1. Dual transcriptional characterization of spinach and Peronospora effusa during resistant and susceptible race-cultivar interactions.
- Author
-
Clark KJ, Feng C, Anchieta AG, Van Deynze A, Correll JC, and Klosterman SJ
- Subjects
- Transcriptome, Gene Expression Profiling, Gene Expression Regulation, Plant, Host-Pathogen Interactions genetics, Plant Proteins genetics, Plant Proteins metabolism, Spinacia oleracea genetics, Spinacia oleracea microbiology, Spinacia oleracea parasitology, Peronospora physiology, Peronospora pathogenicity, Disease Resistance genetics, Plant Diseases microbiology, Plant Diseases genetics, Plant Diseases parasitology
- Abstract
Background: Spinach downy mildew, caused by the obligate oomycete pathogen, Peronospora effusa remains a major concern for spinach production. Disease control is predominantly based on development of resistant spinach cultivars. However, new races and novel isolates of the pathogen continue to emerge and overcome cultivar resistance. Currently there are 20 known races of P. effusa. Here we characterized the transcriptomes of spinach, Spinacia oleracea, and P. effusa during disease progression using the spinach cultivar Viroflay, the near isogenic lines NIL1 and NIL3, and P. effusa races, R13 and R19, at 24 h post inoculation and 6 days post inoculation. A total of 54 samples were collected and subjected to sequencing and transcriptomic analysis., Results: Differentially expressed gene (DEG) analysis in resistant spinach interactions of R13-NIL1 and R19-NIL3 revealed spinach DEGs from protein kinase-like and P-loop containing families, which have roles in plant defense. The homologous plant defense genes included but were not limited to, receptor-like protein kinases (Spiol0281C06495, Spiol06Chr21559 and Spiol06Chr24027), a BAK1 homolog (Spiol0223C05961), genes with leucine rich repeat motifs (Spiol04Chr08771, Spiol04Chr01972, Spiol05Chr26812, Spiol04Chr11049, Spiol0084S08137, Spiol03Chr20299) and ABC-transporters (Spiol02Chr28975, Spiol06Chr22112, Spiol06Chr03998 and Spiol04Chr09723). Additionally, analysis of the expression of eight homologous to previously reported downy mildew resistance genes revealed that some are differentially expressed during resistant reactions but not during susceptible reactions. Examination of P. effusa gene expression during infection of susceptible cultivars identified expressed genes present in R19 or R13 including predicted RxLR and Crinkler effector genes that may be responsible for race-specific virulence on NIL1 or NIL3 spinach hosts, respectively., Conclusions: These findings deliver foundational insight to gene expression in both spinach and P. effusa during susceptible and resistant interactions and provide a library of candidate genes for further exploration and functional analysis. Such resources will be beneficial to spinach breeding efforts for disease resistance in addition to better understanding the virulence mechanisms of this obligate pathogen., (© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.)
- Published
- 2024
- Full Text
- View/download PDF