7 results on '"Concepcion Palomo"'
Search Results
2. Genomic Context of SARS-CoV-2 Outbreaks in Farmed Mink in Spain during Pandemic: Unveiling Host Adaptation Mechanisms
- Author
-
María Iglesias-Caballero, Vicente Mas, Sonia Vázquez-Morón, Mónica Vázquez, Sara Camarero-Serrano, Olga Cano, Concepción Palomo, María José Ruano, Cristina Cano-Gómez, José Antonio Infantes-Lorenzo, Albert Campoy, Montserrat Agüero, Francisco Pozo, and Inmaculada Casas
- Subjects
SARS-CoV-2 ,minks ,NGS ,Biology (General) ,QH301-705.5 ,Chemistry ,QD1-999 - Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects various mammalian species, with farmed minks experiencing the highest number of outbreaks. In Spain, we analyzed 67 whole genome sequences and eight spike sequences from 18 outbreaks, identifying four distinct lineages: B.1, B.1.177, B.1.1.7, and AY.98.1. The potential risk of transmission to humans raises crucial questions about mutation accumulation and its impact on viral fitness. Sequencing revealed numerous not-lineage-defining mutations, suggesting a cumulative mutation process during the outbreaks. We observed that the outbreaks were predominantly associated with different groups of mutations rather than specific lineages. This clustering pattern by the outbreaks could be attributed to the rapid accumulation of mutations, particularly in the ORF1a polyprotein and in the spike protein. Notably, the mutations G37E in NSP9, a potential host marker, and S486L in NSP13 were detected. Spike protein mutations may enhance SARS-CoV-2 adaptability by influencing trimer stability and binding to mink receptors. These findings provide valuable insights into mink coronavirus genetics, highlighting both host markers and viral transmission dynamics within communities.
- Published
- 2024
- Full Text
- View/download PDF
3. Immunoproteomic analysis of a Chikungunya poxvirus-based vaccine reveals high HLA class II immunoprevalence.
- Author
-
Elena Lorente, Alejandro Barriga, Eilon Barnea, Concepción Palomo, Juan García-Arriaza, Carmen Mir, Mariano Esteban, Arie Admon, and Daniel López
- Subjects
Arctic medicine. Tropical medicine ,RC955-962 ,Public aspects of medicine ,RA1-1270 - Abstract
BackgroundEfficient adaptive antiviral cellular and humoral immune responses require previous recognition of viral antigenic peptides bound to human leukocyte antigen (HLA) class I and II molecules, which are exposed on the surface of infected and antigen presenting cells, respectively. The HLA-restricted immune response to Chikungunya virus (CHIKV), a mosquito-borne Alphavirus of the Togaviridae family responsible for severe chronic polyarthralgia and polyarthritis, is largely unknown.Methodology/principal findingsIn this study, a high-throughput mass spectrometry analysis of complex HLA-bound peptide pools isolated from large amounts of human cells infected with a vaccinia virus (VACV) recombinant expressing CHIKV structural proteins was carried out. Twelve viral ligands from the CHIKV polyprotein naturally presented by different HLA-A, -B, and -C class I, and HLA-DR and -DP class II molecules were identified.Conclusions/significanceThe immunoprevalence of the HLA class II but not the HLA class I-restricted cellular immune response against the CHIKV structural polyprotein was greater than that against the VACV vector itself. In addition, most of the CHIKV HLA class I and II ligands detected by mass spectrometry are not conserved compared to its closely related O'nyong-nyong virus. These findings have clear implications for analysis of both cytotoxic and helper immune responses against CHIKV as well as for the future studies focused in the exacerbated T helper response linked to chronic musculoskeletal disorders in CHIKV patients.
- Published
- 2019
- Full Text
- View/download PDF
4. The Complexity of Antibody Responses Elicited against the Respiratory Syncytial Virus Glycoproteins in Hospitalized Children Younger than 2 Years
- Author
-
Alfonsina Trento, Rosa Rodríguez-Fernández, María I. González-Sánchez, Felipe González-Martínez, Vicente Mas, Mónica Vázquez, Concepción Palomo, and José A. Melero
- Subjects
bronchiolitis ,viral ,respiratory syncytial virus infections ,glycoproteins ,antibody specificity ,immune responses ,Microbiology ,QR1-502 - Abstract
The influence of age and maternal antibodies on the antibody responses to human respiratory syncytial virus (hRSV) glycoproteins in very young children has been a matter of controversy. Both, immaturity of the immune system at very early age and suppression of the host immune response by high level of maternal antibodies have been claimed to limit the host antibody response to virus infection and to jeopardize the use of hRSV vaccines under development in that age group. Hence, the antibody responses to the two major hRSV glycoproteins (F and G) were evaluated in children younger than 2 years, hospitalized with laboratory confirmed hRSV bronchiolitis. A strong negative correlation was found between the titre of circulating ELISA antibodies directed against either prefusion or postfusion F in the acute phase, but not age, and their fold change at convalescence. These changes correlated also with the level of circulating neutralizing antibodies in sera. As reported in adults, most neutralizing antibodies in a subset of tested sera could not be depleted with postfusion F, suggesting that they were mostly directed against prefusion-specific epitopes. In contrast, a weak negative association was found for group-specific anti-G antibodies in the acute phase and their fold change at convalescence only after correcting for the antigenic group of the infecting virus. In addition, large discrepancies were observed in some individuals between the antibody responses specific for F and G glycoproteins. These results illustrate the complexity of the anti-hRSV antibody responses in children experiencing a primary severe infection and the influence of preexisting maternal antibodies on the host response, factors that should influence hRSV serological studies as well as vaccine development.
- Published
- 2017
- Full Text
- View/download PDF
5. Engineering, Structure and Immunogenicity of the Human Metapneumovirus F Protein in the Postfusion Conformation.
- Author
-
Vicente Más, Laura Rodriguez, Eduardo Olmedillas, Olga Cano, Concepción Palomo, María C Terrón, Daniel Luque, José A Melero, and Jason S McLellan
- Subjects
Immunologic diseases. Allergy ,RC581-607 ,Biology (General) ,QH301-705.5 - Abstract
Human metapneumovirus (hMPV) is a paramyxovirus that is a common cause of bronchiolitis and pneumonia in children less than five years of age. The hMPV fusion (F) glycoprotein is the primary target of neutralizing antibodies and is thus a critical vaccine antigen. To facilitate structure-based vaccine design, we stabilized the ectodomain of the hMPV F protein in the postfusion conformation and determined its structure to a resolution of 3.3 Å by X-ray crystallography. The structure resembles an elongated cone and is very similar to the postfusion F protein from the related human respiratory syncytial virus (hRSV). In contrast, significant differences were apparent with the postfusion F proteins from other paramyxoviruses, such as human parainfluenza type 3 (hPIV3) and Newcastle disease virus (NDV). The high similarity of hMPV and hRSV postfusion F in two antigenic sites targeted by neutralizing antibodies prompted us to test for antibody cross-reactivity. The widely used monoclonal antibody 101F, which binds to antigenic site IV of hRSV F, was found to cross-react with hMPV postfusion F and neutralize both hRSV and hMPV. Despite the cross-reactivity of 101F and the reported cross-reactivity of two other antibodies, 54G10 and MPE8, we found no detectable cross-reactivity in the polyclonal antibody responses raised in mice against the postfusion forms of either hMPV or hRSV F. The postfusion-stabilized hMPV F protein did, however, elicit high titers of hMPV-neutralizing activity, suggesting that it could serve as an effective subunit vaccine. Structural insights from these studies should be useful for designing novel immunogens able to induce wider cross-reactive antibody responses.
- Published
- 2016
- Full Text
- View/download PDF
6. Characterization of a Prefusion-Specific Antibody That Recognizes a Quaternary, Cleavage-Dependent Epitope on the RSV Fusion Glycoprotein.
- Author
-
Morgan S A Gilman, Syed M Moin, Vicente Mas, Man Chen, Nita K Patel, Kari Kramer, Qing Zhu, Stephanie C Kabeche, Azad Kumar, Concepción Palomo, Tim Beaumont, Ulrich Baxa, Nancy D Ulbrandt, José A Melero, Barney S Graham, and Jason S McLellan
- Subjects
Immunologic diseases. Allergy ,RC581-607 ,Biology (General) ,QH301-705.5 - Abstract
Prevention efforts for respiratory syncytial virus (RSV) have been advanced due to the recent isolation and characterization of antibodies that specifically recognize the prefusion conformation of the RSV fusion (F) glycoprotein. These potently neutralizing antibodies are in clinical development for passive prophylaxis and have also aided the design of vaccine antigens that display prefusion-specific epitopes. To date, prefusion-specific antibodies have been shown to target two antigenic sites on RSV F, but both of these sites are also present on monomeric forms of F. Here we present a structural and functional characterization of human antibody AM14, which potently neutralized laboratory strains and clinical isolates of RSV from both A and B subtypes. The crystal structure and location of escape mutations revealed that AM14 recognizes a quaternary epitope that spans two protomers and includes a region that undergoes extensive conformational changes in the pre- to postfusion F transition. Binding assays demonstrated that AM14 is unique in its specific recognition of trimeric furin-cleaved prefusion F, which is the mature form of F on infectious virions. These results demonstrate that the prefusion F trimer contains potent neutralizing epitopes not present on monomers and that AM14 should be particularly useful for characterizing the conformational state of RSV F-based vaccine antigens.
- Published
- 2015
- Full Text
- View/download PDF
7. Recombinant Soluble Respiratory Syncytial Virus F Protein That Lacks Heptad Repeat B, Contains a GCN4 Trimerization Motif and Is Not Cleaved Displays Prefusion-Like Characteristics.
- Author
-
Ivy Widjaja, Alan Rigter, Shamir Jacobino, Frank J M van Kuppeveld, Kees Leenhouts, Concepción Palomo, Jose A Melero, Jeanette H W Leusen, Bert Jan Haijema, Peter J M Rottier, and Cornelis A M de Haan
- Subjects
Medicine ,Science - Abstract
The respiratory syncytial virus (RSV) fusion protein F is considered an attractive vaccine candidate especially in its prefusion conformation. We studied whether recombinant soluble RSV F proteins could be stabilized in a prefusion-like conformation by mutation of heptad repeat B (HRB). The results show that soluble, trimeric, non-cleaved RSV F protein, produced by expression of the furin cleavage site-mutated F ectodomain extended with a GCN4 trimerization sequence, is efficiently recognized by pre- as well as postfusion-specific antibodies. In contrast, a similar F protein completely lacking HRB displayed high reactivity with prefusion-specific antibodies recognizing antigenic site Ø, but did not expose postfusion-specific antigenic site I, in agreement with this protein maintaining a prefusion-like conformation. These features were dependent on the presence of the GCN4 trimerization domain. Absence of cleavage also contributed to binding of prefusion-specific antibodies. Similar antibody reactivity profiles were observed when the prefusion form of F was stabilized by the introduction of cysteine pairs in HRB. To study whether the inability to form the 6HB was responsible for the prefusion-like antibody reactivity profile, alanine mutations were introduced in HRB. Although introduction of alanine residues in HRB inhibited the formation of the 6HB, the exposure of postfusion-specific antigenic site I was not prevented. In conclusion, proteins that are not able to form the 6HB, due to mutation of HRB, may still display postfusion-specific antigenic site I. Replacement of HRB by the GCN4 trimerization domain in a non-cleaved soluble F protein resulted, however, in a protein with prefusion-like characteristics, suggesting that this HRB-lacking protein may represent a potential prefusion F protein subunit vaccine candidate.
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.