourré, Elise, Garreaud, René D., Genthon, Christophe, Gorodetskaya, Irina V., González-Herrero, Sergi, Heinrich, Victoria J., Hubert, Guillaume, Joos, Hanna, Kim, Seong-Joong, King, John C., Kittel, Christoph, Landais, Amaelle, Lazzara, Matthew, Leonard, Gregory H., Lieser, Jan L., Maclennan, Michelle, Mikolajczyk, David, Neff, Peter, Ollivier, Inès, Sprenger, Michael, Trusel, Luke, Udy, Danielle, Vance, Tessa, Vignon, Étienne, Walker, Catherine, Wever, Nander, Zou, Xun, Wille, Jonathan D., Alexander, Simon P., Amory, Charles, Baiman, Rebecca, Barthélemy, Léonard, Bergstrom, Dana M., Berne, Alexis, Binder, Hanin, Blanchet, Juliette, Bozkurt, Deniz, Bracegirdle, Thomas J., Casado, Mathieu, Choi, Taejin, Clem, Kyle R., Codron, Francis, Datta, Rajashree, Di Battista, Stefano, Favier, Vincent, Francis, Diana, Fraser, Alexander D., Fourré, Elise, Garreaud, René D., Genthon, Christophe, Gorodetskaya, Irina V., González-Herrero, Sergi, Heinrich, Victoria J., Hubert, Guillaume, Joos, Hanna, Kim, Seong-Joong, King, John C., Kittel, Christoph, Landais, Amaelle, Lazzara, Matthew, Leonard, Gregory H., Lieser, Jan L., Maclennan, Michelle, Mikolajczyk, David, Neff, Peter, Ollivier, Inès, Sprenger, Michael, Trusel, Luke, Udy, Danielle, Vance, Tessa, Vignon, Étienne, Walker, Catherine, Wever, Nander, and Zou, Xun
- Abstract
Between 15 and 19 March 2022, East Antarctica experienced an exceptional heat wave with widespread 30°–40°C temperature anomalies across the ice sheet. In Part I, we assessed the meteorological drivers that generated an intense atmospheric river (AR) that caused these record-shattering temperature anomalies. Here, we continue our large collaborative study by analyzing the widespread and diverse impacts driven by the AR landfall. These impacts included widespread rain and surface melt that was recorded along coastal areas, but this was outweighed by widespread high snowfall accumulations resulting in a largely positive surface mass balance contribution to the East Antarctic region. An analysis of the surface energy budget indicated that widespread downward longwave radiation anomalies caused by large cloud-liquid water contents along with some scattered solar radiation produced intense surface warming. Isotope measurements of the moisture were highly elevated, likely imprinting a strong signal for past climate reconstructions. The AR event attenuated cosmic ray measurements at Concordia, something previously never observed. Last, an extratropical cyclone west of the AR landfall likely triggered the final collapse of the critically unstable Conger Ice Shelf while further reducing an already record low sea ice extent.
- Published
- 2024
11. Impact of Anomalous Northward Oceanic Heat Transport on Global Climate in a Slab Ocean Setting
- Author
-
L’Hévéder, Blandine, Codron, Francis, and Ghil, Michael
- Subjects
Climate Action ,Atmospheric Sciences ,Oceanography ,Geomatic Engineering ,Meteorology & Atmospheric Sciences - Abstract
This paper explores the impact of anomalous northward oceanic heat transport on global climate in a slab ocean setting. To that end, the GCM LMDZ5A of the Laboratoire de Météorologie Dynamique is coupled to a slab ocean, with realistic zonal asymmetries and seasonal cycle. Two simulations with different anomalous surface heating are imposed: 1) uniform heating over the North Atlantic basin and 2) concentrated heating in the Gulf Stream region, with a compensating uniform cooling in the Southern Ocean in both cases. The magnitudes of the heating and of the implied northward interhemispheric heat transport are within the range of current natural variability. Both simulations show global effects that are particularly strong in the tropics, with a northward shift of the intertropical convergence zone (ITCZ) toward the heating anomalies. This shift is accompanied by a northward shift of the storm tracks in both hemispheres. From the comparison between the two simulations with different anomalous surface heating in the North Atlantic, it emerges that the global climate response is nearly insensitive to the spatial distribution of the heating. The cloud response acts as a large positive feedback on the oceanic forcing, mainly because of the low-cloud-induced shortwave anomalies in the extratropics. While previous literature has speculated that the extratropical Q flux may impact the tropics by the way of the transient eddy fluxes, it is explicitly demonstrated here. In the midlatitudes, the authors find a systematic northward shift of the jets, as well as of the associated Ferrel cells, storm tracks, and precipitation bands.
- Published
- 2015
12. Exploring the faint young Sun problem and the possible climates of the Archean Earth with a 3-D GCM
- Author
-
Charnay, Benjamin, Forget, François, Wordsworth, Robin, Leconte, Jérémy, Millour, Ehouarn, Codron, Francis, and Spiga, Aymeric
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
Different solutions have been proposed to solve the "faint young Sun problem", defined by the fact that the Earth was not fully frozen during the Archean despite the fainter Sun. Most previous studies were performed with simple 1-D radiative convective models and did not account well for the clouds and ice-albedo feedback or the atmospheric and oceanic transport of energy. We apply a global climate model (GCM) to test the different solutions to the faint young Sun problem. We explore the effect of greenhouse gases (CO2 and CH4), atmospheric pressure, cloud droplet size, land distribution, and Earth's rotation rate. We show that neglecting organic haze, 100 mbar of CO2 with 2 mbar of CH4 at 3.8 Ga and 10 mbar of CO2 with 2 mbar of CH4 at 2.5 Ga allow a temperate climate (mean surface temperature between 10{\deg}C and 20{\deg}C). Such amounts of greenhouse gases remain consistent with the geological data. Removing continents produces a warming lower than +4{\deg}C. The effect of rotation rate is even more limited. Larger droplets (radii of 17 microns versus 12 microns) and a doubling of the atmospheric pressure produce a similar warming of around +7{\deg}C. In our model, ice-free water belts can be maintained up to 25{\deg}N/S with less than 1 mbar of CO2 and no methane. An interesting cloud feedback appears above cold oceans, stopping the glaciation. Such a resistance against full glaciation tends to strongly mitigate the faint young Sun problem., Comment: Journal of Geophysical Research Atmosphere. Article published online 19 SEP 2013
- Published
- 2013
- Full Text
- View/download PDF
13. Acceleration of western Arctic sea ice loss linked to the Pacific North American pattern
- Author
-
Liu, Zhongfang, Risi, Camille, Codron, Francis, He, Xiaogang, Poulsen, Christopher J., Wei, Zhongwang, Chen, Dong, Li, Sha, and Bowen, Gabriel J.
- Published
- 2021
- Full Text
- View/download PDF
14. The extraordinary March 2022 East Antarctica “heat” wave. Part II: impacts on the Antarctic ice sheet
- Author
-
Wille, Jonathan D., primary, Alexander, Simon P., additional, Amory, Charles, additional, Baiman, Rebecca, additional, Barthélemy, Léonard, additional, Bergstrom, Dana M., additional, Berne, Alexis, additional, Binder, Hanin, additional, Blanchet, Juliette, additional, Bozkurt, Deniz, additional, Bracegirdle, Thomas J., additional, Casado, Mathieu, additional, Choi, Taejin, additional, Clem, Kyle R., additional, Codron, Francis, additional, Datta, Rajashree, additional, Battista, Stefano Di, additional, Favier, Vincent, additional, Francis, Diana, additional, Fraser, Alexander D., additional, Fourré, Elise, additional, Garreaud, René D., additional, Genthon, Christophe, additional, Gorodetskaya, Irina V., additional, González-Herrero, Sergi, additional, Heinrich, Victoria J., additional, Hubert, Guillaume, additional, Joos, Hanna, additional, Kim, Seong-Joong, additional, King, John C., additional, Kittel, Christoph, additional, Landais, Amaelle, additional, Lazzara, Matthew, additional, Leonard, Gregory H., additional, Lieser, Jan L., additional, Maclennan, Michelle, additional, Mikolajczyk, David, additional, Neff, Peter, additional, Ollivier, Inès, additional, Picard, Ghislain, additional, Pohl, Benjamin, additional, Ralph, Martin F., additional, Rowe, Penny, additional, Schlosser, Elisabeth, additional, Shields, Christine A., additional, Smith, Inga J., additional, Sprenger, Michael, additional, Trusel, Luke, additional, Udy, Danielle, additional, Vance, Tessa, additional, Vignon, Étienne, additional, Walker, Catherine, additional, Wever, Nander, additional, and Zou, Xun, additional
- Published
- 2023
- Full Text
- View/download PDF
15. The extraordinary March 2022 East Antarctica “heat” wave. Part I: observations and meteorological drivers
- Author
-
Wille, Jonathan D., primary, Alexander, Simon P., additional, Amory, Charles, additional, Baiman, Rebecca, additional, Barthélemy, Léonard, additional, Bergstrom, Dana M., additional, Berne, Alexis, additional, Binder, Hanin, additional, Blanchet, Juliette, additional, Bozkurt, Deniz, additional, Bracegirdle, Thomas J., additional, Casado, Mathieu, additional, Choi, Taejin, additional, Clem, Kyle R., additional, Codron, Francis, additional, Datta, Rajashree, additional, Battista, Stefano Di, additional, Favier, Vincent, additional, Francis, Diana, additional, Fraser, Alexander D., additional, Fourré, Elise, additional, Garreaud, René D., additional, Genthon, Christophe, additional, Gorodetskaya, Irina V., additional, González-Herrero, Sergi, additional, Heinrich, Victoria J., additional, Hubert, Guillaume, additional, Joos, Hanna, additional, Kim, Seong-Joong, additional, King, John C., additional, Kittel, Christoph, additional, Landais, Amaelle, additional, Lazzara, Matthew, additional, Leonard, Gregory H., additional, Lieser, Jan L., additional, Maclennan, Michelle, additional, Mikolajczyk, David, additional, Neff, Peter, additional, Ollivier, Inès, additional, Picard, Ghislain, additional, Pohl, Benjamin, additional, Ralph, Martin F., additional, Rowe, Penny, additional, Schlosser, Elisabeth, additional, Shields, Christine A., additional, Smith, Inga J., additional, Sprenger, Michael, additional, Trusel, Luke, additional, Udy, Danielle, additional, Vance, Tessa, additional, Vignon, Étienne, additional, Walker, Catherine, additional, Wever, Nander, additional, and Zou, Xun, additional
- Published
- 2023
- Full Text
- View/download PDF
16. West Antarctic surface melt triggered by atmospheric rivers
- Author
-
Wille, Jonathan D., Favier, Vincent, Dufour, Ambroise, Gorodetskaya, Irina V., Turner, John, Agosta, Cécile, and Codron, Francis
- Published
- 2019
- Full Text
- View/download PDF
17. Examining Atmospheric River Life Cycles in East Antarctica
- Author
-
Wille, Jonathan, primary, Pohl, Benjamin, additional, Favier, Vincent, additional, Winters, Andrew, additional, Baiman, Rebecca, additional, Cavallo, Steven, additional, Santos, Christophe Leroy-Dos, additional, Clem, Kyle R, additional, Udy, Danielle G, additional, Vance, Tessa Rosemary, additional, Gorodetskaya, Irina, additional, Codron, Francis, additional, and Berchet, Antoine, additional
- Published
- 2023
- Full Text
- View/download PDF
18. Historically-based run-time bias corrections substantially improve model projections of 100 years of future climate change
- Author
-
Krinner, Gerhard, Kharin, Viatcheslav, Roehrig, Romain, Scinocca, John, and Codron, Francis
- Published
- 2020
- Full Text
- View/download PDF
19. Examining Atmospheric River Life Cycles in East Antarctica.
- Author
-
Wille, Jonathan D., Pohl, Benjamin, Favier, Vincent, Winters, Andrew C., Baiman, Rebecca, Cavallo, Steven M., Leroy‐Dos Santos, Christophe, Clem, Kyle, Udy, Danielle G., Vance, Tessa R., Gorodetskaya, Irina, Codron, Francis, and Berchet, Antoine
- Subjects
ATMOSPHERIC rivers ,EXTREME weather ,WEATHER ,ICE sheets ,THUNDERSTORMS ,CYCLOGENESIS - Abstract
During atmospheric river (AR) landfalls on the Antarctic ice sheet, the high waviness of the circumpolar polar jet stream allows for subtropical air masses to be advected toward the Antarctic coastline. These rare but high‐impact AR events are highly consequential for the Antarctic mass balance; yet little is known about the various atmospheric dynamical components determining their life cycle. By using an AR detection algorithm to retrieve AR landfalls at Dumont d'Urville and non‐AR analogs based on 700 hPa geopotential height, we examined what makes AR landfalls unique and studied the complete life cycle of ARs reaching Dumont d'Urville. ARs form in the mid‐latitudes/subtropics in areas of high surface evaporation, likely in response to tropical deep convection anomalies. These convection anomalies likely lead to Rossby wave trains that help amplify the upper‐tropospheric flow pattern. As the AR approaches Antarctica, condensation of isentropically lifted moisture causes latent heat release that—in conjunction with poleward warm air advection—induces geopotential height rises and anticyclonic upper‐level potential vorticity tendencies downstream. As evidenced by a blocking index, these tendencies lead to enhanced ridging/blocking that persist beyond the AR landfall time, sustaining warm air advection onto the ice sheet. Finally, we demonstrate a connection between tropopause polar vortices and mid‐latitude cyclogenesis in an AR case study. Overall, the non‐AR analogs reveal that the amplified jet pattern observed during AR landfalls is a result of enhanced poleward moisture transport and associated diabatic heating which is likely impossible to replicate without strong moisture transport. Plain Language Summary: When the polar jet stream that surrounds Antarctica is highly wavy, air masses from the subtropics that are warm and humid are often transported over the ice sheet in the form of atmospheric rivers (ARs). When ARs reach Antarctica, they often bring extreme weather conditions that have large consequences for ice sheet snowfall and surface melt. Here we studied the full life cycle of ARs that reached Dumont d'Urville in East Antarctica and compared these ARs against events with similar profiles of atmospheric circulation. ARs typically form in areas of unusually high surface evaporation and thunderstorm convection in the subtropics. This convection sends Rossby waves toward the Antarctic coastline which help make the polar jet wavier. The amplitude of the polar jet is further enhanced when the moisture that accompanies the ARs condenses over the cooler seas around Antarctica and creates large latent heating. The higher amplitude of the polar jet often results in atmospheric blocks that transport further warm, moist air over the ice sheet even after the AR has made landfall and dissipated. Therefore, extreme weather events over Antarctica like ARs are sensitive to climate changes far from the continent over the subtropical regions. Key Points: Atmospheric rivers have lower‐latitude moisture sources than extratropical cyclones and are likely influenced by tropopause polar vorticesLarge latent heat release from atmospheric river related moisture transport leads to downstream anticyclonic potential vorticity tendenciesThe resultant diabatic heating helps maintain atmospheric blocking after an atmospheric river has dissipated [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
20. Climate response to Atlantic meridional energy transport variations
- Author
-
Jiang, Weimin, primary, Gastineau, Guillaume, additional, and Codron, Francis, additional
- Published
- 2023
- Full Text
- View/download PDF
21. Comparison between a non orographic gravity wave drag scheme and constant level balloons in the QBO region
- Author
-
Lott, Francois, primary, Rani, Raj, additional, Podglajen, Aurelien, additional, Codron, Francis, additional, Guez, Lionel, additional, Hertzog, Albert, additional, and Plougonven, Riwal, additional
- Published
- 2023
- Full Text
- View/download PDF
22. e-courses for masters: online fundamental semester for master on climate – related sciencedisciplines
- Author
-
Fournel, Estelle, Cardinal, Damien, Gastineau, Sylvie, Petetin, Carole, Zhu, Zhiwei, Pons-Branchu, Edwige, Gastineau, Guillaume, Codron, Francis, Nguyen Tu, Thanh Thuy, Daux, Valérie, Picon, Laurence, Turquety, Solène, Brogniez, Hélène, Le Treut, Hervé, Coll, Isabelle, Mostefaoui, Mounia, Oudin, Ludovic, Durand, Véronique, Cardon, Catherine, Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Cycles biogéochimiques marins : processus et perturbations (CYBIOM), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Océan et variabilité du climat (VARCLIM), Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les Sols (METIS), École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), SPACE - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Géosciences Paris Saclay (GEOPS), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,[PHYS.PHYS.PHYS-AO-PH] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] - Abstract
International audience; The Climate Graduate School of the Institut Pierre-Simon Laplace (CGS-IPSL) iscurrently developing a series of seven courses online for Master students. On these sevencourses of 3 ECTS each, three have a strong focus on the ocean: Dynamics of the Ocean andAtmosphere; Contemporary Biogeochemical Cycles; Study of Paleo-climates. Each course is ledby a pair of university teachers specialists in their field accompanied by a pedagogical andgraphic team in order to design all resources specifically adapted to graduate students andonline education. Indeed, our first goal is to open these courses as self-paced learning underthe IPSL Learning Management System (Moodle) to students who will be joining CGS-IPSLmasters without having all the prerequisites so that they can update their academicbackground. These courses could also be open to second year CGS IPSL Master students whoaimed at acquiring credits on a secondary theme not necessarily developed in their master (e.g.on biogeochemistry for students registered in an ocean – climate master). Finally all the e-resources developed will be made available at least to the educational community of the CGS-IPSL that include several Universities in and around Paris (Sorbonne Universite, Paris Saclay,Universite Versailles Saint Quentin, Université Paris Est Créteil...) in order to reuse theseresources for higher education either on-line or face-to-face courses. The courses will beavailable in both French and English so that international students can have access to these e-resources.
- Published
- 2023
23. The partitioning of poleward energy transport response between the atmosphere and Ekman flux to prescribed surface forcing in a simplified GCM
- Author
-
Kang, Sarah M., Shin, Yechul, and Codron, Francis
- Published
- 2018
- Full Text
- View/download PDF
24. Atmospheric Circulations Induced by a Midlatitude SST Front : A GCM Study
- Author
-
Brachet, Sidonie, Codron, Francis, Feliks, Yizhak, Ghil, Michael, Le Treut, Hervé, and Simonnet, Eric
- Published
- 2012
25. Differing Impacts of Resolution Changes in Latitude and Longitude on the Midlatitudes in the LMDZ Atmospheric GCM
- Author
-
Guemas, Virginie and Codron, Francis
- Published
- 2011
26. Presentation and Evaluation of the IPSL-CM6A-LR Climate Model
- Author
-
Boucher, Olivier, Servonnat, Jérôme, Albright, Anna Lea, Aumont, Olivier, Balkanski, Yves, Bastrikov, Vladislav, Bekki, Slimane, Bonnet, Rémy, Bony, Sandrine, Bopp, Laurent, Braconnot, Pascale, Brockmann, Patrick, Cadule, Patricia, Caubel, Arnaud, Cheruy, Frédérique, Codron, Francis, Cozic, Anne, Cugnet, David, d'Andrea, Fabio, Davini, Paolo, de Lavergne, Casimir, Denvil, Sébastien, Deshayes, Julie, Devilliers, Marion, Ducharne, Agnès, Dufresne, Jean-Louis, Dupont, Eliott, Éthé, Christian, Fairhead, Laurent, Falletti, Lola, Flavoni, Simona, Foujols, Marie-Alice, Gardoll, Sébastien, Gastineau, Guillaume, Ghattas, Josefine, Grandpeix, Jean-Yves, Guenet, Bertrand, Guez, Lionel, Guilyardi, Éric, Guimberteau, Matthieu, Hauglustaine, Didier, Hourdin, Frédéric, Idelkadi, Abderrahmane, Joussaume, Sylvie, Kageyama, Masa, Khodri, Myriam, Krinner, Gerhard, Lebas, Nicolas, Levavasseur, Guillaume, Lévy, Claire, Li, Laurent, Lott, François, Lurton, Thibaut, Luyssaert, Sebastiaan, Madec, Gurvan, Madeleine, Jean-Baptiste, Maignan, Fabienne, Marchand, Marion, Marti, Olivier, Mellul, Lidia, Meurdesoif, Yann, Mignot, Juliette, Musat, Ionela, Ottle, Catherine, Peylin, Philippe, Planton, Yann, Polcher, Jan, Rio, Catherine, Rochetin, Nicolas, rousset, clement, Rousset, Clément, Sepulchre, Pierre, Sima, Adriana, Swingedouw, Didier, Thiéblemont, Rémi, Traore, Abdoul Khadre, Vancoppenolle, Martin, Vial, Jessica, Vialard, Jérôme, Viovy, Nicolas, Vuichard, Nicolas, Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Modelling the Earth Response to Multiple Anthropogenic Interactions and Dynamics (MERMAID), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Nucleus for European Modeling of the Ocean (NEMO R&D ), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), STRATO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Modélisation du climat (CLIM), Calcul Scientifique (CALCULS), Océan et variabilité du climat (VARCLIM), Istituto di Scienze dell'Atmosfera e Del Clima [Torino] (isac), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Environnements et Paléoenvironnements OCéaniques (EPOC), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les Sols (METIS), École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Modélisation des Surfaces et Interfaces Continentales (MOSAIC), Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), University of Amsterdam [Amsterdam] (UvA), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Bureau de Recherches Géologiques et Minières (BRGM) (BRGM), ANR-17-EURE-0006,IPSL-CGS,IPSL Climate graduate school(2017), ANR-15-JCLI-0004,GOTHAM,Globally Observed Teleconnections and their role and representation in Hierarchies of Atmospheric Models(2015), ANR-18-CE01-0012,ARiSE,Rôle de la non-linéarité de la réponse atmosphérique à la température de l'océan dans la physique d'ENSO (El Niño Oscillation Australe)(2018), ANR-13-MONU-0008,CONVERGENCE,Convergence en Science du Climat à l'ère du Big Data et des challenges de l'Exascale.(2013), ANR-18-MPGA-0001,ARCHANGE,Changement climatique et Arctique et circulation océanique globale(2018), European Project: 641816,H2020,H2020-SC5-2014-two-stage,CRESCENDO(2015), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris)-École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Sorbonne Université (SU), École normale supérieure - Paris (ENS Paris)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), École normale supérieure - Paris (ENS Paris), Consiglio Nazionale delle Ricerche (CNR), UMR 5805 Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-École pratique des hautes études (EPHE)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Univers et Particules de Montpellier (LUPM), Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), MOSAIC (MOSAIC), Institut FRESNEL (FRESNEL), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Météo France, Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE), École pratique des hautes études (EPHE), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), and Systems Ecology
- Subjects
010504 meteorology & atmospheric sciences ,[SDE.MCG]Environmental Sciences/Global Changes ,010502 geochemistry & geophysics ,climate model ,IPSL‐CM6A‐LR ,01 natural sciences ,Carbon cycle ,lcsh:Oceanography ,climate metrics ,Range (statistics) ,SDG 13 - Climate Action ,Environmental Chemistry ,lcsh:GC1-1581 ,Precipitation ,lcsh:Physical geography ,ComputingMilieux_MISCELLANEOUS ,CMIP6 ,0105 earth and related environmental sciences ,[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Global and Planetary Change ,Coupled model intercomparison project ,Intertropical Convergence Zone ,13. Climate action ,[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology ,Climatology ,Middle latitudes ,General Earth and Planetary Sciences ,Environmental science ,Climate sensitivity ,climate sensitivity ,Climate model ,lcsh:GB3-5030 ,IPSL-CM6A-LR - Abstract
International audience This study presents the global climate model IPSL-CM6A-LR developed at Institut Pierre-Simon Laplace (IPSL) to study natural climate variability and climate response to natural and anthropogenic forcings as part of the sixth phase of the Coupled Model Intercomparison Project (CMIP6). This article describes the different model components, their coupling, and the simulated climate in comparison to previous model versions. We focus here on the representation of the physical climate along with the main characteristics of the global carbon cycle. The model's climatology, as assessed from a range of metrics (related in particular to radiation, temperature, precipitation, and wind), is strongly improved in comparison to previous model versions. Although they are reduced, a number of known biases and shortcomings (e.g., double Intertropical Convergence Zone [ITCZ], frequency of midlatitude wintertime blockings, and El Niño–Southern Oscillation [ENSO] dynamics) persist. The equilibrium climate sensitivity and transient climate response have both increased from the previous climate model IPSL-CM5A-LR used in CMIP5. A large ensemble of more than 30 members for the historical period (1850–2018) and a smaller ensemble for a range of emissions scenarios (until 2100 and 2300) are also presented and discussed.
- Published
- 2020
- Full Text
- View/download PDF
27. What dynamics drive future wind scenarios for coastal upwelling off Peru and Chile?
- Author
-
Belmadani, Ali, Echevin, Vincent, Codron, Francis, Takahashi, Ken, and Junquas, Clémentine
- Published
- 2014
- Full Text
- View/download PDF
28. Relation between Annular Modes and the Mean State : Southern Hemisphere Summer
- Author
-
Codron, Francis
- Published
- 2005
29. Les rivières atmosphériques de l'Antarctique
- Author
-
Favier, Vincent, primary, Wille, Jonathan, additional, Agosta, Cécile, additional, Amory, Charles, additional, Barthélémy, Léonard, additional, Codron, Francis, additional, Fourré, Élise, additional, Gorodetskaya, Irina, additional, Krinner, Gerhard, additional, and Pohl, Benjamin, additional
- Published
- 2022
- Full Text
- View/download PDF
30. Relationship Between Weather Regimes and Atmospheric Rivers in East Antarctica
- Author
-
Pohl, Benjamin, primary, Favier, Vincent, additional, Wille, Jonathan, additional, Udy, Danielle G, additional, Vance, Tessa R, additional, Pergaud, Julien, additional, Dutrievoz, Niels, additional, Blanchet, Juliette, additional, Kittel, Christoph, additional, Amory, Charles, additional, Krinner, Gerhard, additional, and Codron, Francis, additional
- Published
- 2021
- Full Text
- View/download PDF
31. Influence of Mean State Changes on the Structure of ENSO in a Tropical Coupled GCM
- Author
-
Codron, Francis, Vintzileos, Augustin, and Sadourny, Robert
- Published
- 2001
32. Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model
- Author
-
Hourdin, Frédéric, Foujols, Marie-Alice, Codron, Francis, Guemas, Virginie, Dufresne, Jean-Louis, Bony, Sandrine, Denvil, Sébastien, Guez, Lionel, Lott, François, Ghattas, Josefine, Braconnot, Pascale, Marti, Olivier, Meurdesoif, Yann, and Bopp, Laurent
- Published
- 2013
- Full Text
- View/download PDF
33. North-Atlantic dynamics and European temperature extremes in the IPSL model: sensitivity to atmospheric resolution
- Author
-
Cattiaux, Julien, Quesada, Benjamin, Arakélian, Ara, Codron, Francis, Vautard, Robert, and Yiou, Pascal
- Published
- 2013
- Full Text
- View/download PDF
34. The Atmospheric River Threat to Antarctic Peninsula Ice-Shelf Stability
- Author
-
Wille, Jonathan, primary, Favier, Vincent, additional, Jourdain, Nicolas, additional, Kittel, Christoph, additional, Turton, Jenny, additional, Agosta, Cecilie, additional, Gorodetskaya, Irina, additional, Picard, Ghislain, additional, Codron, Francis, additional, Amory, Charles, additional, Fettweis, Xavier, additional, Blanchet, Juliette, additional, and Jomelli, Vincent, additional
- Published
- 2021
- Full Text
- View/download PDF
35. Comment on the paper 'Characteristic time scales of decadal to centennial changes in global surface temperatures over the past 150 years ' by J.L. Le Mouël, F. Lopes and V. Courtillot First published: 14 October 2019 in Earth and Space Science
- Author
-
Cuypers, Yannis, Codron, Francis, Crépon, Michel, Processus et interactions de fine échelle océanique (PROTEO), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU), Océan et variabilité du climat (VARCLIM), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
Physics::Space Physics ,Astrophysics::Solar and Stellar Astrophysics ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] - Abstract
International audience; Based on Singular Spectral Analysis (SSA) analysis of global earth surface temperature and solar activity (sun spots) Le Mouël et al (2019) suggest that the variability in Earth surface temperature observed since 1850 is natural and controlled by the Sun. We we cannot agree with their conclusions for several reasons: the lack of compelling results from the Fourier spectra and SSA estimates which are provided without confidence intervals, the small radiative forcing associated with the sunspot variability and finally the simple evidence that the slowly varying components of the temperature and sunspots time show opposite trends in the last 30 years.
- Published
- 2021
- Full Text
- View/download PDF
36. Ekman heat transport for slab oceans
- Author
-
Codron, Francis
- Published
- 2012
- Full Text
- View/download PDF
37. Response to 'Comment on the Paper 'Characteristic Time Scales of Decadal to Centennial Changes in Global Surface Temperatures Over the Past 150 years' by J. L. Le Mouël, F. Lopes and V. Courtillot'
- Author
-
Cuypers, Yannis, Codron, Francis, Crépon, Michel, Processus et interactions de fine échelle océanique (PROTEO), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), and Océan et variabilité du climat (VARCLIM)
- Subjects
[SDU]Sciences of the Universe [physics] - Abstract
International audience; We thank the authors (hereafter referred to as CCC) for providing us an opportunity to clarify some points of our original paper. CCC list in their abstract three "key points"that we respond to in this Reply. The first comment is the central one and the most developed. It deals mainly with discussion of features of methods of spectral analysis, mainly SSA. We have quoted the sub parts of that comment as items 1a to 1k. The replies to comments/key points 2 and 3 are shorter. We disagree with most of the comments by CCC and explain why. We conclude that we have successfully countered CCC's criticism and shown many of their points to be unsubstantiated. The main problem seems to reside in differences concerning the literature on Singular Spectral Analysis and our use of it. Much of our response to the comments can be found in textbooks and review papers on SSA and time series analysis; we quote extensively, both in our original paper and in this response to CCC, Golyandina and Zhigljavsky (2013).
- Published
- 2021
- Full Text
- View/download PDF
38. Sleep characteristics of a population of patients seeking bariatric surgery
- Author
-
Codron, Francis, Bailly, Sébastien, Pepin, Jean Louis, Gentina, Thibaut, and SALAS, Danielle
- Subjects
[SDV] Life Sciences [q-bio] - Published
- 2021
39. The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection
- Author
-
Hourdin, Frédéric, Musat, Ionela, Bony, Sandrine, Braconnot, Pascale, Codron, Francis, Dufresne, Jean-Louis, Fairhead, Laurent, Filiberti, Marie-Angèle, Friedlingstein, Pierre, Grandpeix, Jean-Yves, Krinner, Gerhard, LeVan, Phu, Li, Zhao-Xin, and Lott, François
- Published
- 2006
- Full Text
- View/download PDF
40. Relations between annular modes and the mean state: Southern Hemisphere winter
- Author
-
Codron, Francis
- Subjects
Southern Hemisphere -- Environmental aspects ,Antarctic Oscillation -- Observations ,Winter -- Environmental aspects ,Climatology -- Research ,Earth sciences ,Science and technology - Abstract
In a zonally symmetric climatology with a single eddy-driven jet, such as prevails in the Southern Hemisphere summer, the midlatitude variability is dominated by fluctuations of the jet around its mean position, as described by the Southern Hemisphere annular mode (SAM). To study whether this result holds for a zonally asymmetric climatology, the observed variability of the Southern Hemisphere winter is analyzed. The mean state in this case is characterized by relatively weak stationary waves; yet there exist significant zonal variations in the mean strength and meridional structure of the subtropical jet stream. As in summer, the winter SAM signature is annular in shape and the corresponding wind anomalies are dipolar; but it is associated with two different behaviors of the eddy-driven jet in different longitudinal ranges. Over the indian Ocean, the SAM is associated primarily with a latitudinal shift of the jet around its mean position. Over the Pacific sector, it is instead characterized by a seesaw in the wind speed between two distinct latitudes, corresponding to the positions of the midlatitude and subtropical jets. Composites of eddy forcing and baroclinicity over both sectors appear consistent with the two different behaviors. As in the zonal-mean case, high-frequency eddies both force and maintain the low-frequency wind anomalies associated with the SAM. The positive feedback by eddies is, however, not local: changes in the eddy forcing are influenced most strongly by zonal wind anomalies located upstream.
- Published
- 2007
41. Antarctic Atmospheric River Climatology and Precipitation Impacts
- Author
-
Wille, Jonathan D., primary, Favier, Vincent, additional, Gorodetskaya, Irina V., additional, Agosta, Cécile, additional, Kittel, Christoph, additional, Beeman, Jai Chowdhry, additional, Jourdain, Nicolas C., additional, Lenaerts, Jan T. M., additional, and Codron, Francis, additional
- Published
- 2021
- Full Text
- View/download PDF
42. Atlantic multi-centennial variability in IPSL-CM6A-LR climate model
- Author
-
Jiang, Weimin, primary, Gastineau, Guillaume, additional, and Codron, Francis, additional
- Published
- 2021
- Full Text
- View/download PDF
43. Multicentennial Variability Driven by Salinity Exchanges Between the Atlantic and the Arctic Ocean in a Coupled Climate Model
- Author
-
Jiang, Weimin, primary, Gastineau, Guillaume, additional, and Codron, Francis, additional
- Published
- 2021
- Full Text
- View/download PDF
44. Comment on the paper"Characteristic time scales of decadal to centennial changes in global surface temperatures over the past 150 years " by J.L. Le Mouël, F. Lopes and V. Courtillot First published: 14 October 2019 in Earth and Space Science
- Author
-
Cuypers, Yannis, primary, Codron, Francis, additional, and Crépon, Michel, additional
- Published
- 2020
- Full Text
- View/download PDF
45. Centennial variability driven by salinity exchanges between the Atlantic and Arctic in a coupled climate model
- Author
-
Jiang, Weimin, primary, Gastineau, Guillaume, additional, and Codron, Francis, additional
- Published
- 2020
- Full Text
- View/download PDF
46. Antarctic Atmospheric River Climatology and Impacts
- Author
-
Wille, Jonathan, primary, Favier, Vincent, additional, Gorodetskaya, Irina V., additional, Agosta, Cécile, additional, Beeman, Jai Chowdhry, additional, Dufour, Ambroise, additional, Codron, Francis, additional, and Turner, John, additional
- Published
- 2020
- Full Text
- View/download PDF
47. Atmospheric River Climatology of Antarctica
- Author
-
Wille, Jonathan, Favier, Vincent, Dufour, Ambroise, Gorodetskaya, Irina, Turner, John, Agosta, Cécile, Codron, Francis, Institut des Géosciences de l’Environnement (IGE), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Recherche pour le Développement (IRD)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), CESAM, Centre for Environmental and Marine Studies, Universidade de Aveiro, British Antarctic Survey (BAS), Natural Environment Research Council (NERC), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Océan et variabilité du climat (VARCLIM), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU), EGU, Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] - Abstract
International audience; To properly understand the future Antarctic surface mass balance (SMB) requires a complete understanding of the factors that influence SMB today. Atmospheric rivers, broadly defined as a narrow yet long bands of high precipitable water, provide a sub-tropical connection to the Antarctic continent and are observed to significantly impact the affected region's SMB over short, extreme events. Over coastal Dronning Maud Land, East Antarctica, Gorodetskaya et al. (2013) observed that 4-5 atmospheric rivers contributed to 74-80% of the region's SMB during 2009 and 2011. When an atmospheric river reaches the Antarctic continent, their signature is clearly observed in increased downward longwave radiation, cloud liquid water content, surface temperature, snowfall, surface melt, and moisture transport. Using an atmospheric river detection algorithm designed for Antarctica and applied to multiple reanalyses, we find that while atmospheric rivers that make landfall are a rare occurrence, they have had significant impacts on the SMB from 1979-2017. During the study period, atmospheric rivers to make landfall have the largest snowfall signature across Dronning Maud Laud where they account for nearly 40% of snowfall in some interior locations. In addition to snowfall, atmospheric rivers are responsible for a majority of the summer surface melt on interior portions of the Ross Ice Shelf and low elevation portions of Marie Byrd Land. Currently melt events across these regions are rare, however a slight surface temperature increase would on average lead to melting conditions when an atmospheric river makes landfall. Atmospheric rivers are also a crucial component of winter surface melting on the Wilkins, Bach, and Larsen ice shelves along the Antarctic Peninsula. Within most reanalyses, there is a small yet significant increase in atmospheric river activity from 1979-2017. Whether an atmospheric river reaches the Antarctic continent is dependent on the degree of upper-level atmospheric blocking. Atmospheric rivers are associated with significant positive geopotential height anomalies across all regions of Antarctica with the highest anomalies occurring around the Amundsen-Bellingshausen Sea and Adélie Land. Our results suggest that atmospheric rivers should play a significant role in the Antarctic SMB, and that any future changes in atmospheric blocking or tropical-polar teleconnections may have significant impacts on future SMB projections.
- Published
- 2019
48. Dynamical mechanisms acting on the persistence of meridional shifting and amplitude pulsing of eddy-driven jets
- Author
-
Robert, Loïc, Rivière, Gwendal, Codron, Francis, Hisashi Nakamura Laboratory, Tokyo University of Science [Tokyo], Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Océan et variabilité du climat (VARCLIM), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU), EGU, Pinsard, Françoise, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
[PHYS.PHYS.PHYS-GEO-PH] Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] ,Physics::Atmospheric and Oceanic Physics - Abstract
International audience; The dynamics of mid-latitudes eddy-driven jets is investigated in a long-term integration of a dry three-level quasigeostrophic model on the sphere. As for most observed jets, the leading mode of variability (obtained using the Empirical Orthogonal Functions method) of the zonal-mean wind corresponds to latitudinal shifts of the jet, and the second mode to pulses of the jet speed. The first principal component (PC1) is also more persistent than the second one (PC2), showing that meridional shifts persists longer than amplitude pulses; this longer persistence arises from different eddy feedbacks both in the short term (i.e., within a few days following the peak of the PCs) and in the long term. The short-term eddy feedbacks come from two distinct mechanisms. First, a planetary waveguide effect acts as a negative feedback on both PCs. The positive phases of PC1 and PC2, which correspond to poleward-shifted and accelerated jets, respectively, are first driven then canceled by planetary waves reflecting on the equatorial flank of the jet. A similar process occurs for the negative phases when planetary waves reflect on the polar flank of the jet. Second, synoptic waves also exert a short-term negative feedback on PC2: when the jet accelerates, the enhanced meridional wind shear increases the barotropic sink of eddy energy and depletes it very rapidly, therefore preventing synoptic eddies from maintaining the accelerated jet. Finally, at lags longer than their typical time scale, synoptic eddies drive a positive feedback on PC1 only. This feedback can be explained by a baroclinic mechanism in which the jet shift modifies the baroclinicity, causing, first, eddy heat flux anomalies and then, momentum convergence anomalies. This feedback is absent for PC2, despite some changes in the baroclinicity.
- Published
- 2019
49. AMOC as the key driver of the spread in Mid-Holocene winter temperature patterns over Europe in PMIP3 models
- Author
-
Găinuşă-Bogdan, Alina, Swingedouw, Didier, Yiou, Pascal, Cattiaux, Julien, Codron, Francis, Environnements et Paléoenvironnements OCéaniques (EPOC), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Océan et variabilité du climat (VARCLIM), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), UMR 5805 Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,[SDE.MCG]Environmental Sciences/Global Changes ,[SDE]Environmental Sciences - Abstract
The mid-Holocene (6,000 years before present) was a warmer period than today in summer in most places of the Northern Hemisphere. In winter, over Europe, reconstructions of temperature based on pollen data show a dipole of temperature anomalies as compared to present-day, with warmer conditions in the north and colder in the south. It has been proposed that this pattern of temperature anomaly could be explained by a persisting positive phase of the North Atlantic Oscillation during this period, which was, however, not reproduced in general by climate models. Indeed, PMIP3 models show a large spread in their response to the mid-Holocene insolation changes, the physical origins of which are not understood. To improve the understanding of the reconstructed temperature changes and of the PMIP3 model spread, we analyze the dynamical response of these model simulations in the North Atlantic for mid-Holocene conditions as compared to pre-industrial. We focus on the European pattern of temperature in winter, which allows comparing the simulations with a pollen-based reconstruction. We find that some of the model simulations yield a similar pattern to the reconstructed one, with lower amplitude, but which remains within the reconstruction uncertainty. We attribute the northern warm part of the latitudinal dipole of temperature anomaly in winter to a lower sea-ice cover in the Nordic Seas. The decrease of sea ice in winter indeed reduces the sea-ice insulation effect there, allowing the ocean heat released in winter to reach the continental northern Europe. This decrease in winter sea-ice cover is related to an increase in the Atlantic meridional overturning circulation (AMOC) and its associated ocean heat transport, as well as the effect of insolation changes on sea ice in summer, which persists until winter. Concerning the cooling of southern Europe, we only find a slight cooling signal mainly related to the insolation-induced cooling in winter over Africa. We show that the models that failed to reproduce any AMOC increase under mid-Holocene conditions are also the ones that do not reproduce the temperature pattern over Europe. The change in sea level pressure is not sufficient to explain the spread among the models. The ocean-sea ice mechanisms that we proposed constitute an alternative explanation to the pattern of changes in winter temperatures over Europe in the mid-Holocene, which is in better agreement with available model simulations of this period. Finally, we argue that this period can provide interesting emerging constraints on key changes in European climate, and indirectly of AMOC response to radiative changes.
- Published
- 2019
50. 13. Reproduction du climat actuel
- Author
-
Codron, Francis and Marchesiello, Patrick
- Abstract
Aujourd’hui, on demande non seulement aux modèles de reproduire correctement la circulation générale moyenne de l’atmosphère et de l’océan mais aussi de simuler les caractéristiques principales des variations climatiques observées. C’est une condition nécessaire pour espérer effectuer des prévisions de l’évolution du climat à court terme et en réponse à une perturbation, cette réponse ressemblant souvent à la « variabilité naturelle ». De façon plus fondamentale, un modèle simulant une variab...
- Published
- 2017
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.