87 results on '"Cosmology: Cosmic Microwave Background"'
Search Results
2. The Galactic Dust as a Foreground to Cosmic Microwave Background Maps
- Author
-
Dupac, X., Bernard, J.-P., Boudet, N., Giard, M., Lamarre, J.-M., Meny, C., Pajot, F., Ristorcelli, I., Burton, W. B., editor, Kuijpers, J. M. E., editor, van den Heuvel, E. P. J., editor, van der Laan, H., editor, Appenzeler, I., editor, Bahcall, J. N., editor, Bertola, F., editor, Cassinelli, J. P., editor, Cesarsky, C. J., editor, Engvold, O., editor, McCray, R., editor, Murdin, P. G., editor, Pacini, F., editor, Radhakrishnan, V., editor, Sato, K., editor, Shu, F. H., editor, Somov, B. V., editor, Sunyaev, R. A., editor, Tanaka, Y., editor, Tremaine, S., editor, Weiss, N. O., editor, and Plionis, Manolis, editor
- Published
- 2004
- Full Text
- View/download PDF
3. Bayesian component separation: The Planck experience.
- Author
-
Wehus, Ingunn Kathrine, Eriksen, Hans Kristian, Jelić, V., and van der Hulst, T.
- Abstract
Bayesian component separation techniques have played a central role in the data reduction process of Planck. The most important strength of this approach is its global nature, in which a parametric and physical model is fitted to the data. Such physical modeling allows the user to constrain very general data models, and jointly probe cosmological, astrophysical and instrumental parameters. This approach also supports statistically robust goodness-of-fit tests in terms of data-minus-model residual maps, which are essential for identifying residual systematic effects in the data. The main challenges are high code complexity and computational cost. Whether or not these costs are justified for a given experiment depends on its final uncertainty budget. We therefore predict that the importance of Bayesian component separation techniques is likely to increase with time for intensity mapping experiments, similar to what has happened in the CMB field, as observational techniques mature, and their overall sensitivity improves. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
4. Ultra light bosonic dark matter and CMB.
- Author
-
Rodriguez-Montoya, Ivan, Matos, Tonatiuh, and Garcia-Aspeitia, Miguel Angel
- Subjects
- *
COSMIC background radiation , *DARK matter , *INTERSTELLAR medium , *ASTROPHYSICAL radiation , *METAPHYSICAL cosmology , *ASTRONOMY - Abstract
We report the cosmological effects that a species of Ultra Light Bosonic Dark Matter imprints in the Acoustic Peaks of the CMB and some of its thermic features. We show that the effect of the Bose-Einstein statistics is small albeit perceptible and is equivalent to an increase of non-relativistic matter. It is noted the mass-to-temperature ratio necessary for being still a Dark Matter candidate. It is also needed a non-zero optical depth of Reionization. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
5. The ISW imprints of voids and superclusters on the CMB.
- Author
-
Hotchkiss, S., Nadathur, S., Gottlöber, S., Iliev, I. T., Knebe, A., Watson, W. A., Yepes, G., van de Weygaert, R., Shandarin, S., Saar, E., and Einasto, J.
- Abstract
We examine the stacked integrated Sachs-Wolfe (ISW) imprints on the CMB along the lines of sight of voids and superclusters in galaxy surveys, using the Jubilee ISW simulation and mock luminous red galaxy (LRG) catalogues. We show that the expected signal in the concordance \Lam CDM model is much smaller than the primary anisotropies arising at the last scattering surface and therefore any currently claimed detections of such an imprint cannot be caused by the ISW effect in \Lam CDM. We look for the existence of such a signal in the Planck CMB using a catalogue of voids and superclusters from the Sloan Digital Sky Survey (SDSS), but find a result completely consistent with \Lam CDM – i.e., a null detection. [ABSTRACT FROM PUBLISHER]
- Published
- 2014
- Full Text
- View/download PDF
6. Cross-correlation between cosmological and astrophysical datasets: the Planck and Herschel case.
- Author
-
Bianchini, Federico, Lapi, Andrea, Heavens, A. F., Starck, J.-L., and Krone-Martins, A.
- Abstract
We present the first measurement of the correlation between the map of the CMB lensing potential derived from the Planck nominal mission data and z ≳ 1.5 galaxies detected by Herschel-ATLAS (H-ATLAS) survey covering about 550 deg2. We detect the cross-power spectrum with a significance of ∼ 8.5σ, ruling out the absence of correlation at 9σ. We check detection with a number of null tests. The amplitude of cross-correlation and the galaxy bias are estimated using joint analysis of the cross-power spectrum and the galaxy survey auto-spectrum, which allows to break degeneracy between these parameters. The estimated galaxy bias is consistent with previous estimates of the bias for the H-ATLAS data, while the cross-correlation amplitude is higher than expected for a ΛCDM model. The content of this work is to appear in a forthcoming paper Bianchini, et al. (2014). [ABSTRACT FROM PUBLISHER]
- Published
- 2014
- Full Text
- View/download PDF
7. On spin scale-discretised wavelets on the sphere for the analysis of CMB polarisation.
- Author
-
McEwen, Jason D., Büttner, Martin, Leistedt, Boris, Peiris, Hiranya V., Vandergheynst, Pierre, Wiaux, Yves, Heavens, A. F., Starck, J.-L., and Krone-Martins, A.
- Abstract
A new spin wavelet transform on the sphere is proposed to analyse the polarisation of the cosmic microwave background (CMB), a spin ± 2 signal observed on the celestial sphere. The scalar directional scale-discretised wavelet transform on the sphere is extended to analyse signals of arbitrary spin. The resulting spin scale-discretised wavelet transform probes the directional intensity of spin signals. A procedure is presented using this new spin wavelet transform to recover E- and B-mode signals from partial-sky observations of CMB polarisation. [ABSTRACT FROM PUBLISHER]
- Published
- 2014
- Full Text
- View/download PDF
8. Cosmological Applications of the Gaussian Kinematic Formula.
- Author
-
Fantaye, Yabebal T., Marinucci, Domenico, Heavens, A. F., Starck, J.-L., and Krone-Martins, A.
- Abstract
The Gaussian Kinematic Formula (GKF, see Adler and Taylor (2007,2011)) is an extremely powerful tool allowing for explicit analytic predictions of expected values of Minkowski functionals under realistic experimental conditions for cosmological data collections. In this paper, we implement Minkowski functionals on multipoles and needlet components of CMB fields, thus allowing a better control of cosmic variance and extraction of information on both harmonic and real domains; we then exploit the GKF to provide their expected values on spherical maps, in the presence of arbitrary sky masks, and under nonGaussian circumstances. [ABSTRACT FROM PUBLISHER]
- Published
- 2014
- Full Text
- View/download PDF
9. Toward a 10,000-element B-Mode Experiment.
- Author
-
Kuo, Chao-Lin
- Abstract
In this paper, we introduce two compact, large-throughput CMB polarimeter designs (POLAR1 and BICEP3). These pathfinder experiments will pave the way for a comprehensive multi-frequency South Pole B-mode survey that, when jointly analyzed with arcminute-scale polarization data, can conclusively answer the question whether there is an appreciable fraction (>1%) of the primordial perturbations in the form of tensor modes (gravitational waves). [ABSTRACT FROM PUBLISHER]
- Published
- 2012
- Full Text
- View/download PDF
10. CMB anisotropy science: a review.
- Author
-
Challinor, Anthony
- Abstract
The cosmic microwave background (CMB) provides us with our most direct observational window to the early universe. Observations of the temperature and polarization anisotropies in the CMB have played a critical role in defining the now-standard cosmological model. In this contribution we review some of the basics of CMB science, highlighting the role of observations made with ground-based and balloon-borne Antarctic telescopes. Most of the ingredients of the standard cosmological model are poorly understood in terms of fundamental physics. We discuss how current and future CMB observations can address some of these issues, focusing on two directly relevant for Antarctic programmes: searching for gravitational waves from inflation via B-mode polarization, and mapping dark matter through CMB lensing. [ABSTRACT FROM PUBLISHER]
- Published
- 2012
- Full Text
- View/download PDF
11. Wavelet analysis of non-Gaussian anisotropies from primordial voids in simulated maps of the Cosmic Microwave Background
- Author
-
Noviello, Fabio
- Subjects
- *
PHYSICAL sciences , *ZODIAC , *ASTRONOMICAL photography , *PLANETS - Abstract
Abstract: Phase transitions taking place during the inflationary epoch give rise to bubbles of true vacuum embedded in the false vacuum. These bubbles can imprint a distinctive signal on the Cosmic Microwave Background (CMB). We evaluate the feasibility of detecting these signatures with wavelets in CMB maps, such as those that will be made available by the European Space Agency’s (ESA) Planck mission. [Copyright &y& Elsevier]
- Published
- 2009
- Full Text
- View/download PDF
12. Model independent approaches to reionization in the analysis of upcoming CMB data
- Author
-
Colombo, L.P.L. and Pierpaoli, E.
- Subjects
- *
IONIZATION (Atomic physics) , *MARKOV processes , *POLARIZATION (Nuclear physics) - Abstract
Abstract: On large angular scales, CMB polarization depends mostly on the evolution of the ionization level of the IGM during reionization. In order to avoid biasing parameter estimates, an accurate and model independent approach to reionization is needed when analyzing high precision data, like those expected from the Planck experiment. In this paper, we consider two recently proposed methods of fitting for reionization and we discuss their respective advantages. We test both methods by performing a MonteCarlo Markov Chain analysis of simulated Planck data, assuming different fiducial reionization histories. We take into account both temperature and polarization data up to high multipoles, and we fit for both reionization and non-reionization parameters. We find that while a wrong assumption on reionization may bias , and r by 1–3 standard deviations, other parameters, in particular , are not significantly biased. The additional reionization parameters introduced by considering the model independent methods do not affect the accuracy of the estimates of the main cosmological parameters, the biggest degradation being of order ∼15% for . Finally, we show that neglecting helium contribution in the analysis increase the bias on , r and even when a general fitting approach to reionization is assumed. [Copyright &y& Elsevier]
- Published
- 2009
- Full Text
- View/download PDF
13. COSMIC COVARIANCE AND THE LOW QUADRUPOLE ANISOTROPY IN THE WMAP DATA.
- Author
-
Chiang, Lung-Yih, Naselsky, Pavel D., and Coles, Peter
- Subjects
- *
ASTRONOMICAL research , *COSMIC background radiation , *ANISOTROPY , *GAUSSIAN quadrature formulas , *METAPHYSICAL cosmology - Abstract
Low quadrupole power in the cosmic microwave background (CMB) temperature anisotropies has been a puzzle since WMAP data release. In this talk I will demonstrate that the minimum variance optimization (MVO), a methodology used by many authors including the WMAP science team to separate the CMB from foreground contamination, serves not only to extract the CMB, but to subtract the “cosmic covariance”, an intrinsic correlation between the CMB and the foregrounds. Such subtraction induces low variance in the signal via MVO, which in turn propagates into the multipoles, causing a quadrupole deficit with more than 90% CL. As we do not know the CMB and the foregrounds a priori, and their correlation is subtracted by the MVO in any case, there is therefore an unknown error in the quadrupole power even before the cosmic variance interpretation. We combine the MVO and Monte Carlo simulations, assuming CMB is a Gaussian random field, and the estimated quadrupole power falls in [308.13, 401.97] μK2 (at 1 − σ level). [ABSTRACT FROM AUTHOR]
- Published
- 2008
- Full Text
- View/download PDF
14. Constraints on time variation of fine structure constant from WMAP-3yr data
- Author
-
Stefanescu, P.
- Subjects
- *
COSMIC background radiation , *COSMIC ripples , *ASTROPHYSICAL radiation , *CONSTRAINTS (Physics) - Abstract
Abstract: This paper presents the constraints on the time variation of the fine structure constant at recombination relative to its present value, Δ α =(α rec − α 0)/α 0, obtained from the analysis of the WMAP-3yr cosmic microwave background (CMB) data, with an additional prior on the Hubble expansion rate from HST Hubble Key Project. I found out that −0.039< Δ α <0.010 at 95% CL, which brings a 30% improvement to the previous limits from WMAP-1yr data. The corresponding recombination redshift, , shows a delayed recombination epoch compared with the results from WMAP-1yr data. [Copyright &y& Elsevier]
- Published
- 2007
- Full Text
- View/download PDF
15. Forecasting the Bayes factor of a future observation.
- Author
-
Trotta, Roberto
- Subjects
- *
FORECASTING , *BAYESIAN analysis , *METAPHYSICAL cosmology , *ASTRONOMICAL perturbation , *SPECTRUM analysis - Abstract
I present a new procedure to forecast the Bayes factor of a future observation by computing the predictive posterior odds distribution. This can assess the power of future experiments to answer model selection questions and the probability of the outcome, and can be helpful in the context of experiment design. As an illustration, I consider a central quantity for our understanding of the cosmological concordance model, namely, the scalar spectral index of primordial perturbations, nS. I show that the Planck satellite has over 90 per cent probability of gathering strong evidence against nS= 1, thus conclusively disproving a scale-invariant spectrum. This result is robust with respect to a wide range of choices for the prior on nS. [ABSTRACT FROM AUTHOR]
- Published
- 2007
- Full Text
- View/download PDF
16. Planck-LFI scientific goals: Implications for the reionization history
- Author
-
Popa, L.A., Burigana, C., Mandolesi, N., Butler, R.C., Cuttaia, F., Finelli, F., Franceschi, E., Galaverni, M., Gruppuso, A., Malaspina, M., Morgante, G., Paci, F., Procopio, P., Sandri, M., Stringhetti, L., Terenzi, L., Valenziano, L., Villa, F., and Zuccarelli, J.
- Subjects
- *
SPACE flight , *METAPHYSICAL cosmology , *ASTROPHYSICS , *COSMIC background radiation , *POWER spectra , *POLARIZATION (Nuclear physics) - Abstract
Abstract: The Planck mission will be crucial to test the robustness of the ΛCDM concordance model since the relevant cosmological parameters will be measured with much better sensitivity. As the final scientific performance of Planck depends not only on the instrumental performances, but also on the detailed knowledge of the behavior of the astrophysical foregrounds, systematic effects and their interplay, in this paper we discuss these aspects from the point of view of the CMB angular power spectrum recovery. As an example of Planck scientific goal we discuss the possibility to constrain the reionization history of the Universe by using E-mode polarization CMB measurements. [Copyright &y& Elsevier]
- Published
- 2007
- Full Text
- View/download PDF
17. Fast cosmological parameter estimation using neural networks.
- Author
-
Auld, T., Bridges, M., Hobson, M. P., and Gull, S. F.
- Subjects
- *
COSMIC background radiation , *ASTROPHYSICAL radiation , *ASTRONOMY , *ASTROPHYSICS , *SPACE astronomy - Abstract
We present a method for accelerating the calculation of cosmic microwave background (CMB) power spectra, matter power spectra and likelihood functions for use in cosmological parameter estimation. The algorithm, calledCosmoNet, is based on training a multilayer perceptron neural network and shares all the advantages of the recently releasedPico algorithm of Fendt & Wandelt, but has several additional benefits in terms of simplicity, computational speed, memory requirements and ease of training. We demonstrate the capabilities ofCosmoNet by computing CMB power spectra over a box in the parameter space of flat Λ cold dark matter (ΛCDM) models containing the 3σ WMAP 1-year confidence region. We also useCosmoNet to compute the WMAP 3-year (WMAP3) likelihood for flat ΛCDM models and show that marginalized posteriors on parameters derived are very similar to those obtained usingcamb and the WMAP3 code. We find that the average error in the power spectra is typically 2–3 per cent of cosmic variance, and thatCosmoNet is faster thancamb (for flat models) and times faster than the official WMAP3 likelihood code.CosmoNet and an interface toCosmoMC are publically available at . [ABSTRACT FROM AUTHOR]
- Published
- 2007
- Full Text
- View/download PDF
18. Radiative effects by high-z UV radiation background: Implications for the future CMB polarization measurements
- Author
-
Popa, L.A., Burigana, C., and Mandolesi, N.
- Subjects
- *
ULTRAVIOLET radiation , *HELIUM , *HYDROGEN , *NONMETALS - Abstract
Abstract: The radiative effects by high-redshift ultraviolet radiation background (UVB) heats the gas in the IGM and eliminate the neutral hydrogen and helium that dominate the cooling of the primordial gas. We investigate the role of the radiative effects for the temporal evolution of the reionization fraction by using cosmological Smooth Particle Hydrodynamics (SPH) simulations. We find that the increase of photo-ionization and photo-heating rates due to optical depth effects results in a significantly contribute to the heating of the IGM before and during the reionization. The main effect of the UV radiation spectrum on the temporal evolution of the ionization fraction is given by the value of the reionization redshift, z re, and the redshift interval, Δz, in which the reionization is completed. We evaluate the effects of the UV radiation background on the CMB angular power spectrum taking into account different temporal evolutions of the ionization fraction. We find that for reionization models with degenerated CMB temperature anisotropy power spectra, the radiative mechanisms leave distinct signatures on the E-mode polarization power spectrum, at large scales (l <50). We show that through E-mode CMB polarization power spectrum measurements, the Planck experiment will have the sensitivity to distinguish between different reionization histories even when they imply the same optical depth to electron scattering and degenerated C T power spectra. This work has been done in the framework of the Planck LFI activities. [Copyright &y& Elsevier]
- Published
- 2005
- Full Text
- View/download PDF
19. PRIMORDIAL GRAVITATIONAL WAVES AND INFLATION:: POSSIBILITIES FOR DETECTION.
- Author
-
COORAY, ASANTHA
- Subjects
- *
GRAVITY waves , *GRAVITY , *COSMIC background radiation , *COSMIC ripples , *ASTRONOMICAL perturbation - Abstract
The curl-modes of Cosmic Microwave Background (CMB) polarization probe horizon-scale primordial gravitational waves related to inflation. A significant source of confusion is expected from a lensing conversion of polarization related to density perturbations to the curl mode, during the propagation of photons through the large scale structure. Either high resolution CMB anisotropy observations or 21 cm fluctuations at redshifts 30 and higher can be used to delens polarization data and to separate gravitational-wave polarization signature from that of cosmic-shear related signal. Separations based on proposed lensing reconstruction techniques for reasonable future experiments allow the possibility to probe inflationary energy scales down to 1015GeV. Beyond CMB polarization, at frequencies between 0.01 Hz to 1 Hz, space-based laser interferometers can also be used to probe the inflationary gravitational wave background. The confusion here is related to the removal of merging neutron star binaries at cosmological distances. Given the low merger rate and the rapid evolution of the gravitational wave frequency across this band, reliable removal techniques can be constructed. We discuss issues related to joint constraints that can be placed on the inflationary models based on CMB polarization information and space-based interferometers such as the Big Bang Observer. [ABSTRACT FROM AUTHOR]
- Published
- 2005
- Full Text
- View/download PDF
20. A full-sky prediction of the Sunyaev–Zeldovich effect from diffuse hot gas in the local universe and the upper limit from the WMAP data.
- Author
-
Hansen, F. K., Branchini, E., Mazzotta, P., Cabella, P., and Dolag, K.
- Subjects
- *
REDSHIFT , *CATALOGS , *SURVEYS , *GALAXIES , *GASES , *ANISOTROPY - Abstract
We use the Point Source Catalogue Redshift Survey galaxy redshift catalogue combined with constrained simulations based on the IRAS 1.2-Jy galaxy density field to estimate the contribution of hot gas in the local universe to the Sunyaev–Zeldovich (SZ) effect on a large scale. We produce a full-sky healpix map predicting the SZ effect from clusters as well as diffuse hot gas within . Performing cross-correlation tests between this map and the WMAP data in pixel, harmonic and wavelet space we can put an upper limit on the effect. We conclude that the SZ effect from diffuse gas in the local universe cannot be detected in current cosmic microwave background (CMB) data and is not a large-scale contaminating factor in studies of CMB angular anisotropies. We derive an upper limit for the mean temperature decrement of at the 2σ confidence level for the 61-GHz frequency channel. However, for future high-sensitivity experiments observing at a wider range of frequencies, the predicted large-scale SZ effect could be of importance. [ABSTRACT FROM AUTHOR]
- Published
- 2005
- Full Text
- View/download PDF
21. GAUSS–LEGENDRE SKY PIXELIZATION (GLESP) FOR CMB MAPS.
- Author
-
Doroshkev, A. G., Naselsky, P. D., Verkhodanov, O. V., Novikov, D. I., Turchaninov, V. I., Novikov, I. D., Christensen, P. R., and Chiang, L.-Y.
- Subjects
- *
SKY , *MAPS , *POLYNOMIALS , *CARDINAL numbers , *APPROXIMATION theory , *BERNOULLI polynomials - Abstract
A new scheme of sky pixelization is developed for CMB maps. The scheme is based on the Gauss–Legendre polynomials zeros and allows one to create strict orthogonal expansion of the map. A corresponding code has been implemented and comparison with other methods has been done. [ABSTRACT FROM AUTHOR]
- Published
- 2005
22. CMB non-Gaussianities from the “local” universe
- Author
-
Aghanim, N., Castro, P.G., Forni, O., and Kunz, M.
- Subjects
- *
COSMIC background radiation , *POWER (Mechanics) , *SPECTRUM analysis , *ANISOTROPY , *COSMOGRAPHY , *METAPHYSICAL cosmology - Abstract
The present and future cosmic microwave background (CMB) experiments allow us to go beyond the information contained in the power spectrum. In particular, the non-Gaussian signatures in the CMB represent a very promising tool to probe the early universe. However, the secondary anisotropies, the galactic emission and the instrumental effects also induce non-Gaussian distributed anisotropies. It is therefore important not only to develop non-Gaussian estimators, but also to understand the physics of these effects to better disentangle between them. [Copyright &y& Elsevier]
- Published
- 2003
- Full Text
- View/download PDF
23. SIMULATING WEAK LENSING ON CMB MAPS.
- Author
-
BASAK, S., PRUNET, S., and BENABED, K.
- Subjects
- *
COSMIC background radiation , *METAPHYSICAL cosmology , *ASTROPHYSICS , *RELATIVITY (Physics) , *SPACETIME - Published
- 2012
24. Simulation of the analysis of interferometric microwave background polarization data.
- Author
-
Bunn, Emory F., Karakci, Ata, Sutter, Paul M., Zhang, Le, Tucker, Gregory S., Timbie, Peter T., Wandelt, Benjamin D., Heavens, A. F., Starck, J.-L., and Krone-Martins, A.
- Abstract
We present results from an end-to-end simulation pipeline of interferometric observations of cosmic microwave background polarization. We use both maximum-likelihood and Gibbs sampling techniques to estimate the power spectrum. In addition, we use Gibbs sampling for image reconstruction from interferometric visibilities. The results indicate the level to which various systematic errors (e.g., pointing errors, gain errors, beam shape errors, cross polarization) must be controlled in order to successfully detect and characterize primordial B modes and achieve other scientific goals. In addition, we show that Gibbs sampling is an effective method of image reconstruction for interferometric data in other astrophysical contexts. [ABSTRACT FROM PUBLISHER]
- Published
- 2014
- Full Text
- View/download PDF
25. Generic inference of inflation models by local non-Gaussianity.
- Author
-
Dorn, Sebastian, Ramirez, Erandy, Kunze, Kerstin E., Hofmann, Stefan, Enßlin, Torsten A., Heavens, A. F., Starck, J.-L., and Krone-Martins, A.
- Abstract
The presence of multiple fields during inflation might seed a detectable amount of non-Gaussianity in the curvature perturbations, which in turn becomes observable in present data sets like the cosmic microwave background (CMB) or the large scale structure (LSS). Within this proceeding we present a fully analytic method to infer inflationary parameters from observations by exploiting higher-order statistics of the curvature perturbations. To keep this analyticity, and thereby to dispense with numerically expensive sampling techniques, a saddle-point approximation is introduced whose precision has been validated for a numerical toy example. Applied to real data, this approach might enable to discriminate among the still viable models of inflation. [ABSTRACT FROM PUBLISHER]
- Published
- 2014
- Full Text
- View/download PDF
26. The Jubilee ISW Project - II. Observed and simulated imprints of voids and superclusters on the cosmic microwave background
- Author
-
Seshadri Nadathur, Gustavo Yepes, Alexander Knebe, Stefan Gottlöber, Ilian T. Iliev, William A. Watson, Shaun Hotchkiss, and UAM. Departamento de Física Teórica
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Cold dark matter ,Large-scale structure of Universe ,media_common.quotation_subject ,Cosmic microwave background ,Cosmic background radiation ,FOS: Physical sciences ,Astrophysics ,Dark energy ,QB ,media_common ,Physics ,numerical [Methods] ,Methods: numerical ,Física ,Astronomy ,Astronomy and Astrophysics ,cosmic microwave background [Cosmology] ,Galaxy ,Redshift ,Universe ,Space and Planetary Science ,Sky ,Cosmology: cosmic microwave background ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved, We examine the integrated Sachs-Wolfe (ISW) imprint of voids and superclusters on the cosmic microwave background. We first study results from the Jubilee N-body simulation. From Jubilee, we obtain the full-sky ISW signal from structures out to redshift z=1.4 and a mock luminous red galaxy (LRG) catalogue. We confirm that the expected signal in the concordance \Lambda CDM model is very small and likely to always be much smaller than the anisotropies arising at the last scattering surface. Any current detections of such an imprint must, therefore, predominantly arise from something other than an ISW effect in a \Lambda CDM universe. Using the simulation as a guide, we then look for the signal using a catalogue of voids and superclusters from the Sloan Digital Sky Survey. We find a result that is consistent with the \Lambda CDM model, i.e. a signal consistent with zero., SH and ITI were supported by the Science and Technologies Facilities Council (grant numberST/I000976/1). The research leading to these results has received funding from the European Research Council under the European Unions Seventh Framework Programme (FP/20072013) / ERC Grant Agreement No. [308082]. SN acknowledges support from Academy of Finland grant 1263714. AK is supported by the Ministerio de Economía y Competividad (MINECO) in Spain through grant AYA2012-31101 as well as the Consolider-Ingenio 2010 Programme of the Spanish Ministerio de Ciencia e Innovación (MICINN) under grant MultiDark CSD2009-00064. He also acknowledges support from the Australian Research Council (ARC) grants DP130100117 and DP140100198. GY acknowledges support from MINECO (Spain) under research grants AYA2012-31101 and FPA2012-34694
- Published
- 2014
- Full Text
- View/download PDF
27. Cross-correlation between cosmological and astrophysical datasets: the Planck and Herschel case
- Author
-
Federico Bianchini and Andrea Lapi
- Subjects
Physics ,gravitational lensing ,Cosmic microwave background ,Dark matter ,cosmology: cosmic microwave background ,Astronomy ,Astronomy and Astrophysics ,Lambda-CDM model ,Astrophysics ,methods: data analysis ,Galaxy ,Redshift-space distortions ,Gravitational lens ,Settore FIS/05 - Astronomia e Astrofisica ,galaxies: high-redshift ,Space and Planetary Science ,Observational cosmology ,Weak gravitational lensing - Abstract
We present the first measurement of the correlation between the map of the CMB lensing potential derived from the Planck nominal mission data and z ≳ 1.5 galaxies detected by Herschel-ATLAS (H-ATLAS) survey covering about 550 deg2. We detect the cross-power spectrum with a significance of ∼ 8.5σ, ruling out the absence of correlation at 9σ. We check detection with a number of null tests. The amplitude of cross-correlation and the galaxy bias are estimated using joint analysis of the cross-power spectrum and the galaxy survey auto-spectrum, which allows to break degeneracy between these parameters. The estimated galaxy bias is consistent with previous estimates of the bias for the H-ATLAS data, while the cross-correlation amplitude is higher than expected for a ΛCDM model. The content of this work is to appear in a forthcoming paper Bianchini, et al. (2014).
- Published
- 2014
- Full Text
- View/download PDF
28. Searching for non-Gaussian signals in the BOOMERANG 2003 CMB maps
- Author
-
P. Cabella, Dmitry Pogosyan, Pedro G. Ferreira, Ted Kisner, Enzo Pascale, Peter A. R. Ade, Martin Kunz, S. Ricciardi, M. Veneziani, Max Tegmark, F. Piacentini, J. R. Bond, Paolo Natoli, Andrew E. Lange, Philip Daniel Mauskopf, Eric Hivon, Silvia Masi, T. E. Montroy, Calvin B. Netterfield, Simon Prunet, G. Di Stefano, G. de Gasperis, B. P. Crill, Andrew H. Jaffe, Sabino Matarrese, Nicola Vittorio, P. Santini, Alessandro Melchiorri, A. de Oliveira-Costa, A. Boscaleri, G. Polenta, Julian Borrill, J. E. Ruhl, Giovanni Romeo, G. De Troia, Michele Liguori, W. C. Jones, James J. Bock, C. J. MacTavish, P. de Bernardis, and Carlo R. Contaldi
- Subjects
Physics ,cosmic microwave background ,Gaussian ,Cosmic microwave background ,Astrophysics (astro-ph) ,Cosmic background radiation ,Estimator ,FOS: Physical sciences ,Astronomy and Astrophysics ,Cosmology: Cosmic Microwave Background ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Cosmology ,symbols.namesake ,Amplitude ,Settore FIS/05 - Astronomia e Astrofisica ,Space and Planetary Science ,Minkowski space ,symbols ,Statistical physics ,Nonlinear coupling ,QC - Abstract
We analyze the BOOMERanG 2003 (B03) 145 GHz temperature map to constrain the amplitude of a non Gaussian, primordial contribution to CMB fluctuations. We perform a pixel space analysis restricted to a portion of the map chosen in view of high sensitivity, very low foreground contamination and tight control of systematic effects. We set up an estimator based on the three Minkowski functionals which relies on high quality simulated data, including non Gaussian CMB maps. We find good agreement with the Gaussian hypothesis and derive the first limits based on BOOMERanG data for the non linear coupling parameter f_NL as -300, Comment: accepted for publication in ApJ. Letters
- Published
- 2016
- Full Text
- View/download PDF
29. Intracluster Entropy from Joint X‐Ray and Sunyaev‐Zel’dovich Observations
- Author
-
Alfonso Cavaliere, Yoel Rephaeli, and Andrea Lapi
- Subjects
Physics ,X-Rays: Galaxies: Clusters ,Astrophysics (astro-ph) ,Cosmic microwave background ,X-ray ,FOS: Physical sciences ,Cosmology: Cosmic Microwave Background ,Astronomy and Astrophysics ,Observable ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Galaxy groups and clusters ,Settore FIS/05 - Astronomia e Astrofisica ,Space and Planetary Science ,Intracluster medium ,Thermal state ,Surface brightness ,Scaling - Abstract
The temperature and density of the hot diffuse medium pervading galaxy groups and clusters combine into one significant quantity, the entropy. Here we express the entropy levels and profiles in model-independent forms by joining two observables, the X-ray luminosity and the change in the CMB intensity due to the Sunyaev-Zel'dovich (SZ) effect. Thus we present both global scaling relations for the entropy levels from clusters and groups, and a simple expression yielding the entropy profiles in individual clusters from resolved X-ray surface brightness and SZ spatial distributions. We propose that our approach provides two useful tools for comparing large data samples with models, in order to probe the processes that govern the thermal state of the hot intracluster medium. The feasibility of using such a diagnostic for the entropy is quantitatively assessed, based on current X-ray and upcoming SZ measurements., 9 pages, 2 figures, uses REVTeX4 + emulateapj.cls and apjfonts.sty. Accepted by ApJ
- Published
- 2005
- Full Text
- View/download PDF
30. Trade-off between angular resolution and straylight contamination in the PLANCK Low Frequency Instrument
- Author
-
F. Villa, C. Baccigalupi, Nazzareno Mandolesi, R. Paladini, Davide Maino, M. Sandri, Carlo Burigana, and M. Bersanelli
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Cosmic microwave background ,cosmology: cosmic microwave background ,Galaxy: general ,space vehicles ,telescopes ,methods: data analysis ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,law.invention ,Telescope ,symbols.namesake ,Settore FIS/05 - Astronomia e Astrofisica ,law ,Angular resolution ,Planck ,Anisotropy ,Astrophysics::Galaxy Astrophysics ,Physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Astronomy and Astrophysics ,CMB cold spot ,Space and Planetary Science ,symbols ,Satellite ,Focus (optics) - Abstract
Satellite CMB anisotropy missions and new generation of balloon-borne and ground experiments, make use of complex multi-frequency instruments at the focus of a meter class telescope. Between 70 GHz and 300 GHz, where foreground contamination is minimum, it is extremely important to reach the best trade-off between the improvement of the angular resolution and the minimization of the straylight contamination mainly due to the Galactic emission. We focus here, as a working case, on the 30 and 100 GHz channels of the Planck Low Frequency Instrument (LFI). We evaluate the GSC introduced by the most relevant Galactic foreground components for a reference set of optical configurations. We show that it is possible to improve the angular resolution of 5-7% by keeping the overall GSC below the level of few microKelvin. A comparison between the level of straylight introduced by the different Galactic components for different beam regions is presented. Simple approximate relations giving the rms and peak-to-peak levels of the GSC are provided. We compare the results obtained at 100 GHz with those at 30 GHz, where GSC is more critical. Finally, we compare the results based on Galactic foreground templates derived from radio and IR surveys with those based on WMAP maps including CMB and extragalactic source fluctuations.
- Published
- 2004
- Full Text
- View/download PDF
31. Sunyaev-Zel'dovich Effects from Quasars in Galaxies and Groups
- Author
-
G. de Zotti, A. Cavaliere, and Andrea Lapi
- Subjects
Galaxies: Quasars: General ,Physics ,Active galactic nucleus ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics (astro-ph) ,FOS: Physical sciences ,Cosmology: Cosmic Microwave Background ,Astronomy and Astrophysics ,Quasar ,Observable ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Galaxy ,Luminosity ,Baryon ,Settore FIS/05 - Astronomia e Astrofisica ,Space and Planetary Science ,Galaxies: Clusters: General ,Astrophysics::Galaxy Astrophysics - Abstract
The energy fed by active galactic nuclei to the surrounding diffuse baryons changes their amount, temperature, and distribution; so in groups and in member galaxies it affects the X-ray luminosity and also the Sunyaev-Zel'dovich effect. Here we compute how the latter is enhanced by the transient blastwave driven by an active quasar, and is depressed when the equilibrium is recovered with a depleted density. We constrain such depressions and enhancements with the masses of relic black holes in galaxies and the X-ray luminosities in groups. We discuss how all these linked observables can tell the quasar contribution to the thermal history of the baryons pervading galaxies and groups., 4 pages, 3 figures, uses REVTeX4 and emulateapj.cls. Accepted by ApJL
- Published
- 2003
- Full Text
- View/download PDF
32. Search for Non-Gaussian Signals in the BOOMERANG Maps: Pixel-Space Analysis
- Author
-
Simon Prunet, Julian Borrill, Dmitry Pogosyan, Andrew E. Lange, Eric Hivon, B. P. Crill, F. Piacentini, Carlo R. Contaldi, Nicola Vittorio, Philip Daniel Mauskopf, A. Zeppilli, Calvin B. Netterfield, J. E. Ruhl, Alessandro Melchiorri, Ken Ganga, Giovanni Romeo, T. E. Montroy, G. Polenta, Enzo Pascale, Peter A. R. Ade, A. H. Jaffe, J. R. Bond, Paolo Natoli, James J. Bock, G. De Troia, M. Giacometti, Viktor Hristov, G. de Gasperis, P. de Bernardis, Silvia Masi, and A. Boscaleri
- Subjects
cosmic microwave background ,Field (physics) ,Gaussian ,media_common.quotation_subject ,Cosmic microwave background ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,symbols.namesake ,Settore FIS/05 - Astronomia e Astrofisica ,0103 physical sciences ,Minkowski space ,Range (statistics) ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,media_common ,Physics ,010308 nuclear & particles physics ,Astrophysics (astro-ph) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmology: Cosmic Microwave Background ,Astronomy and Astrophysics ,Space and Planetary Science ,Sky ,Skewness ,Kurtosis ,symbols - Abstract
We search the BOOMERanG maps of the anisotropy of the Cosmic Microwave Background (CMB) for deviations from gaussianity. In this paper we focus on analysis techniques in pixel-space, and compute skewness, kurtosis and Minkowski functionals for the BOOMERanG maps and for gaussian simulations of the CMB sky. We do not find any significant deviation from gaussianity in the high galactic latitude section of the 150 GHz map. We do find deviations from gaussianity at lower latitudes and at 410 GHz, and we ascribe them to Galactic dust contamination. Using non-gaussian simulations of instrumental systematic effects, of foregrounds, and of sample non-gaussian cosmological models, we set upper limits to the non-gaussian component of the temperature field in the BOOMERanG maps. For fluctuations distributed as a 1 DOF $\chi^2$ mixed to the main gaussian component our upper limits are in the few % range., Comment: changes to reflect version accepted by ApJ Letters
- Published
- 2002
- Full Text
- View/download PDF
33. A double-channel photometer for the Swedish ESO submillimeter telescope
- Author
-
Pizzo, L., Andreani, P., Dall'Oglio, G., Lemke, R., Whyborn, N., and Otàrola, A.
- Published
- 1995
- Full Text
- View/download PDF
34. Making cosmic microwave background temperature and polarization maps with MADAM
- Subjects
Methods: data analysis ,Cosmology: cosmic microwave background - Published
- 2010
35. Signatures of Initial State Modifications on Bispectrum Statistics
- Author
-
Halimi, J.-M., Füzfa, A., Boucher, V, Rasera, Y, courtin, j, Corasaniti, Pier-Stefano, String Theory (ITFA, IoP, FNWI), High Energy Astrophys. & Astropart. Phys (API, FNWI), Algebra, Geometry & Mathematical Physics (KDV, FNWI), Astronomical Institute Anton Pannekoek (AI PANNEKOEK), University of Amsterdam [Amsterdam] (UvA), Institute for Theoretical Physics [Amsterdam] (IFTA), Korteweg-de Vries Institute for Mathematics, Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Institute for Theoretical Physics Amsterdam (IFTA), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université de Namur [Namur] (UNamur), Université Catholique de Louvain = Catholic University of Louvain (UCL), Université de Namur [Namur], and Université Catholique de Louvain (UCL)
- Subjects
large-scale structures of Universe ,High Energy Physics - Theory ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,supernovae ,Cosmic microwave background ,Vacuum state ,quintessence ,FOS: Physical sciences ,cosmology: cosmic microwave background ,Position and momentum space ,non-Gaussianities ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Correlation function (astronomy) ,CMB ,01 natural sciences ,Projection (linear algebra) ,dark matter ,0103 physical sciences ,Statistics ,methods: N-body simulations ,cosmological parameters ,dark energy ,010303 astronomy & astrophysics ,Physics ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,010308 nuclear & particles physics ,Spectral density ,Astronomy and Astrophysics ,Inflaton ,Inflation ,High Energy Physics - Theory (hep-th) ,Bispectrum ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Modifications of the initial-state of the inflaton field can induce a departure from Gaussianity and leave a testable imprint on the higher order correlations of the CMB and large scale structures in the Universe. We focus on the bispectrum statistics of the primordial curvature perturbation and its projection on the CMB. For a canonical single-field action the three-point correlator enhancement is localized, maximizing in the collinear limit, corresponding to enfolded or squashed triangles in comoving momentum space. We show that the available local and equilateral template are very insensitive to this localized enhancement and do not generate noteworthy constraints on initial-state modifications. On the other hand, when considering the addition of a dimension 8 higher order derivative term, we find a dominant rapidly oscillating contribution, which had previously been overlooked and whose significantly enhanced amplitude is independent of the triangle under consideration. Nevertheless, the oscillatory nature of (the sign of) the correlation function implies the signal is nearly orthogonal to currently available observational templates, strongly reducing the sensitivity to the enhancement. Constraints on departures from the standard Bunch-Davies vacuum state can be derived, but also depend on the next-to-leading terms. We emphasize that the construction and application of especially adapted templates could lead to CMB bispectrum constraints on modified initial states already competing with those derived from the power spectrum., 41 pages, 7 figures, 2 appendices. Added some clarifications and comments, additional references, to appear in JCAP
- Published
- 2009
- Full Text
- View/download PDF
36. Making Maps from Planck LFI 30GHz Data with Asymmetric Beams and Cooler Noise
- Author
-
Ashdown, M, Baccigalupi, C, Bartlett, J, Borrill, J, Cantalupo, C, DE GASPERIS, G, DE TROIA, G, G{\'Orski}, K, Hivon, E, Huffenberger, K, Keih{\anen}, E, Keskitalo, R, Kisner, T, Kurki Suonio, H, Lawrence, C, Natoli, P, Poutanen, T, Pr{\'Ezeau}, G, Reinecke, M, Rocha, G, Sandri, M, Stompor, R, Villa, F, Wandelt, B, The Planck Ctp Working Group, N, APC - Cosmologie, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), APC - Gravitation (APC-Gravitation), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, PLANCK, Physique Corpusculaire et Cosmologie - Collège de France (PCC), Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Particle Physics and Astrophysics, Helsinki Institute of Physics, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI)
- Subjects
[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,media_common.quotation_subject ,Cosmic microwave background ,FOS: Physical sciences ,Astrophysics ,Residual ,114 Physical sciences ,01 natural sciences ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,symbols.namesake ,Settore FIS/05 - Astronomia e Astrofisica ,Methods: data analysis ,0103 physical sciences ,Planck ,010303 astronomy & astrophysics ,Remote sensing ,media_common ,Physics ,010308 nuclear & particles physics ,cosmology: cosmic microwave background ,methods: data analysis ,cosmology: observations ,Astrophysics (astro-ph) ,Detector ,Cosmology: observations ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,Space and Planetary Science ,Sky ,symbols ,Cosmology: cosmic microwave background ,Deconvolution ,Beam (structure) ,Smoothing - Abstract
The Planck satellite will observe the full sky at nine frequencies from 30 to 857 GHz. The goal of this paper is to examine the effects of four realistic instrument systematics in the 30 GHz frequency maps: non-axially-symmetric beams, sample integration, sorption cooler noise, and pointing errors. We simulated one year long observations of four 30 GHz detectors. The simulated timestreams contained CMB, foreground components (both galactic and extra-galactic), instrument noise (correlated and white), and the four instrument systematic effects. We made maps from the timelines and examined the magnitudes of the systematics effects in the maps and their angular power spectra. We also compared the maps of different mapmaking codes to see how they performed. We used five mapmaking codes (two destripers and three optimal codes). None of our mapmaking codes makes an attempt to deconvolve the beam from its output map. Therefore all our maps had similar smoothing due to beams and sample integration. Temperature to polarization cross-coupling due to beam mismatch causes a detectable bias in the TE spectrum of the CMB map. The effects of cooler noise and pointing errors did not appear to be major concerns for the 30 GHz channel. The only essential difference found so far between mapmaking codes that affects accuracy (in terms of residual RMS) is baseline length. All optimal codes give essentially indistinguishable results. A destriper gives the same result as the optimal codes when the baseline is set short enough. For longer baselines destripers require less computing resources but deliver a noisier map., 32 pages, 25 figures. Published in A&A 493, 753-783 (2009)
- Published
- 2009
- Full Text
- View/download PDF
37. A full sky, low foreground, high resolution CMB map from WMAP
- Author
-
Frédéric Guilloux, Jean-François Cardoso, Jacques Delabrouille, M. Le Jeune, Gilles Faÿ, M. Betoule, APC - Gravitation (APC-Gravitation), AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, Laboratoire Traitement et Communication de l'Information (LTCI), Télécom ParisTech-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire Paul Painlevé - UMR 8524 (LPP), Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Laboratoire de Probabilités et Modèles Aléatoires (LPMA), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC), Modélisation aléatoire de Paris X (MODAL'X), Université Paris Nanterre (UPN), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Paul Painlevé (LPP), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Benassù, Serena, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)
- Subjects
[MATH.MATH-PR] Mathematics [math]/Probability [math.PR] ,[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,media_common.quotation_subject ,Cosmic microwave background ,FOS: Physical sciences ,cosmology: cosmic microwave background ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Radio spectrum ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,symbols.namesake ,Wavelet ,0103 physical sciences ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,Astrophysics::Galaxy Astrophysics ,media_common ,Physics ,Pixel ,010308 nuclear & particles physics ,Wiener filter ,Astrophysics (astro-ph) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,CMB cold spot ,methods: data analysis ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,13. Climate action ,Space and Planetary Science ,Sky ,symbols ,Satellite - Abstract
The WMAP satellite has made available high quality maps of the sky in five frequency bands ranging from 22 to 94 GHz, with the main scientific objective of studying the anisotropies of the Cosmic Microwave Background (CMB). These maps, however, contain a mixture of emissions from various astrophysical origins, superimposed on CMB emission. The objective of the present work is to make a high resolution CMB map in which contamination by such galactic and extra-galactic foregrounds, as well as by instrumental noise, is as low as possible. The method used is an implementation of a constrained linear combination of the channels with minimum error variance, and of Wiener filtering, on a frame of spherical wavelets called needlets, allowing localised filtering in both pixel space and harmonic space. We obtain a low contamination low noise CMB map at the resolution of the WMAP W channel, which can be used for a range of scientific studies. We obtain also a Wiener-filtered version with minimal integrated error. The resulting CMB maps offer significantly better rejection of galactic foregrounds than previous CMB maps from WMAP data. They can be considered as the most precise full-sky CMB temperature maps to-date., Comment: Submitted to A&A, 24 pages, 15 figures. For pdf file with full resolution figures, and for data products, see http://www.apc.univ-paris7.fr/APC_CS/Recherche/Adamis/cmb_wmap-en.php
- Published
- 2009
- Full Text
- View/download PDF
38. What can be learned about dark energy evolution?
- Author
-
Marian Douspis, Alain Blanchard, Alain Riazuelo, Yves Zolnierowski, Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de l'Observatoire Midi-Pyrénées (LATT), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Astrophysique de Toulouse-Tarbes (LATT), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)
- Subjects
[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Cosmic microwave background ,Cosmological parameters ,FOS: Physical sciences ,cosmology: cosmic microwave background ,Cosmological constant ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Space (mathematics) ,01 natural sciences ,Omega ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,0103 physical sciences ,010303 astronomy & astrophysics ,Physics ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,010308 nuclear & particles physics ,Equation of state (cosmology) ,Astrophysics (astro-ph) ,Astronomy and Astrophysics ,Redshift ,Cosmology ,Supernovae ,Space and Planetary Science ,cosmology: observations ,Dark energy ,cosmology: cosmological parameters ,Quintessence - Abstract
We examine constraints obtained from SNIa surveys on a two parameter model of dark energy in which the equation of state $w (z) = P(z) / \rho (z)$ undergoes a transition over a period significantly shorter than the Hubble time. We find that a transition between $w \sim -0.2$ and $w \sim -1$ (the first value being somewhat arbitrary) is allowed at redshifts as low as 0.1, despite the fact that data extend beyond $z \sim 1$. Surveys with the precision anticipated for space experiments should allow only slight improvement on this constraint, as a transition occurring at a redshift as low as $\sim 0.17$ could still remain undistinguishable from a standard cosmological constant. The addition of a prior on the matter density $\Omega_\MAT = 0.3$ only modestly improves the constraints. Even deep space experiments would still fail to identify a rapid transition at a redshift above 0.5. These results illustrate that a Hubble diagram of distant SNIa alone will not reveal the actual nature of dark energy at a redshift above 0.2 and that only the local dynamics of the quintessence field can be infered from a SNIa Hubble diagram. Combinations, however, seem to be very efficient: we found that the combination of present day CMB data and SNIa already excludes a transition at redshifts below 0.8., Comment: Accepted in Astronomy and Astrophysics; new version: data updated, conclusion unchanged
- Published
- 2008
- Full Text
- View/download PDF
39. Component separation methods for the Planck mission
- Author
-
S. M. Leach, J.-F. Cardoso, C. Baccigalupi, R. B. Barreiro, M. Betoule, J. Bobin, A. Bonaldi, J. Delabrouille, G. de Zotti, C. Dickinson, H. K. Eriksen, J. González-Nuevo, F. K. Hansen, D. Herranz, M. Le Jeune, M. López-Caniego, E. Martínez-González, M. Massardi, J.-B. Melin, M.-A. Miville-Deschênes, G. Patanchon, S. Prunet, S. Ricciardi, E. Salerno, J. L. Sanz, J.-L. Starck, F. Stivoli, V. Stolyarov, R. Stompor, P. Vielva, Scuola Internazionale Superiore di Studi Avanzati / International School for Advanced Studies (SISSA / ISAS), AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire Traitement et Communication de l'Information (LTCI), Télécom ParisTech-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Département d'Astrophysique, de physique des Particules, de physique Nucléaire et de l'Instrumentation Associée (DAPNIA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), CEA, DSM, SPP, Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Département d'Astrophysique (ex SAP) (DAP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, APC - Gravitation (APC-Gravitation), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, PLANCK, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI)
- Subjects
Point source ,[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,media_common.quotation_subject ,Cosmic microwave background ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,7. Clean energy ,01 natural sciences ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,symbols.namesake ,Settore FIS/05 - Astronomia e Astrofisica ,Methods: data analysis ,Cosmic Microwave Background ,0103 physical sciences ,Astrophysical image processing ,Planck ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,media_common ,Physics ,Cross-correlation ,010308 nuclear & particles physics ,Astrophysics (astro-ph) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Spectral density estimation ,Spectral density ,Astronomy and Astrophysics ,Independent component analysis ,13. Climate action ,Space and Planetary Science ,Sky ,symbols ,Diffuse component separation ,Cosmology: cosmic microwave background - Abstract
The Planck satellite will map the full sky at nine frequencies from 30 to 857 GHz. The CMB intensity and polarization that are its prime targets are contaminated by foreground emission. The goal of this paper is to compare proposed methods for separating CMB from foregrounds based on their different spectral and spatial characteristics, and to separate the foregrounds into components of different physical origin. A component separation challenge has been organized, based on a set of realistically complex simulations of sky emission. Several methods including those based on internal template subtraction, maximum entropy method, parametric method, spatial and harmonic cross correlation methods, and independent component analysis have been tested. Different methods proved to be effective in cleaning the CMB maps from foreground contamination, in reconstructing maps of diffuse Galactic emissions, and in detecting point sources and thermal Sunyaev-Zeldovich signals. The power spectrum of the residuals is, on the largest scales, four orders of magnitude lower than that of the input Galaxy power spectrum at the foreground minimum. The CMB power spectrum was accurately recovered up to the sixth acoustic peak. The point source detection limit reaches 100 mJy, and about 2300 clusters are detected via the thermal SZ effect on two thirds of the sky. We have found that no single method performs best for all scientific objectives. We foresee that the final component separation pipeline for Planck will involve a combination of methods and iterations between processing steps targeted at different objectives such as diffuse component separation, spectral estimation and compact source extraction., Matches version accepted by A&A. A version with high resolution figures is available at http://people.sissa.it/~leach/compsepcomp.pdf
- Published
- 2008
- Full Text
- View/download PDF
40. Statistical properties of SZ and X-ray cluster detections
- Author
-
Matthias Bartelmann, Lauro Moscardini, Nico Cappelluti, Matteo Maturi, Massimo Meneghetti, Klaus Dolag, Francesco Pace, Pace F., Maturi M., Bartelmann M., Cappellutti N., Dolag K., Meneghetti M., and Moscardini L.
- Subjects
Physics ,education.field_of_study ,Number density ,Cosmology: cosmic microwave background ,Cosmology: theory ,Galaxies: clusters: general ,Methods: N-body simulations ,X-rays: galaxies: clusters ,Population ,Astrophysics (astro-ph) ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Noise (electronics) ,Redshift ,Space and Planetary Science ,Cluster (physics) ,Limit (mathematics) ,Halo ,Spurious relationship ,education - Abstract
Aims. We calibrate the number density, completeness, reliability and the lower mass limit of galaxy-cluster detections through their thermal SZ signal, and compare them to X-ray cluster detections. Methods. We simulate maps of the thermal SZ effect and the X-ray emission from light cones constructed in a large, hydrodynamical, cosmological simulation volume, including realistic noise contributions. The maps are convolved with linear, optimised, single- and multi-band filters to identify local peaks and their signal-to-noise ratios. The resulting peak catalogues are then compared to the halo population in the simulation volume to identify true and spurious detections. Results. Multi-band filtering improves the statistics of SZ cluster detections considerably compared to single-band filtering. Observations with the characteristics of ACT detect clusters with masses M>6-9e13 M_o/h, quite independent of redshift, reach 50% completeness at ~1e14 M_o/h and 100% completeness at ~2e14 M_o/h. Samples are contaminated by only a few per cent spurious detections. This is broadly comparable to X-ray cluster detections with XMM-Newton with 100 ks exposure time in the soft band, except that the mass limit for X-ray detections increases much more steeply with redshift than for SZ detections. A comparison of true and filtered signals in the SZ and X-ray maps confirms that the filters introduce at most a negligible bias., 13 pages, 17 figures, published on A&A
- Published
- 2008
41. Forecasting the Bayes factor of a future observation
- Author
-
Roberto Trotta
- Subjects
cosmology : cosmological parameters ,POWER SPECTRUM ,Concordance ,FOS: Physical sciences ,methods : data analysis ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,cosmology : cosmic microwave background ,Odds ,symbols.namesake ,Cosmology: cosmological parameters ,Settore FIS/05 - Astronomia e Astrofisica ,CONSTANT ,Methods: data analysis ,astro-ph ,Econometrics ,Planck ,Methods: statistical ,methods : statistical ,MODEL SELECTION ,Physics ,Science & Technology ,Model selection ,Design of experiments ,Astrophysics (astro-ph) ,Scalar (physics) ,Astronomy and Astrophysics ,Bayes factor ,HUBBLE-SPACE-TELESCOPE ,EVOLUTION ,0201 Astronomical And Space Sciences ,Space and Planetary Science ,WMAP ,Physical Sciences ,symbols ,Cosmology: cosmic microwave background - Abstract
I present a new procedure to forecast the Bayes factor of a future observation by computing the Predictive Posterior Odds Distribution (PPOD). This can assess the power of future experiments to answer model selection questions and the probability of the outcome, and can be helpful in the context of experiment design. As an illustration, I consider a central quantity for our understanding of the cosmological concordance model, namely the scalar spectral index of primordial perturbations, n_S. I show that the Planck satellite has over 90% probability of gathering strong evidence against n_S = 1, thus conclusively disproving a scale-invariant spectrum. This result is robust with respect to a wide range of choices for the prior on n_S., Comment: 7 pages, 2 figures; minor changes, updated references. Matches version accepted by MNRAS
- Published
- 2007
42. Swift detection of all previously undetected blazars in a micro-wave flux-limited sample of WMAP foreground sources
- Author
-
Roberto Nesci, Gianpiero Tagliaferri, A. Tramacere, Sergio Colafrancesco, A. J. Blustin, Hans A. Krimm, Milvia Capalbi, David N. Burrows, A. Falcone, Antonino Cucchiara, Gino Tosti, Paolo Giommi, A. M. Parsons, A. J. Dean, Bing Zhang, Guido Chincarini, M. Perri, J. A. Kennea, Neil Gehrels, E. Cavazzuti, Frank Marshall, and Graziella Branduardi-Raymont
- Subjects
Spectral shape analysis ,Radio galaxy ,Astrophysics::High Energy Astrophysical Phenomena ,cosmology ,cosmology : cosmic microwave background ,cosmology: cosmic microwave background ,microwave background ,quasars ,quasars : general ,quasars: general ,radiation mechanisms : non-thermal ,radiation mechanisms: non-thermal ,Population ,Cosmic microwave background ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,symbols.namesake ,Spectral slope ,Planck ,education ,Blazar ,Astrophysics::Galaxy Astrophysics ,Physics ,education.field_of_study ,Astrophysics (astro-ph) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,CMB cold spot ,Space and Planetary Science ,symbols - Abstract
Almost the totality of the bright foreground sources in the WMAP CMB maps are blazars, a class of sources that show usually also X-ray emission. However, 23 objects in a flux-limited sample of 140 blazars of the WMAP catalog (first year) were never reported before as X-ray sources. We present here the results of 41 Swift observations which led to the detection of all these 23 blazars in the 0.3-10 keV band. We conclude that all micro-wave selected blazars are X-ray emitters and that the distribution of the micro-wave to X-ray spectral slope $\alpha_{mu x}$ of LBL blazars is very narrow, confirming that the X-ray flux of most blazars is a very good estimator of their micro-wave emission. The X-ray spectral shape of all the objects that were observed long enough to allow spectral analysis is flat and consistent with inverse Compton emission within the commonly accepted view where the radiation from blazars is emitted in a Sychrotron-Inverse-Compton scenario. We predict that all blazars and most radio galaxies above the sensitivity limit of the WMAP and of the Planck CMB missions are X-ray sources detectable by the present generation of X-ray satellites. An hypothetical all-sky soft X-ray survey with sensitivity of approximately $10^{-15}$ erg/s would be crucial to locate and remove over 100,000 blazars from CMB temperature and polarization maps and therefore accurately clean the primordial CMB signal from the largest population of extragalactic foreground contaminants., Comment: 13 pages, 4 figures, 5 tables, A&A in press
- Published
- 2007
43. Making sky maps from Planck data
- Author
-
Hannu Kurki-Suonio, Simon Prunet, M. Reinecke, Benjamin D. Wandelt, Julian Borrill, Eric Hivon, Charles R. Lawrence, E. Keihänen, Amedeo Balbi, James G. Bartlett, Radek Stompor, C. Baccigalupi, Krzysztof M. Gorski, M. Ashdown, C. Cantalupo, G. de Gasperis, T. Poutanen, Paolo Natoli, APC - Cosmologie, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), APC - Gravitation (APC-Gravitation), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, Particle Physics and Astrophysics, Helsinki Institute of Physics, Physique Corpusculaire et Cosmologie - Collège de France (PCC), Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI)
- Subjects
[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Pipeline (computing) ,media_common.quotation_subject ,Cosmic microwave background ,education ,FOS: Physical sciences ,Astrophysics ,Cosmology: cosmic microwave background ,Methods: data analysis ,7. Clean energy ,01 natural sciences ,114 Physical sciences ,Set (abstract data type) ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,symbols.namesake ,Settore FIS/05 - Astronomia e Astrofisica ,0103 physical sciences ,Planck ,010303 astronomy & astrophysics ,media_common ,Physics ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,010308 nuclear & particles physics ,Astrophysics (astro-ph) ,Detector ,Volume (computing) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,Space and Planetary Science ,Sky ,symbols ,Noise (video) ,Algorithm - Abstract
We compare the performance of multiple codes written by different groups for making polarized maps from Planck-sized, all-sky cosmic microwave background (CMB) data. Three of the codes are based on a destriping algorithm; the other three are implementations of an optimal maximum-likelihood algorithm. Time-ordered data (TOD) were simulated using the Planck Level-S simulation pipeline. Several cases of temperature-only data were run to test that the codes could handle large datasets, and to explore effects such as the precision of the pointing data. Based on these preliminary results, TOD were generated for a set of four 217 GHz detectors (the minimum number required to produce I, Q, and U maps) under two different scanning strategies, with and without noise. Following correction of various problems revealed by the early simulation, all codes were able to handle the large data volume that Planck will produce. Differences in maps produced are small but noticeable; differences in computing resources are large., 19 pages, 3 figures. Submitted to A&A
- Published
- 2007
- Full Text
- View/download PDF
44. Making Maps from Planck LFI 30GHz Data
- Author
-
Ashdown, M. A. J., Baccigalupi, C., Balbi, A., Bartlett, J. G., Borrill, J., Cantalupo, C., de Gasperis, G., Gorski, K. M., Heikkilä, V., Hivon, E., Keihänen, E., Kurki-Suonio, H., Lawrence, C. R., Natoli, P., Poutanen, T., Prunet, S., Reinecke, M., Stompor, R., Wandelt, B., The Planck CTP Working Group, APC - Cosmologie, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut d'Astrophysique de Paris (IAP), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), APC - Gravitation (APC-Gravitation), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, PLANCK, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Physique Corpusculaire et Cosmologie - Collège de France (PCC), Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Department of Physics, Helsinki Institute of Physics, and Particle Physics and Astrophysics
- Subjects
techniques : image processing ,[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,cosmology : cosmic microwave background ,methods : data analysis ,cosmology : observations ,media_common.quotation_subject ,Cosmic microwave background ,cosmology: cosmic microwave background ,methods: data analysis ,techniques: image processing ,cosmology: observations ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,114 Physical sciences ,01 natural sciences ,Signal ,Noise (electronics) ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,symbols.namesake ,Settore FIS/05 - Astronomia e Astrofisica ,Methods: data analysis ,0103 physical sciences ,Planck ,010303 astronomy & astrophysics ,media_common ,Physics ,Series (mathematics) ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,010308 nuclear & particles physics ,Astrophysics (astro-ph) ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,115 Astronomy, Space science ,Subpixel rendering ,Computational physics ,Space and Planetary Science ,Sky ,symbols ,Cosmology: cosmic microwave background - Abstract
This paper is one of a series describing the performance and accuracy of map-making codes as assessed by the Planck CTP working group. We compare the performance of multiple codes written by different groups for making polarized maps from Planck-sized, all-sky cosmic microwave background (CMB) data. Three of the codes are based on destriping algorithm, whereas the other three are implementations of a maximum-likelihood algorithm. Previous papers in the series described simulations at 100 GHz (Poutanen et al. 2006) and 217 GHz (Ashdown et al. 2006). In this paper we make maps (temperature and polarisation) from the simulated one-year observations of four 30 GHz detectors of Planck Low Frequency Instrument (LFI). We used Planck Level S simulation pipeline to produce the observed time-ordered-data streams (TOD). Our previous studies considered polarisation observations for the CMB only. For this paper we increased the realism of the simulations and included polarized galactic foregrounds to our sky model. Our simulated TODs comprised of dipole, CMB, diffuse galactic emissions, extragalactic radio sources, and detector noise. The strong subpixel signal gradients arising from the foreground signals couple to the output map through the map-making and cause an error (signal error) in the maps. Destriping codes have smaller signal error than the maximum-likelihood codes. We examined a number of schemes to reduce this error. On the other hand, the maximum-likelihood map-making codes can produce maps with lower residual noise than destriping codes., 24 pages, 13 figures. Submitted to A&A. For a version with better-quality figures, see http://www.helsinki.fi/~tfo_cosm/tfo_planck.html
- Published
- 2007
- Full Text
- View/download PDF
45. A Measurement of the Angular Power Spectrum of the CMB Temperature Anisotropy from the 2003 Flight of BOOMERANG
- Author
-
G. Di Stefano, Giovanni Romeo, Enzo Pascale, P. Cabella, E. Hivon, Carlo R. Contaldi, Dmitry Pogosyan, M. Veneziani, Peter A. R. Ade, G. de Gasperis, Simon Prunet, T. E. Montroy, B. P. Crill, G. De Troia, Nicola Vittorio, G. Polenta, W. C. Jones, Barth Netterfield, Max Tegmark, Philip Daniel Mauskopf, Paola Santini, J. R. Bond, Julian Borrill, Silvia Masi, Paolo Natoli, Andrew E. Lange, Andrew H. Jaffe, Alessandro Melchiorri, A. de Oliveira-Costa, C. J. MacTavish, P. de Bernardis, James J. Bock, S. Ricciardi, J. E. Ruhl, Theodore Kisner, F. Piacentini, and A. Boscaleri
- Subjects
cosmic microwave background ,instrumentation : detectors ,Field (physics) ,media_common.quotation_subject ,Cosmic microwave background ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Cosmology: Observations ,01 natural sciences ,law.invention ,symbols.namesake ,Settore FIS/05 - Astronomia e Astrofisica ,law ,0103 physical sciences ,Planck ,Anisotropy ,010303 astronomy & astrophysics ,media_common ,Physics ,010308 nuclear & particles physics ,Astrophysics (astro-ph) ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,Spectral density ,cosmology : observations ,cosmology: observations ,instrumentation: detectors ,Cosmology: Cosmic Microwave Background ,Astronomy and Astrophysics ,Instrumentation: Detectors ,Space and Planetary Science ,Sky ,symbols ,Multipole expansion - Abstract
We report on observations of the Cosmic Microwave Background (CMB) obtained during the January 2003 flight of Boomerang . These results are derived from 195 hours of observation with four 145 GHz Polarization Sensitive Bolometer (PSB) pairs, identical in design to the four 143 GHz Planck HFI polarized pixels. The data include 75 hours of observations distributed over 1.84% of the sky with an additional 120 hours concentrated on the central portion of the field, itself representing 0.22% of the full sky. From these data we derive an estimate of the angular power spectrum of temperature fluctuations of the CMB in 24 bands over the multipole range (50 < l < 1500). A series of features, consistent with those expected from acoustic oscillations in the primordial photon-baryon fluid, are clearly evident in the power spectrum, as is the exponential damping of power on scales smaller than the photon mean free path at the epoch of last scattering (l > 900). As a consistency check, the collaboration has performed two fully independent analyses of the time ordered data, which are found to be in excellent agreement., 11 pages, 7 figures, 3 tables. High resolution figures and data are available at http://cmb.phys.cwru.edu/boomerang/ and http://oberon.roma1.infn.it/boomerang/b2k
- Published
- 2006
46. Cosmological Parameters from the 2003 Flight of BOOMERANG
- Author
-
Peter A. R. Ade, Dmitry Pogosyan, T. E. Montroy, Andrew E. Lange, W. C. Jones, Eric Hivon, Max Tegmark, Philip Daniel Mauskopf, Theodore Kisner, M. Veneziani, B. P. Crill, F. Piacentini, Nicola Vittorio, Julian Borrill, Silvia Masi, James J. Bock, Alessandro Melchiorri, A. de Oliveira-Costa, Enzo Pascale, S. Ricciardi, A. H. Jaffe, C. J. MacTavish, A. Lewis, G. Di Stefano, Simon Prunet, P. de Bernardis, Calvin B. Netterfield, Paolo Cabella, J. E. Ruhl, G. Polenta, G. De Troia, J. R. Bond, Paolo Natoli, G. de Gasperis, Giovanni Romeo, P. Santini, A. Boscaleri, and Carlo R. Contaldi
- Subjects
cosmic microwave background ,Cosmic microwave background ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Curvature ,01 natural sciences ,Spectral line ,law.invention ,Telescope ,High Energy Physics - Phenomenology (hep-ph) ,Settore FIS/05 - Astronomia e Astrofisica ,law ,0103 physical sciences ,cosmological parameters ,polarization ,010303 astronomy & astrophysics ,Physics ,Spectral index ,010308 nuclear & particles physics ,Astrophysics (astro-ph) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmology: Cosmic Microwave Background, Cosmology: Cosmological Parameters, Polarization ,Cosmology: Cosmic Microwave Background ,Astronomy and Astrophysics ,Redshift ,High Energy Physics - Phenomenology ,Cosmology: Cosmological Parameters ,Space and Planetary Science ,Dark energy ,Neutrino - Abstract
We present the cosmological parameters from the CMB intensity and polarization power spectra of the 2003 Antarctic flight of the BOOMERANG telescope. The BOOMERANG data alone constrains the parameters of the $\Lambda$CDM model remarkably well and is consistent with constraints from a multi-experiment combined CMB data set. We add LSS data from the 2dF and SDSS redshift surveys to the combined CMB data set and test several extensions to the standard model including: running of the spectral index, curvature, tensor modes, the effect of massive neutrinos, and an effective equation of state for dark energy. We also include an analysis of constraints to a model which allows a CDM isocurvature admixture., Comment: 18 pages, 10 figures, submitted to ApJ
- Published
- 2006
47. Searching for AGN-driven Shocks in Galaxy Clusters
- Author
-
A. Cavaliere and Andrea Lapi
- Subjects
Physics ,Galaxies: Quasars: General ,Active galactic nucleus ,Cosmology: Cosmic Microwave Background ,Shock Waves ,Shock (fluid dynamics) ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics (astro-ph) ,FOS: Physical sciences ,Astronomy and Astrophysics ,Quasar ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Nuclear activity ,Galaxy ,Galaxy groups and clusters ,Settore FIS/05 - Astronomia e Astrofisica ,Space and Planetary Science ,Intracluster medium ,Galaxy cluster ,Astrophysics::Galaxy Astrophysics - Abstract
Shocks and blastwaves are expected to be driven driven into the intracluster medium filling galaxy groups and clusters by powerful outbursts of active galactic nuclei or quasars in the member galaxies; the first footprints of shock fronts have been tentatively traced out with X-ray imaging. We show how overpressures in the blasts behind the shock can prove the case and also provide specific marks of the nuclear activity: its strength, its current stage, and the nature of its prevailing output. We propose to detect these marks with the aimed pressure probe constituted by the resolved Sunyaev-Zel'dovich effect. We compute and discuss the outcomes to be expected in nearby and distant sources at different stages of their activity., Comment: 4 pages, 1 figure, uses REVTeX4 + emulateapj.cls and apjfonts.sty. Accepted on ApJL
- Published
- 2006
- Full Text
- View/download PDF
48. Studying the leptonic structure of galaxy cluster atmospheres from the spectral properties of the SZ effect
- Author
-
Colafrancesco, Sergio, Prokhorov, Dmitry, Dogiel, Vladimir, Colafrancesco, Sergio, Prokhorov, Dmitry, and Dogiel, Vladimir
- Abstract
We study the energetics of galaxy-cluster atmospheres by analyzing the SZ effect spectra around the crossover frequency. We calculate analytically the expressions of both the crossover frequency and the spectral slope of the SZE around the crossover frequency in various cases: a thermal electron population; a power-law, non-thermal, electron population; and a population of electrons experiencing a stochastic acceleration. We find that the value of the crossover frequency X0 of the SZE depends significantly on the cluster peculiar velocity Vr which determines the amplitude of the kinematic SZE), while the value of the slope of the SZE does not depend on the kinematic SZE spectrum in the optimal frequency range around the crossover frequency of the thermal SZE, i.e. in the frequency range x = 3.5 - 4.5. Therefore, while the amplitude of the SZ produces a systematic bias in the position of the crossover frequency X0, it does not affect significantly the spectral slope of the SZE. We therefore propose using measurements of the spectral slope of the SZE to obtain unbiased information about the specific properties of various electron distributions in galaxy clusters as well as in other cosmic structures in which a SZE can be produced.
- Published
- 2009
- Full Text
- View/download PDF
49. Temperature and polarization angular power spectra of Galactic dust radiation at 353 GHz as measured by Archeops
- Author
-
N. Ponthieu, J. F. Macías-Pérez, M. Tristram, P. Ade, A. Amblard, R. Ansari, J. Aumont, É. Aubourg, A. Benoît, J.-Ph. Bernard, A. Blanchard, J. J. Bock, F. R. Bouchet, A. Bourrachot, P. Camus, J.-F. Cardoso, F. Couchot, P. de Bernardis, J. Delabrouille, F.-X. Désert, M. Douspis, L. Dumoulin, Ph. Filliatre, P. Fosalba, M. Giard, Y. Giraud-Héraud, R. Gispert, J. Grain, L. Guglielmi, J.-Ch. Hamilton, S. Hanany, S. Henrot-Versillé, J. Kaplan, G. Lagache, A. E. Lange, K. Madet, B. Maffei, S. Masi, F. Mayet, F. Nati, G. Patanchon, O. Perdereau, S. Plaszczynski, M. Piat, S. Prunet, J.-L. Puget, C. Renault, C. Rosset, D. Santos, D. Vibert, D. Yvon, Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Département d'Astrophysique, de physique des Particules, de physique Nucléaire et de l'Instrumentation Associée (DAPNIA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre de Recherches sur les Très Basses Températures (CRTBT), Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Université Joseph Fourier - Grenoble 1 (UJF), Centre d'étude spatiale des rayonnements (CESR), Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Laboratoire d'Astrophysique de l'Observatoire Midi-Pyrénées (LATT), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Physique Corpusculaire et Cosmologie - Collège de France (PCC), Collège de France (CdF (institution))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Grenoble (LAOG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC), ARCHEOPS, Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Ponthieu, N, Mac??as-P??rez, J, Tristram, M, Ade, P, Amblard, A, Ansari, R, Aumont, J, Aubourg, ?, Beno??t, A, Bernard, J, Blanchard, A, Bock, J, Bouchet, F, Bourrachot, A, Camus, P, Cardoso, J, Couchot, F, de Bernardis, P, Delabrouille, J, D??sert, F, Douspis, M, Dumoulin, L, Filliatre, P, Fosalba, P, Giard, M, Giraud-H??raud, Y, Gispert, R, Grain, J, Guglielmi, L, Hamilton, J, Hanany, S, Henrot-Versill??, S, Kaplan, J, Lagache, G, Lange, A, Madet, K, Maffei, B, Masi, S, Mayet, F, Nati, F, Patanchon, G, Perdereau, O, Plaszczynski, S, Piat, M, Prunet, S, Puget, J, Renault, C, Rosset, C, Santos, D, Vibert, D, Yvon, D, Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), and Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
media_common.quotation_subject ,Cosmic microwave background ,Extrapolation ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Radiation ,01 natural sciences ,Cosmology: observation ,Spectral line ,Submillimetre ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Polarization ,0103 physical sciences ,Cosmic Microwave Background ,010303 astronomy & astrophysics ,Observations ,Astrophysics::Galaxy Astrophysics ,QB ,media_common ,Physics ,Archeops ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,010308 nuclear & particles physics ,Astrophysics (astro-ph) ,Spectral density ,Astronomy and Astrophysics ,Dust ,Extinction ,Polarization (waves) ,Cosmology ,13. Climate action ,Space and Planetary Science ,Sky ,Foreground ,Cosmology: cosmic microwave background ,ISM: dust, extinction - Abstract
We present the first measurement of temperature and polarization angular power spectra of the diffuse emission of Galactic dust at 353 GHz as seen by Archeops on 20% of the sky. The temperature angular power spectrum is compatible with that provided by the extrapolation to 353 GHz of IRAS and DIRBE maps using \cite{fds} model number 8. For Galactic latitudes $|b| \geq 5$ deg we report a 4 sigma detection of large scale ($3\leq \ell \leq 8$) temperature-polarization cross-correlation $(\ell+1)C_\ell^{TE}/2\pi = 76\pm 21 \mu\rm{K_{RJ}}^2$ and set upper limits to the $E$ and $B$ modes at $11 \mu\rm{K_{RJ}}^2$. For Galactic latitudes $|b| \geq 10$ deg, on the same angular scales, we report a 2 sigma detection of temperature-polarization cross-correlation $(\ell+1)C_\ell^{TE}/2\pi = 24\pm 13 \mu\rm{K_{RJ}}^2$. These results are then extrapolated to 100 GHz to estimate the contamination in CMB measurements by polarized diffuse Galactic dust emission. The $TE$ signal is then $1.7\pm0.5$ and $0.5\pm0.3 \mu\rm{K^2_{CMB}}$ for $|b| \geq 5$ and 10 deg. respectively. The upper limit on $E$ and $B$ becomes $0.2 \mu\rm{K^2_{CMB}} (2\sigma)$. If polarized dust emission at higher Galactic latitude cuts is similar to the one we report here, then dust polarized radiation will be a major foreground for determining the polarization power spectra of the CMB at high frequencies above 100 GHz., Comment: 11 pages, 8 figures, submitted to AA
- Published
- 2005
- Full Text
- View/download PDF
50. A Measurement of the CMB Spectrum from the 2003 Flight of BOOMERANG
- Author
-
J. Borrill, F. Piacentini, Alessandro Melchiorri, A. de Oliveira-Costa, Theodore Kisner, P. Cabella, Calvin B. Netterfield, J. E. Ruhl, E. Hivon, Enzo Pascale, T. E. Montroy, D. Pogosyan, G. Romeo, S. Ricciardi, P. D. Mauskopf, Carlo R. Contaldi, P. A. R. Ade, Simon Prunet, J. R. Bond, P. Natoli, W. C. Jones, Max Tegmark, C. J. MacTavish, B. P. Crill, J. J. Bock, M. Veneziani, G. De Troia, G. de Gasperis, Nicola Vittorio, P. de Bernardis, Andrew E. Lange, G. Di Stefano, G. Polenta, Andrew H. Jaffe, Paola Santini, Silvia Masi, and A. Boscaleri
- Subjects
media_common.quotation_subject ,Cosmic microwave background ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Spectral line ,Cosmology ,law.invention ,Settore FIS/05 - Astronomia e Astrofisica ,law ,0103 physical sciences ,Adiabatic process ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,media_common ,Physics ,010308 nuclear & particles physics ,Bolometer ,Detector ,Astrophysics (astro-ph) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,Cosmology: Cosmic Microwave Background ,Polarization (waves) ,Cosmology: Cosmic Microwave Background, Instrumentation: Detectors ,Instrumentation: Detectors ,Space and Planetary Science ,Sky - Abstract
We report measurements of the CMB polarization power spectra from the January 2003 Antarctic flight of BOOMERANG. The primary results come from six days of observation of a patch covering 0.22% of the sky centered near R.A. = 82.5 deg., Dec= -45 deg. The observations were made using four pairs of polarization sensitive bolometers operating in bands centered at 145 GHz. Using two independent analysis pipelines, we measure a non-zero signal in the range 100< l contribution, and a 2-sigma upper limit of 7.0 uK^2 for the spectrum. Estimates of foreground intensity fluctuations and the non-detection of and signals rule out any significant contribution from galactic foregrounds. The results are consistent with a Lambda-CDM cosmology seeded by adiabatic perturbations. We note that this is the first detection of CMB polarization with bolometric detectors., Comment: Submitted to Astrophysical Journal
- Published
- 2005
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.