1. Evolution of Phytoplankton as Estimated from Genetic Diversity
- Author
-
Conny Sjöqvist
- Subjects
phytoplankton ,evolution ,genetic diversity ,population genetics ,metagenomics ,Naval architecture. Shipbuilding. Marine engineering ,VM1-989 ,Oceanography ,GC1-1581 - Abstract
Phytoplankton are photosynthetic, single-celled organisms producing almost half of all oxygen on Earth and play a central role as prey for higher organisms, making them irreplaceable in the marine food web. As Global Change proceeds, imposing rapidly intensifying selection pressures, phytoplankton are forced to undergo evolution, local extinction, or redistribution, with potentially cascading effects throughout the marine ecosystem. Recent results from the field of population genetics display high levels of standing genetic diversity in natural phytoplankton populations, providing ample ‘evolutionary options’ and implying high adaptive potential to changing conditions. This potential for adaptive evolution is realized in several studies of experimental evolution, even though most of these studies investigate the evolution of only single strains. This, however, shows that phytoplankton not only evolve from standing genetic diversity, but also rely on de novo mutations. Recent global sampling campaigns show that the immense intraspecific diversity of phytoplankton in the marine ecosystem has been significantly underestimated, meaning we are only studying a minor portion of the relevant variability in the context of Global Change and evolution. An increased understanding of genomic diversity is primarily hampered by the low number of ecologically representative reference genomes of eukaryotic phytoplankton and the functional annotation of these. However, emerging technologies relying on metagenome and transcriptome data may offer a more realistic understanding of phytoplankton diversity.
- Published
- 2022
- Full Text
- View/download PDF