The concentrated cashew extract (CCE) is obtained from the residual fibers of the peduncle processing through a process that encompasses several technological stages. It has intense yellow coloration, due to the presence of carotenoids, with potential of use as food coloring. In addition, it contains anacardic acids (AA), which although associated with positive biological effects, such as antitumor and antioxidant activity, have also been reported as toxic. Thus, studies on its process of obtaining, stability and toxicity are required. For this, residual fibers were processed to obtain the CCE and samples after the following steps were collected: pressing, centrifugation, microfiltration and pasteurization, being analyzed with respect to the color parameters (L *, a *, b * and ΔE) and content of total carotenoids (TC), total extractable polyphenols (TEP) and AA. Next, the Plackett-Burman (PB) design was used to evaluate the effect of processing and storage variables on the CCE stability. The influence of 8 variables was evaluated: process time; storage temperature; pH; kind of packing; color of the package, in addition to the presence or absence of carboxymethylcellulose, cashew gum or lecithin. A rotational central composite design (RCCD) design was then carried out, in which the process temperature and pH were studied. The process temperature varied from 60 to 90 oC and the pH from 2.5 to 7.0 and the response variables were the color parameters. In parallel, the CCE was atomized and two DCCRs were used, in which cashew gum (CG) or maltodextrin (M) was used as the encapsulating material. The independent variables were: concentration of encapsulant (2-5%) and entry temperature in the atomizer (130-170 oC) and response variables were: hygroscopicity, moisture, solubility (S), color reconstitution (CR), fluidity and retention of total carotenoids (RTC). Concomitantly with the atomization, a lyophilization was carried out, which gave rise to a powdered extract without addition of encapsulants (CCE-L). Thus, CCE-L and CCE-L and CCE-M were evaluated in vivo for their zebrafish toxicity and in vitro for their antiproliferative activity [(glioma (U251), breast (MCF7), multidrug resistant ovary carcinoma (NCI/ADR-RES), lung (NCI-H460), prostate (PC-3), ovary (OVCAR-3), colon (HT-29)], and antimicrobial [Escherichia coli (ATCC 25922), Salmonella Typhimurium (ATCC 51812), Listeria monocytogenes (ATCC 19115) and Staphylococcus aureus (ATCC 25923)]. The results showed that the steps of obtaining the CCE did not cause changes relevant to the final color of the CCE. Initial filtration, centrifugation and pasteurization caused a decrease in TC and TEP, however, did not cause any alteration in AA levels. Microfiltration concentrated TC and AA on CCE. The statistical design of PB showed that the use of less time for the heat treatment and the absence of stabilizers carboximeticelulose, cashew and lecithin are better for CCE stability. In addition, it has been observed that the CCE can be stored out of refrigeration, preferably in glass containers, its color being indifferent, and more compatible with acid matrices. On the other hand, RCCD showed that CCE stability was negatively affected by higher pH and more drastic temperature conditions. The RCCD points for 150 oC and 5% GC and 150 oC and 3.5% M were considered optimal for S and RCA responses, respectively. Scanning electron microscopy (SEM) showed that the microcapsules obtained showed rounded shapes and walls without cracking. However, CG microcapsules presented larger diameters and higher amounts of surface retraction points. In the in vivo toxicity test against zebrafish, CCE did not prove to be toxic for 96 hours of analysis. In the in vitro assays, none of the samples showed antiproliferative activity (IC50 > 250 μg.mL-1); and CCE-L (100 mg.mL-1 and 50 mg.mL-1) was shown to have inhibition halos of 13 and 11 mm, respectively, against L. monocytogenes. The damage caused to this bacterium was confirmed by transmission electron microscopy (TEM). Therefore, the CCE represents a potential and safe source of bioactive compounds for use as an additive in the food industry and can be used in a wide range of products, especially those of high acidity and subjected to mild heat treatment. O extrato concentrado de caju (ECC) é obtido a partir das fibras residuais do processamento do pedúnculo através de um processo que engloba diversas etapas tecnológicas. Possui intensa coloração amarela, devido a presença de carotenoides, com potencial de uso como corante alimentar. Além disso, contém ácidos anacárdicos (AA), que embora associados a efeitos biológicos positivos, tais como atividade antitumoral e antioxidante, também têm sido relatados como tóxicos. Assim, faz-se necessário estudos relativos ao seu processo de obtenção, estabilidade e toxicidade. Para tanto, fibras residuais foram processadas para obtenção do ECC e amostras após as seguintes etapas foram coletadas: prensagem, centrifugação, microfiltração e pasteurização, sendo analisadas com relação aos parâmetros de cor (L*, a*, b* e ∆E) e conteúdo de carotenoides totais (CT), polifenóis extraíveis totais (PET) e AA. Em seguida, empregou-se o delineamento de Plackett-Burman (PB) para avaliar o efeito de variáveis de processamento e armazenamento sobre a estabilidade do ECC. A influência de 8 variáveis foi avaliada: tempo de processo; temperatura de armazenamento; pH; tipo de embalagem; cor da embalagem, além da presença ou ausência de carboximetilcelulose, goma de cajueiro ou lecitina. Na sequência, foi realizado um delineamento do tipo composto central rotacional (DCCR), no qual a temperatura de processo e o pH foram estudados. A temperatura de processo variou de 60 a 90 oC e o pH de 2,5 a 7,0 e as variáveis de resposta foram os parâmetros de cor. Em paralelo, realizou-se a atomização do ECC e para isso foram empregados dois DCCRs, nos quais utilizou-se como material encapsulante goma de cajueiro (GC) ou maltodextrina (M). As variáveis independentes foram: concentração de encapsulante (2-5%) e temperatura de entrada no atomizador (130-170 oC) e as variáveis de resposta foram: higroscopicidade, umidade, solubilidade (S), reconstituição da cor (RC), fluidez e retenção de carotenoides totais (RCT). Concomitantemente a atomização, realizou-se uma liofilização, que deu origem a um extrato em pó sem adição de encapsulantes (ECC-L). Assim, O ECC–L e os ECCs atomizados (ECC–GC e ECC–M) foram avaliados in vivo com relação a sua toxicidade frente ao zebrafish e in vitro com relação a sua atividade antiproliferativa [glioma (U251), mama (MCF7), carcinoma do ovário multirresistente (NCI/ADR-RES), pulmão (NCI-H460), próstata (PC-3), ovário (OVCAR-3), cólon (HT-29)] e antimicrobiana [Escherichia coli (ATCC 25922), Salmonella Typhimurium (ATCC 51812), Listeria monocytogenes (ATCC 19115) e Staphylococcus aureus (ATCC 25923)]. Os resultados mostraram que as etapas de obtenção do ECC não causaram alterações relevantes para a cor final do ECC. A pré-filtração, a centrifugação e a pasteurização causaram diminuição dos CT e PET, entretanto, não causaram nenhuma alteração nos teores de AA. Já a microfiltração concentrou os CT e os AA no ECC. O delineamento estatístico de PB mostrou que o emprego de menor tempo para o tratamento térmico e a ausência dos estabilizantes carboximeticelulose, goma de cajueiro e lecitina são melhores para a estabilidade do ECC. Além disso, observou-se que o ECC pode ser armazenado fora de refrigeração, preferencialmente em embalagens de vidro, sendo sua cor indiferente, e é mais compatível com matrizes ácidas. Já o DCCR mostrou que a estabilidade do ECC foi afetada negativamente por condições de pH mais elevado e temperatura mais drástica. Os pontos dos DCCRs referentes a 150 oC e 5% de GC e 150 oC e 3,5% de M foram considerados ótimos para as respostas S e RCA, respectivamente. A microscopia eletrônica de varredura (MEV) mostrou que as microcápsulas obtidas apresentaram formas arredondadas e paredes sem rachaduras. Entretanto, as microcápsulas de GC apresentaram diâmetros maiores e maiores quantidades de pontos de retração da superfície. No ensaio de toxicidade in vivo frente ao zebrafish, o ECC não se mostrou tóxico durante 96 horas de análise. Já nos ensaios in vitro constatou-se que nenhuma das amostras apresentou atividade antiproliferativa (IC50 > 250 µg.mL-1); e observou-se que o ECC-L (100 mg.mL-1 e 50 mg.mL-1) exibiu halos de inibição de 13 e 11 mm, respectivamente, contra L. monocytogenes. O dano causado a essa bactéria foi comprovado por microscopia eletrônica de transmissão (MET). Portanto, o ECC representa uma fonte potencial e segura de compostos bioativos para uso como aditivo pela indústria alimentícia, podendo ser empregado em uma ampla gama de produtos, especialmente aqueles de alta acidez e submetidos a tratamento térmico brando.