102 results on '"Cothard, N"'
Search Results
2. Parallel Plate Capacitor Aluminum KIDs for Future Far-Infrared Space-Based Observatories
- Author
-
Cothard, N. F., Albert, C., Beyer, A. D., Bradford, C. M., Echternach, P., Eom, B. H., Foote, L., Foote, M., Hailey-Dunsheath, S., Janssen, R. M. J., Kane, E., LeDuc, H., Perido, J., Glenn, J., and Day, P. K.
- Published
- 2024
- Full Text
- View/download PDF
3. High-Sensitivity Kinetic Inductance Detector Arrays for the PRobe Far-Infrared Mission for Astrophysics
- Author
-
Foote, L., Albert, C., Baselmans, J., Beyer, A. D., Cothard, N. F., Day, P. K., Hailey-Dunsheath, S., Echternach, P. M., Janssen, R. M. J., Kane, E., Leduc, H., Liu, L.-J., Nguyen, H., Perido, J., Glenn, J., Zmuidzinas, J., and Bradford, C. M.
- Published
- 2024
- Full Text
- View/download PDF
4. CCAT-prime Collaboration: Science Goals and Forecasts with Prime-Cam on the Fred Young Submillimeter Telescope
- Author
-
collaboration, CCAT-Prime, Aravena, M., Austermann, J. E., Basu, K., Battaglia, N., Beringue, B., Bertoldi, F., Bigiel, F., Bond, J. R., Breysse, P. C., Broughton, C., Bustos, R., Chapman, S. C., Charmetant, M., Choi, S. K., Chung, D. T., Clark, S. E., Cothard, N. F., Crites, A. T., Dev, A., Douglas, K., Duell, C. J., Dunner, R., Ebina, H., Erler, J., Fich, M., Fissel, L. M., Foreman, S., Gallardo, P. A., Gao, J., García, Pablo, Giovanelli, R., Golec, J. E., Groppi, C. E., Haynes, M. P., Henke, D., Hensley, B., Herter, T., Higgins, R., Hlozek, R., Huber, A., Huber, Z., Hubmayr, J., Jackson, R., Johnstone, D., Karoumpis, C., Keating, L. C., Komatsu, E., Li, Y., Magnelli, B., Matthews, B. C., Mauskopf, P., McMahon, J. J., Meerburg, P. D., Meyers, J., Muralidhara, V., Murray, N. W., Niemack, M. D., Nikola, T., Okada, Y., Puddu, R., Riechers, D. A., Rosolowsky, E., Rossi, K., Rotermund, K., Roy, A., Sadavoy, S. I., Schaaf, R., Schilke, P., Scott, D., Simon, R., Sinclair, Adrian K., Sivakoff, G. R., Stacey, G. J., Stutz, Amelia M., Stutzki, J., Tahani, M., Thanjavur, K., Timmermann, R. A., Ullom, J. N., van Engelen, A., Vavagiakis, E. M., Vissers, M. R., Wheeler, J. D., White, S. D. M., Zhu, Y., and Zou, B.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
We present a detailed overview of the science goals and predictions for the Prime-Cam direct detection camera/spectrometer being constructed by the CCAT-prime collaboration for dedicated use on the Fred Young Submillimeter Telescope (FYST). The FYST is a wide-field, 6-m aperture submillimeter telescope being built (first light in mid-2024) by an international consortium of institutions led by Cornell University and sited at more than 5600 meters on Cerro Chajnantor in northern Chile. Prime-Cam is one of two instruments planned for FYST and will provide unprecedented spectroscopic and broadband measurement capabilities to address important astrophysical questions ranging from Big Bang cosmology through reionization and the formation of the first galaxies to star formation within our own Milky Way galaxy. Prime-Cam on the FYST will have a mapping speed that is over ten times greater than existing and near-term facilities for high-redshift science and broadband polarimetric imaging at frequencies above 300 GHz. We describe details of the science program enabled by this system and our preliminary survey strategies., Comment: 61 pages, 16 figures. Resubmitted to ApJSS July 11, 2022
- Published
- 2021
- Full Text
- View/download PDF
5. Developing AlMn films for Argonne TES fabrication
- Author
-
Vavagiakis, E. M., Cothard, N. F., Stevens, J. R., Chang, C. L., Niemack, M. D., Wang, G., Yefremenko, V. G., and Zhang, J.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Instrumentation and Detectors - Abstract
The reference design for the next-generation cosmic microwave background (CMB) experiment, CMB-S4, relies on large arrays of transition edge sensor (TES) bolometers coupled to Superconducting Quantum Interference Device (SQUID)-based readout systems. Mapping the CMB to near cosmic variance limits will enable the search for signatures of inflation and constrain dark energy and neutrino physics. AlMn TESes provide simple film manufacturing and highly uniform arrays over large areas to meet the requirements of the CMB-S4 experiment. TES parameters such as critical temperature and normal resistance must be tuned to experiment specifications and can be varied based on geometry and steps in the fabrication process such as deposition layering, geometry, and baking time and temperature. Using four-terminal sensing, we measured $T_C$ and $R_N$ of AlMn 2000 ppm films and devices of varying thicknesses fabricated at Argonne National Laboratory to motivate device geometries and fabrication processes to tune $T_C$ to 150-200 mK and $R_N$ to $\sim$10 mOhms. Measurements of IV curves and time constants for the resulting devices of varying leg length were made using time-division SQUID multiplexing, and determined $T_C$, $G$, $k$, $f_{3db}$, and $R_N$. We present the results of these tests along with the geometries and fabrication steps used to tune the device parameters to the desired limits., Comment: 7 pages, 5 figures, 18th International Workshop on Low Temperature Detectors, submitted to the Journal of Low Temperature Physics
- Published
- 2019
- Full Text
- View/download PDF
6. Sidelobe analysis for the Atacama Cosmology Telescope: a novel method for importing models in GRASP
- Author
-
Puddu, R., Cothard, N. F., Gallardo, P. A., Dünner, R., and Fluxá, P.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Telescopes for observing the Cosmic Microwave Background (CMB) usually have shields and baffle structures in order to reduce the pickup from the ground. These structures may introduce unwanted sidelobes. We present a method to measure and model baffling structures of large aperture telescope optics to predict the sidelobe pattern.
- Published
- 2019
7. CCAT-Prime: Characterization of the First 280 GHz MKID Array for Prime-Cam
- Author
-
Choi, S. K., Duell, C. J., Austermann, J., Cothard, N. F., Gao, J., Freundt, R. G., Groppi, C., Herter, T., Hubmayr, J., Huber, Z. B., Keller, B., Li, Y., Mauskopf, P., Niemack, M. D., Nikola, T., Rossi, K., Sinclair, A., Stacey, G. J., Vavagiakis, E. M., Vissers, M., Tucker, C., Weeks, E., and Wheeler, J.
- Published
- 2022
- Full Text
- View/download PDF
8. Atacama Cosmology Telescope: High-resolution component-separated maps across one third of the sky
- Author
-
Coulton, W, Madhavacheril, M, Duivenvoorden, A, Hill, J, Abril-Cabezas, I, Ade, P, Aiola, S, Alford, T, Amiri, M, Amodeo, S, An, R, Atkins, Z, Austermann, J, Battaglia, N, Battistelli, E, Beall, J, Bean, R, Beringue, B, Bhandarkar, T, Biermann, E, Bolliet, B, Bond, J, Cai, H, Calabrese, E, Calafut, V, Capalbo, V, Carrero, F, Chesmore, G, Cho, H, Choi, S, Clark, S, Rosado, R, Cothard, N, Coughlin, K, Crowley, K, Devlin, M, Dicker, S, Doze, P, Duell, C, Duff, S, Dunkley, J, Dünner, R, Fanfani, V, Fankhanel, M, Farren, G, Ferraro, S, Freundt, R, Fuzia, B, Gallardo, P, Garrido, X, Givans, J, Gluscevic, V, Golec, J, Guan, Y, Halpern, M, Han, D, Hasselfield, M, Healy, E, Henderson, S, Hensley, B, Hervías-Caimapo, C, Hilton, G, Hilton, M, Hincks, A, Hložek, R, Ho, S, Huber, Z, Hubmayr, J, Huffenberger, K, Hughes, J, Irwin, K, Isopi, G, Jense, H, Keller, B, Kim, J, Knowles, K, Koopman, B, Kosowsky, A, Kramer, D, Kusiak, A, La Posta, A, Lakey, V, Lee, E, Li, Z, Li, Y, Limon, M, Lokken, M, Louis, T, Lungu, M, Maccrann, N, Macinnis, A, Maldonado, D, Maldonado, F, Mallaby-Kay, M, Marques, G, Van Marrewijk, J, Mccarthy, F, Mcmahon, J, Mehta, Y, Menanteau, F, Coulton W., Madhavacheril M. S., Duivenvoorden A. J., Hill J. C., Abril-Cabezas I., Ade P. A. R., Aiola S., Alford T., Amiri M., Amodeo S., An R., Atkins Z., Austermann J. E., Battaglia N., Battistelli E. S., Beall J. A., Bean R., Beringue B., Bhandarkar T., Biermann E., Bolliet B., Bond J. R., Cai H., Calabrese E., Calafut V., Capalbo V., Carrero F., Chesmore G. E., Cho H. M., Choi S. K., Clark S. E., Rosado R. C., Cothard N. F., Coughlin K., Crowley K. T., Devlin M. J., Dicker S., Doze P., Duell C. J., Duff S. M., Dunkley J., Dünner R., Fanfani V., Fankhanel M., Farren G., Ferraro S., Freundt R., Fuzia B., Gallardo P. A., Garrido X., Givans J., Gluscevic V., Golec J. E., Guan Y., Halpern M., Han D., Hasselfield M., Healy E., Henderson S., Hensley B., Hervías-Caimapo C., Hilton G. C., Hilton M., Hincks A. D., HloŽek R., Ho S. P. P., Huber Z. B., Hubmayr J., Huffenberger K. M., Hughes J. P., Irwin K., Isopi G., Jense H. T., Keller B., Kim J., Knowles K., Koopman B. J., Kosowsky A., Kramer D., Kusiak A., La Posta A., Lakey V., Lee E., Li Z., Li Y., Limon M., Lokken M., Louis T., Lungu M., Maccrann N., Macinnis A., Maldonado D., Maldonado F., Mallaby-Kay M., Marques G. A., Van Marrewijk J., McCarthy F., McMahon J., Mehta Y., Menanteau F., Coulton, W, Madhavacheril, M, Duivenvoorden, A, Hill, J, Abril-Cabezas, I, Ade, P, Aiola, S, Alford, T, Amiri, M, Amodeo, S, An, R, Atkins, Z, Austermann, J, Battaglia, N, Battistelli, E, Beall, J, Bean, R, Beringue, B, Bhandarkar, T, Biermann, E, Bolliet, B, Bond, J, Cai, H, Calabrese, E, Calafut, V, Capalbo, V, Carrero, F, Chesmore, G, Cho, H, Choi, S, Clark, S, Rosado, R, Cothard, N, Coughlin, K, Crowley, K, Devlin, M, Dicker, S, Doze, P, Duell, C, Duff, S, Dunkley, J, Dünner, R, Fanfani, V, Fankhanel, M, Farren, G, Ferraro, S, Freundt, R, Fuzia, B, Gallardo, P, Garrido, X, Givans, J, Gluscevic, V, Golec, J, Guan, Y, Halpern, M, Han, D, Hasselfield, M, Healy, E, Henderson, S, Hensley, B, Hervías-Caimapo, C, Hilton, G, Hilton, M, Hincks, A, Hložek, R, Ho, S, Huber, Z, Hubmayr, J, Huffenberger, K, Hughes, J, Irwin, K, Isopi, G, Jense, H, Keller, B, Kim, J, Knowles, K, Koopman, B, Kosowsky, A, Kramer, D, Kusiak, A, La Posta, A, Lakey, V, Lee, E, Li, Z, Li, Y, Limon, M, Lokken, M, Louis, T, Lungu, M, Maccrann, N, Macinnis, A, Maldonado, D, Maldonado, F, Mallaby-Kay, M, Marques, G, Van Marrewijk, J, Mccarthy, F, Mcmahon, J, Mehta, Y, Menanteau, F, Coulton W., Madhavacheril M. S., Duivenvoorden A. J., Hill J. C., Abril-Cabezas I., Ade P. A. R., Aiola S., Alford T., Amiri M., Amodeo S., An R., Atkins Z., Austermann J. E., Battaglia N., Battistelli E. S., Beall J. A., Bean R., Beringue B., Bhandarkar T., Biermann E., Bolliet B., Bond J. R., Cai H., Calabrese E., Calafut V., Capalbo V., Carrero F., Chesmore G. E., Cho H. M., Choi S. K., Clark S. E., Rosado R. C., Cothard N. F., Coughlin K., Crowley K. T., Devlin M. J., Dicker S., Doze P., Duell C. J., Duff S. M., Dunkley J., Dünner R., Fanfani V., Fankhanel M., Farren G., Ferraro S., Freundt R., Fuzia B., Gallardo P. A., Garrido X., Givans J., Gluscevic V., Golec J. E., Guan Y., Halpern M., Han D., Hasselfield M., Healy E., Henderson S., Hensley B., Hervías-Caimapo C., Hilton G. C., Hilton M., Hincks A. D., HloŽek R., Ho S. P. P., Huber Z. B., Hubmayr J., Huffenberger K. M., Hughes J. P., Irwin K., Isopi G., Jense H. T., Keller B., Kim J., Knowles K., Koopman B. J., Kosowsky A., Kramer D., Kusiak A., La Posta A., Lakey V., Lee E., Li Z., Li Y., Limon M., Lokken M., Louis T., Lungu M., Maccrann N., Macinnis A., Maldonado D., Maldonado F., Mallaby-Kay M., Marques G. A., Van Marrewijk J., McCarthy F., McMahon J., Mehta Y., and Menanteau F.
- Abstract
Observations of the millimeter sky contain valuable information on a number of signals, including the blackbody cosmic microwave background (CMB), Galactic emissions, and the Compton-y distortion due to the thermal Sunyaev-Zel'dovich (tSZ) effect. Extracting new insight into cosmological and astrophysical questions often requires combining multiwavelength observations to spectrally isolate one component. In this work, we present a new arc-minute-resolution Compton-y map, which traces out the line-of-sight-integrated electron pressure, as well as maps of the CMB in intensity and E-mode polarization, across a third of the sky (around 13,000 deg2). We produce these through a joint analysis of data from the Atacama Cosmology Telescope (ACT) data release 4 and 6 at frequencies of roughly 93, 148, and 225 GHz, together with data from the Planck satellite at frequencies between 30 and 545 GHz. We present detailed verification of an internal linear combination pipeline implemented in a needlet frame that allows us to efficiently suppress Galactic contamination and account for spatial variations in the ACT instrument noise. These maps provide a significant advance, in noise levels and resolution, over the existing Planck component-separated maps and will enable a host of science goals including studies of cluster and galaxy astrophysics, inferences of the cosmic velocity field, primordial non-Gaussianity searches, and gravitational lensing reconstruction of the CMB.
- Published
- 2024
9. CCAT-prime: Science with an Ultra-widefield Submillimeter Observatory at Cerro Chajnantor
- Author
-
Stacey, G. J., Aravena, M., Basu, K., Battaglia, N., Beringue, B., Bertoldi, F., Bond, J. R., Breysse, P., Bustos, R., Chapman, S., Chung, D. T., Cothard, N., Erler, J., Fich, M., Foreman, S., Gallardo, P., Giovanelli, R., Graf, U. U., Haynes, M. P., Herrera-Camus, R., Herter, T. L., Hložek, R., Johnstone, D., Keating, L., Magnelli, B., Meerburg, D., Meyers, J., Murray, N., Niemack, M., Nikola, T., Nolta, M., Parshley, S. C., Riechers, D., Schilke, P., Scott, D., Stein, G., Stevens, J., Stutzki, J., Vavagiakis, E. M., and Viero, M. P.
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
We present the detailed science case, and brief descriptions of the telescope design, site, and first light instrument plans for a new ultra-wide field submillimeter observatory, CCAT-prime, that we are constructing at a 5600 m elevation site on Cerro Chajnantor in northern Chile. Our science goals are to study star and galaxy formation from the epoch of reionization to the present, investigate the growth of structure in the Universe, improve the precision of B-mode CMB measurements, and investigate the interstellar medium and star formation in the Galaxy and nearby galaxies through spectroscopic, polarimetric, and broadband surveys at wavelengths from 200 um to 2 mm. These goals are realized with our two first light instruments, a large field-of-view (FoV) bolometer-based imager called Prime-Cam (that has both camera and an imaging spectrometer modules), and a multi-beam submillimeter heterodyne spectrometer, CHAI. CCAT-prime will have very high surface accuracy and very low system emissivity, so that combined with its wide FoV at the unsurpassed CCAT site our telescope/instrumentation combination is ideally suited to pursue this science. The CCAT-prime telescope is being designed and built by Vertex Antennentechnik GmbH. We expect to achieve first light in the spring of 2021., Comment: Presented at SPIE Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX, June 14th, 2018
- Published
- 2018
10. Magnetic Sensitivity of AlMn TESes and Shielding Considerations for Next-Generation CMB Surveys
- Author
-
Vavagiakis, E. M., Henderson, S. W., Zheng, K., Cho, H. -M., Cothard, N. F., Dober, B., Duff, S. M., Gallardo, P. A., Hilton, G., Hubmayr, J., Irwin, K. D., Koopman, B. J., Li, D., Nati, F., Niemack, M. D., Reintsema, C. D., Simon, S., Stevens, J. R., Suzuki, A., and Westbrook, B.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
In the next decade, new ground-based Cosmic Microwave Background (CMB) experiments such as Simons Observatory (SO), CCAT-prime, and CMB-S4 will increase the number of detectors observing the CMB by an order of magnitude or more, dramatically improving our understanding of cosmology and astrophysics. These projects will deploy receivers with as many as hundreds of thousands of transition edge sensor (TES) bolometers coupled to Superconducting Quantum Interference Device (SQUID)-based readout systems. It is well known that superconducting devices such as TESes and SQUIDs are sensitive to magnetic fields. However, the effects of magnetic fields on TESes are not easily predicted due to the complex behavior of the superconducting transition, which motivates direct measurements of the magnetic sensitivity of these devices. We present comparative four-lead measurements of the critical temperature versus applied magnetic field of AlMn TESes varying in geometry, doping, and leg length, including Advanced ACT (AdvACT) and POLARBEAR-2/Simons Array bolometers. Molybdenum-copper bilayer ACTPol TESes are also tested and are found to be more sensitive to magnetic fields than the AlMn devices. We present an observation of weak-link-like behavior in AlMn TESes at low critical currents. We also compare measurements of magnetic sensitivity for time division multiplexing SQUIDs and frequency division multiplexing microwave rf-SQUIDs. We discuss the implications of our measurements on the magnetic shielding required for future experiments that aim to map the CMB to near-fundamental limits., Comment: 8 pages, 4 figures, conference proceedings submitted to the Journal of Low Temperature Physics
- Published
- 2017
- Full Text
- View/download PDF
11. The Design of the CCAT-prime Epoch of Reionization Spectrometer Instrument
- Author
-
Cothard, N. F., Choi, S. K., Duell, C. J., Herter, T., Hubmayr, J., McMahon, J., Niemack, M. D., Nikola, T., Sierra, C., Stacey, G. J., Vavagiakis, E. M., Wollack, E. J., and Zou, B.
- Published
- 2020
- Full Text
- View/download PDF
12. Sensitivity of the Prime-Cam Instrument on the CCAT-Prime Telescope
- Author
-
Choi, S. K., Austermann, J., Basu, K., Battaglia, N., Bertoldi, F., Chung, D. T., Cothard, N. F., Duff, S., Duell, C. J., Gallardo, P. A., Gao, J., Herter, T., Hubmayr, J., Niemack, M. D., Nikola, T., Riechers, D., Rossi, K., Stacey, G. J., Stevens, J. R., Vavagiakis, E. M., Vissers, M., and Walker, S.
- Published
- 2020
- Full Text
- View/download PDF
13. Characterization of Aliased Noise in the Advanced ACTPol Receiver
- Author
-
Gallardo, P. A., Niemack, M. D., Austermann, J. E., Beall, J., Cothard, N. F., Duell, C. J., Duff, S. M., Henderson, S. W., Hilton, G. C., Ho, S. P., Hubmayr, J., Reintsema, C. D., Salatino, M., Ullom, J. N., Van Lanen, J., Vissers, M. R., and Wollack, E. J.
- Published
- 2020
- Full Text
- View/download PDF
14. Developing AlMn Films for Argonne TES Fabrication
- Author
-
Vavagiakis, E. M., Cothard, N. F., Stevens, J. R., Chang, C. L., Niemack, M. D., Wang, G., Yefremenko, V. G., and Zhang, J.
- Published
- 2020
- Full Text
- View/download PDF
15. The Advanced ACTPol 27/39 GHz Array
- Author
-
Simon, S. M., Beall, J. A., Cothard, N. F., Duff, S. M., Gallardo, P. A., Ho, S. P., Hubmayr, J., Koopman, B. J., McMahon, J. J., Nati, F., Niemack, M. D., Staggs, S. T., Vavagiakis, E. M., and Wollack, E. J.
- Published
- 2018
- Full Text
- View/download PDF
16. Advanced ACTPol Low-Frequency Array: Readout and Characterization of Prototype 27 and 39 GHz Transition Edge Sensors
- Author
-
Koopman, B. J., Cothard, N. F., Choi, S. K., Crowley, K. T., Duff, S. M., Henderson, S. W., Ho, S. P., Hubmayr, J., Gallardo, P. A., Nati, F., Niemack, M. D., Simon, S. M., Staggs, S. T., Stevens, J. R., Vavagiakis, E. M., and Wollack, E. J.
- Published
- 2018
- Full Text
- View/download PDF
17. Magnetic Sensitivity of AlMn TESes and Shielding Considerations for Next-Generation CMB Surveys
- Author
-
Vavagiakis, E. M., Henderson, S. W., Zheng, K., Cho, H.-M., Cothard, N. F., Dober, B., Duff, S. M., Gallardo, P. A., Hilton, G., Hubmayr, J., Irwin, K. D., Koopman, B. J., Li, D., Nati, F., Niemack, M. D., Reintsema, C. D., Simon, S., Stevens, J. R., Suzuki, A., and Westbrook, B.
- Published
- 2018
- Full Text
- View/download PDF
18. The Simons Observatory: Magnetic Sensitivity Measurements of Microwave SQUID Multiplexers
- Author
-
Vavagiakis, E, Ahmed, Z, Ali, A, Arnold, K, Austermann, J, Bruno, S, Choi, S, Connors, J, Cothard, N, Dicker, S, Dober, B, Duff, S, Fanfani, V, Healy, E, Henderson, S, Ho, S, Hoang, D, Hilton, G, Hubmayr, J, Krachmalnicoff, N, Li, Y, Mates, J, Mccarrick, H, Nati, F, Niemack, M, Silva-Feaver, M, Staggs, S, Stevens, J, Vissers, M, Ullom, J, Wagoner, K, Xu, Z, Zhu, N, Vavagiakis E. M., Ahmed Z., Ali A., Arnold K., Austermann J., Bruno S. M., Choi S. K., Connors J., Cothard N., Dicker S., Dober B., Duff S., Fanfani V., Healy E., Henderson S., Ho S. -P. P., Hoang D. -T., Hilton G., Hubmayr J., Krachmalnicoff N., Li Y., Mates J., McCarrick H., Nati F., Niemack M., Silva-Feaver M., Staggs S., Stevens J., Vissers M., Ullom J., Wagoner K., Xu Z., Zhu N., Vavagiakis, E, Ahmed, Z, Ali, A, Arnold, K, Austermann, J, Bruno, S, Choi, S, Connors, J, Cothard, N, Dicker, S, Dober, B, Duff, S, Fanfani, V, Healy, E, Henderson, S, Ho, S, Hoang, D, Hilton, G, Hubmayr, J, Krachmalnicoff, N, Li, Y, Mates, J, Mccarrick, H, Nati, F, Niemack, M, Silva-Feaver, M, Staggs, S, Stevens, J, Vissers, M, Ullom, J, Wagoner, K, Xu, Z, Zhu, N, Vavagiakis E. M., Ahmed Z., Ali A., Arnold K., Austermann J., Bruno S. M., Choi S. K., Connors J., Cothard N., Dicker S., Dober B., Duff S., Fanfani V., Healy E., Henderson S., Ho S. -P. P., Hoang D. -T., Hilton G., Hubmayr J., Krachmalnicoff N., Li Y., Mates J., McCarrick H., Nati F., Niemack M., Silva-Feaver M., Staggs S., Stevens J., Vissers M., Ullom J., Wagoner K., Xu Z., and Zhu N.
- Abstract
The Simons Observatory (SO) will be a cosmic microwave background (CMB) survey experiment with three small-aperture telescopes and one large-aperture telescope, which will observe from the Atacama Desert in Chile. In total, SO will field $\sim$70,000 transition-edge sensor (TES) bolometers in six spectral bands centered between 27 and 280 GHz in order to achieve the sensitivity necessary to measure or constrain numerous cosmological quantities. The SO Universal Focal Plane Modules (UFMs) each contain a 150 mm diameter TES detector array, horn or lenslet optical coupling, cold readout components, and magnetic shielding. SO will use a microwave SQUID multiplexing ($\mu$MUX) readout at an initial multiplexing factor of $\sim$1000; the cold (100 mK) readout components are packaged in a $\mu$MUX readout module, which is part of the UFM, and can also be characterized independently. The 100 mK stage TES bolometer arrays and microwave SQUIDs are sensitive to magnetic fields, and their measured response will vary with the degree to which they are magnetically shielded. We present measurements of the magnetic pickup of test microwave SQUID multiplexers as a study of various shielding configurations for the Simons Observatory. We discuss how these measurements motivated the material choice and design of the UFM magnetic shielding.
- Published
- 2021
19. Erratum: The Simons Observatory Large Aperture Telescope Receiver (ApJS (2021) 256: 23 DOI: 10.3847/1538-4365/ac0db7)
- Author
-
Zhu N., Zhu, N, Bhandarkar, T, Coppi, G, Kofman, A, Orlowski-Scherer, J, Xu, Z, Adachi, S, Ade, P, Aiola, S, Austermann, J, Bazarko, A, Beall, J, Bhimani, S, Bond, J, Chesmore, G, Choi, S, Connors, J, Cothard, N, Devlin, M, Dicker, S, Dober, B, Duell, C, Duff, S, Dunner, R, Fabbian, G, Galitzki, N, Gallardo, P, Golec, J, Haridas, S, Harrington, K, Healy, E, Patty Ho, S, Huber, Z, Hubmayr, J, Iuliano, J, Johnson, B, Keating, B, Kiuchi, K, Koopman, B, Lashner, J, Lee, A, Li, Y, Limon, M, Link, M, Lucas, T, Mccarrick, H, Moore, J, Nati, F, Newburgh, L, Niemack, M, Pierpaoli, E, Randall, M, Sarmiento, K, Saunders, L, Seibert, J, Sierra, C, Sonka, R, Spisak, J, Sutariya, S, Tajima, O, Teply, G, Thornton, R, Tsan, T, Tucker, C, Ullom, J, Vavagiakis, E, Vissers, M, Walker, S, Westbrook, B, Wollack, E, Zannoni, M, Zhu N., Bhandarkar T., Coppi G., Kofman A. M., Orlowski-Scherer J. L., Xu Z., Adachi S., Ade P., Aiola S., Austermann J., Bazarko A. O., Beall J. A., Bhimani S., Bond J. R., Chesmore G. E., Choi S. K., Connors J., Cothard N. F., Devlin M., Dicker S., Dober B., Duell C. J., Duff S. M., Dunner R., Fabbian G., Galitzki N., Gallardo P. A., Golec J. E., Haridas S. K., Harrington K., Healy E., Patty Ho S. -P., Huber Z. B., Hubmayr J., Iuliano J., Johnson B. R., Keating B., Kiuchi K., Koopman B. J., Lashner J., Lee A. T., Li Y., Limon M., Link M., Lucas T. J., McCarrick H., Moore J., Nati F., Newburgh L. B., Niemack M. D., Pierpaoli E., Randall M. J., Sarmiento K. P., Saunders L. J., Seibert J., Sierra C., Sonka R., Spisak J., Sutariya S., Tajima O., Teply G. P., Thornton R. J., Tsan T., Tucker C., Ullom J., Vavagiakis E. M., Vissers M. R., Walker S., Westbrook B., Wollack E. J., Zannoni M., Zhu N., Zhu, N, Bhandarkar, T, Coppi, G, Kofman, A, Orlowski-Scherer, J, Xu, Z, Adachi, S, Ade, P, Aiola, S, Austermann, J, Bazarko, A, Beall, J, Bhimani, S, Bond, J, Chesmore, G, Choi, S, Connors, J, Cothard, N, Devlin, M, Dicker, S, Dober, B, Duell, C, Duff, S, Dunner, R, Fabbian, G, Galitzki, N, Gallardo, P, Golec, J, Haridas, S, Harrington, K, Healy, E, Patty Ho, S, Huber, Z, Hubmayr, J, Iuliano, J, Johnson, B, Keating, B, Kiuchi, K, Koopman, B, Lashner, J, Lee, A, Li, Y, Limon, M, Link, M, Lucas, T, Mccarrick, H, Moore, J, Nati, F, Newburgh, L, Niemack, M, Pierpaoli, E, Randall, M, Sarmiento, K, Saunders, L, Seibert, J, Sierra, C, Sonka, R, Spisak, J, Sutariya, S, Tajima, O, Teply, G, Thornton, R, Tsan, T, Tucker, C, Ullom, J, Vavagiakis, E, Vissers, M, Walker, S, Westbrook, B, Wollack, E, Zannoni, M, Zhu N., Bhandarkar T., Coppi G., Kofman A. M., Orlowski-Scherer J. L., Xu Z., Adachi S., Ade P., Aiola S., Austermann J., Bazarko A. O., Beall J. A., Bhimani S., Bond J. R., Chesmore G. E., Choi S. K., Connors J., Cothard N. F., Devlin M., Dicker S., Dober B., Duell C. J., Duff S. M., Dunner R., Fabbian G., Galitzki N., Gallardo P. A., Golec J. E., Haridas S. K., Harrington K., Healy E., Patty Ho S. -P., Huber Z. B., Hubmayr J., Iuliano J., Johnson B. R., Keating B., Kiuchi K., Koopman B. J., Lashner J., Lee A. T., Li Y., Limon M., Link M., Lucas T. J., McCarrick H., Moore J., Nati F., Newburgh L. B., Niemack M. D., Pierpaoli E., Randall M. J., Sarmiento K. P., Saunders L. J., Seibert J., Sierra C., Sonka R., Spisak J., Sutariya S., Tajima O., Teply G. P., Thornton R. J., Tsan T., Tucker C., Ullom J., Vavagiakis E. M., Vissers M. R., Walker S., Westbrook B., Wollack E. J., and Zannoni M.
- Abstract
After the publication of the article, it was brought to our attention that the description of Equation (1) may cause potential confusion. Thus, we have decided to provide a newer reference and added a unit for qtot in the description. The updated paragraph should read as the following:.
- Published
- 2021
20. Simons Observatory HoloSim-ML: Machine learning applied to the efficient analysis of radio holography measurements of complex optical systems
- Author
-
Chesmore, G, Adler, A, Cothard, N, Dachlythra, N, Gallardo, P, Gudmundsson, J, Johnson, B, Limon, M, Mcmahon, J, Nati, F, Niemack, M, Puglisi, G, Simon, S, Wollack, E, Wolz, K, Xu, Z, Zhu, N, Chesmore G. E., Adler A. E., Cothard N. F., Dachlythra N., Gallardo P. A., Gudmundsson J., Johnson B. R., Limon M., McMahon J., Nati F., Niemack M. D., Puglisi G., Simon S. M., Wollack E. J., Wolz K., Xu Z., Zhu N., Chesmore, G, Adler, A, Cothard, N, Dachlythra, N, Gallardo, P, Gudmundsson, J, Johnson, B, Limon, M, Mcmahon, J, Nati, F, Niemack, M, Puglisi, G, Simon, S, Wollack, E, Wolz, K, Xu, Z, Zhu, N, Chesmore G. E., Adler A. E., Cothard N. F., Dachlythra N., Gallardo P. A., Gudmundsson J., Johnson B. R., Limon M., McMahon J., Nati F., Niemack M. D., Puglisi G., Simon S. M., Wollack E. J., Wolz K., Xu Z., and Zhu N.
- Abstract
Near-field radio holography is a common method for measuring and aligning mirror surfaces for millimeter and sub-millimeter telescopes. In instruments with more than a single mirror, degeneracies arise in the holography measurement, requiring multiple measurements and new fitting methods. We present HoloSim-ML, a Python code for beam simulation and analysis of radio holography data from complex optical systems. This code uses machine learning to efficiently determine the position of hundreds of mirror adjusters on multiple mirrors with few micrometer accuracy. We apply this approach to the example of the Simons Observatory 6 m telescope.
- Published
- 2021
21. The Atacama Cosmology Telescope: Probing the baryon content of SDSS DR15 galaxies with the thermal and kinematic Sunyaev-Zel’dovich effects
- Author
-
Vavagiakis, E, Gallardo, P, Calafut, V, Amodeo, S, Aiola, S, Austermann, J, Battaglia, N, Battistelli, E, Beall, J, Bean, R, Bond, J, Calabrese, E, Choi, S, Cothard, N, Devlin, M, Duell, C, Duff, S, Duivenvoorden, A, Dunkley, J, Dunner, R, Ferraro, S, Guan, Y, Hill, J, Hilton, G, Hilton, M, Hlozek, R, Huber, Z, Hubmayr, J, Huffenberger, K, Hughes, J, Koopman, B, Kosowsky, A, Li, Y, Lokken, M, Madhavacheril, M, Mcmahon, J, Moodley, K, Naess, S, Nati, F, Newburgh, L, Niemack, M, Page, L, Partridge, B, Schaan, E, Schillaci, A, Sifon, C, Spergel, D, Staggs, S, Ullom, J, Vale, L, Van Engelen, A, Van Lanen, J, Wollack, E, Xu, Z, Vavagiakis E. M., Gallardo P. A., Calafut V., Amodeo S., Aiola S., Austermann J. E., Battaglia N., Battistelli E. S., Beall J. A., Bean R., Bond J. R., Calabrese E., Choi S. K., Cothard N. F., Devlin M. J., Duell C. J., Duff S. M., Duivenvoorden A. J., Dunkley J., Dunner R., Ferraro S., Guan Y., Hill J. C., Hilton G. C., Hilton M., Hlozek R., Huber Z. B., Hubmayr J., Huffenberger K. M., Hughes J. P., Koopman B. J., Kosowsky A., Li Y., Lokken M., Madhavacheril M., McMahon J., Moodley K., Naess S., Nati F., Newburgh L. B., Niemack M. D., Page L. A., Partridge B., Schaan E., Schillaci A., Sifon C., Spergel D. N., Staggs S. T., Ullom J. N., Vale L. R., Van Engelen A., Van Lanen J., Wollack E. J., Xu Z., Vavagiakis, E, Gallardo, P, Calafut, V, Amodeo, S, Aiola, S, Austermann, J, Battaglia, N, Battistelli, E, Beall, J, Bean, R, Bond, J, Calabrese, E, Choi, S, Cothard, N, Devlin, M, Duell, C, Duff, S, Duivenvoorden, A, Dunkley, J, Dunner, R, Ferraro, S, Guan, Y, Hill, J, Hilton, G, Hilton, M, Hlozek, R, Huber, Z, Hubmayr, J, Huffenberger, K, Hughes, J, Koopman, B, Kosowsky, A, Li, Y, Lokken, M, Madhavacheril, M, Mcmahon, J, Moodley, K, Naess, S, Nati, F, Newburgh, L, Niemack, M, Page, L, Partridge, B, Schaan, E, Schillaci, A, Sifon, C, Spergel, D, Staggs, S, Ullom, J, Vale, L, Van Engelen, A, Van Lanen, J, Wollack, E, Xu, Z, Vavagiakis E. M., Gallardo P. A., Calafut V., Amodeo S., Aiola S., Austermann J. E., Battaglia N., Battistelli E. S., Beall J. A., Bean R., Bond J. R., Calabrese E., Choi S. K., Cothard N. F., Devlin M. J., Duell C. J., Duff S. M., Duivenvoorden A. J., Dunkley J., Dunner R., Ferraro S., Guan Y., Hill J. C., Hilton G. C., Hilton M., Hlozek R., Huber Z. B., Hubmayr J., Huffenberger K. M., Hughes J. P., Koopman B. J., Kosowsky A., Li Y., Lokken M., Madhavacheril M., McMahon J., Moodley K., Naess S., Nati F., Newburgh L. B., Niemack M. D., Page L. A., Partridge B., Schaan E., Schillaci A., Sifon C., Spergel D. N., Staggs S. T., Ullom J. N., Vale L. R., Van Engelen A., Van Lanen J., Wollack E. J., and Xu Z.
- Abstract
We present measurements of the average thermal Sunyaev Zel’dovich (tSZ) effect from optically selected galaxy groups and clusters at high signal-to-noise (up to ) and estimate their baryon content within a radius aperture. Sources from the Sloan Digital Sky Survey Baryon Oscillation Spectroscopic Survey DR15 catalog overlap with 3,700 sq deg of sky observed by the Atacama Cosmology Telescope (ACT) from 2008 to 2018 at 150 and 98 GHz (ACT DR5), and 2,089 sq deg of internal linear combination component-separated maps combining ACT and Planck data (ACT DR4). The corresponding optical depths , which depend on the baryon content of the halos, are estimated using results from cosmological hydrodynamic simulations assuming an active galactic nuclei feedback radiative cooling model. We estimate the mean mass of the halos in multiple luminosity bins, and compare the tSZ-based estimates to theoretical predictions of the baryon content for a Navarro-Frenk-White profile. We do the same for estimates extracted from fits to pairwise baryon momentum measurements of the kinematic Sunyaev-Zel’dovich effect (kSZ) for the same dataset obtained in a companion paper. We find that the estimates from the tSZ measurements in this work and the kSZ measurements in the companion paper agree within for two out of the three disjoint luminosity bins studied, while they differ by in the highest luminosity bin. The optical depth estimates account for one-third to all of the theoretically predicted baryon content in the halos across luminosity bins. Potential systematic uncertainties are discussed. The tSZ and kSZ measurements provide a step toward empirical Compton- relationships to provide new tests of cluster formation and evolution models.
- Published
- 2021
22. The Atacama Cosmology Telescope: Microwave Intensity and Polarization Maps of the Galactic Center
- Author
-
Guan, Y, Clark, S, Hensley, B, Gallardo, P, Naess, S, Duell, C, Aiola, S, Atkins, Z, Calabrese, E, Choi, S, Cothard, N, Devlin, M, Duivenvoorden, A, Dunkley, J, Dunner, R, Ferraro, S, Hasselfield, M, Hughes, J, Koopman, B, Kosowsky, A, Madhavacheril, M, Mcmahon, J, Nati, F, Niemack, M, Page, L, Salatino, M, Schaan, E, Sehgal, N, Sifon, C, Staggs, S, Vavagiakis, E, Wollack, E, Xu, Z, Guan Y., Clark S. E., Hensley B. S., Gallardo P. A., Naess S., Duell C. J., Aiola S., Atkins Z., Calabrese E., Choi S. K., Cothard N. F., Devlin M., Duivenvoorden A. J., Dunkley J., Dunner R., Ferraro S., Hasselfield M., Hughes J. P., Koopman B. J., Kosowsky A. B., Madhavacheril M. S., McMahon J., Nati F., Niemack M. D., Page L. A., Salatino M., Schaan E., Sehgal N., Sifon C., Staggs S., Vavagiakis E. M., Wollack E. J., Xu Z., Guan, Y, Clark, S, Hensley, B, Gallardo, P, Naess, S, Duell, C, Aiola, S, Atkins, Z, Calabrese, E, Choi, S, Cothard, N, Devlin, M, Duivenvoorden, A, Dunkley, J, Dunner, R, Ferraro, S, Hasselfield, M, Hughes, J, Koopman, B, Kosowsky, A, Madhavacheril, M, Mcmahon, J, Nati, F, Niemack, M, Page, L, Salatino, M, Schaan, E, Sehgal, N, Sifon, C, Staggs, S, Vavagiakis, E, Wollack, E, Xu, Z, Guan Y., Clark S. E., Hensley B. S., Gallardo P. A., Naess S., Duell C. J., Aiola S., Atkins Z., Calabrese E., Choi S. K., Cothard N. F., Devlin M., Duivenvoorden A. J., Dunkley J., Dunner R., Ferraro S., Hasselfield M., Hughes J. P., Koopman B. J., Kosowsky A. B., Madhavacheril M. S., McMahon J., Nati F., Niemack M. D., Page L. A., Salatino M., Schaan E., Sehgal N., Sifon C., Staggs S., Vavagiakis E. M., Wollack E. J., and Xu Z.
- Abstract
We present arcminute-resolution intensity and polarization maps of the Galactic center made with the Atacama Cosmology Telescope. The maps cover a 32 deg2 field at 98, 150, and 224 GHz with |l| ≤ 4 , |b| ≤ 2 . We combine these data with Planck observations at similar frequencies to create coadded maps with increased sensitivity at large angular scales. With the coadded maps, we are able to resolve many known features of the Central Molecular Zone (CMZ) in both total intensity and polarization. We map the orientation of the plane-of-sky component of the Galactic magnetic field inferred from the polarization angle in the CMZ, finding significant changes in morphology in the three frequency bands as the underlying dominant emission mechanism changes from synchrotron to dust emission. Selected Galactic center sources, including Sgr A∗, the Brick molecular cloud (G0.253+0.016), the Mouse pulsar wind nebula (G359.23-0.82), and the Tornado supernova remnant candidate (G357.7-0.1), are examined in detail. These data illustrate the potential for leveraging ground-based cosmic microwave background polarization experiments for Galactic science.
- Published
- 2021
23. The Atacama Cosmology Telescope: Detection of the pairwise kinematic Sunyaev-Zel’dovich effect with SDSS DR15 galaxies ()
- Author
-
Calafut, V, Gallardo, P, Vavagiakis, E, Amodeo, S, Aiola, S, Austermann, J, Battaglia, N, Battistelli, E, Beall, J, Bean, R, Bond, J, Calabrese, E, Choi, S, Cothard, N, Devlin, M, Duell, C, Duff, S, Duivenvoorden, A, Dunkley, J, Dunner, R, Ferraro, S, Guan, Y, Hill, J, Hilton, G, Hilton, M, Hlozek, R, Huber, Z, Hubmayr, J, Huffenberger, K, Hughes, J, Koopman, B, Kosowsky, A, Li, Y, Lokken, M, Madhavacheril, M, Mcmahon, J, Moodley, K, Naess, S, Nati, F, Newburgh, L, Niemack, M, Page, L, Partridge, B, Schaan, E, Schillaci, A, Sifon, C, Spergel, D, Staggs, S, Ullom, J, Vale, L, Van Engelen, A, Van Lanen, J, Wollack, E, Xu, Z, Calafut V., Gallardo P. A., Vavagiakis E. M., Amodeo S., Aiola S., Austermann J. E., Battaglia N., Battistelli E. S., Beall J. A., Bean R., Bond J. R., Calabrese E., Choi S. K., Cothard N. F., Devlin M. J., Duell C. J., Duff S. M., Duivenvoorden A. J., Dunkley J., Dunner R., Ferraro S., Guan Y., Hill J. C., Hilton G. C., Hilton M., Hlozek R., Huber Z. B., Hubmayr J., Huffenberger K. M., Hughes J. P., Koopman B. J., Kosowsky A., Li Y., Lokken M., Madhavacheril M., McMahon J., Moodley K., Naess S., Nati F., Newburgh L. B., Niemack M. D., Page L. A., Partridge B., Schaan E., Schillaci A., Sifon C., Spergel D. N., Staggs S. T., Ullom J. N., Vale L. R., Van Engelen A., Van Lanen J., Wollack E. J., Xu Z., Calafut, V, Gallardo, P, Vavagiakis, E, Amodeo, S, Aiola, S, Austermann, J, Battaglia, N, Battistelli, E, Beall, J, Bean, R, Bond, J, Calabrese, E, Choi, S, Cothard, N, Devlin, M, Duell, C, Duff, S, Duivenvoorden, A, Dunkley, J, Dunner, R, Ferraro, S, Guan, Y, Hill, J, Hilton, G, Hilton, M, Hlozek, R, Huber, Z, Hubmayr, J, Huffenberger, K, Hughes, J, Koopman, B, Kosowsky, A, Li, Y, Lokken, M, Madhavacheril, M, Mcmahon, J, Moodley, K, Naess, S, Nati, F, Newburgh, L, Niemack, M, Page, L, Partridge, B, Schaan, E, Schillaci, A, Sifon, C, Spergel, D, Staggs, S, Ullom, J, Vale, L, Van Engelen, A, Van Lanen, J, Wollack, E, Xu, Z, Calafut V., Gallardo P. A., Vavagiakis E. M., Amodeo S., Aiola S., Austermann J. E., Battaglia N., Battistelli E. S., Beall J. A., Bean R., Bond J. R., Calabrese E., Choi S. K., Cothard N. F., Devlin M. J., Duell C. J., Duff S. M., Duivenvoorden A. J., Dunkley J., Dunner R., Ferraro S., Guan Y., Hill J. C., Hilton G. C., Hilton M., Hlozek R., Huber Z. B., Hubmayr J., Huffenberger K. M., Hughes J. P., Koopman B. J., Kosowsky A., Li Y., Lokken M., Madhavacheril M., McMahon J., Moodley K., Naess S., Nati F., Newburgh L. B., Niemack M. D., Page L. A., Partridge B., Schaan E., Schillaci A., Sifon C., Spergel D. N., Staggs S. T., Ullom J. N., Vale L. R., Van Engelen A., Van Lanen J., Wollack E. J., and Xu Z.
- Abstract
We present a detection of the pairwise kinematic Sunyaev-Zeldovich (kSZ) effect using Atacama Cosmology Telescope (ACT) and Planck CMB observations in combination with Luminous Red Galaxy samples from the Sloan Digital Sky Survey (SDSS) DR15 catalog. Results are obtained using three ACT CMB maps: co-added 150 and 98 GHz maps, combining observations from 2008-2018 (ACT DR5), which overlap with SDSS DR15 over 3,700 sq. deg., and a component-separated map using night-time only observations from 2014-2015 (ACT DR4), overlapping with SDSS DR15 over 2,089 sq. deg. Comparisons of the results from these three maps provide consistency checks in relation to potential frequency-dependent foreground contamination. A total of 343,647 galaxies are used as tracers to identify and locate galaxy groups and clusters from which the kSZ signal is extracted using aperture photometry. We consider the impact of various aperture photometry assumptions and covariance estimation methods on the signal extraction. Theoretical predictions of the pairwise velocities are used to obtain best-fit, mass-averaged, optical depth estimates for each of five luminosity-selected tracer samples. A comparison of the kSZ-derived optical depth measurements obtained here to those derived from the thermal SZ effect for the same sample is presented in a companion paper.
- Published
- 2021
24. Characterization of Transition Edge Sensors for the Simons Observatory
- Author
-
Stevens, J, Cothard, N, Vavagiakis, E, Ali, A, Arnold, K, Austermann, J, Choi, S, Dober, B, Duell, C, Duff, S, Hilton, G, Ho, S, Hoang, T, Hubmayr, J, Lee, A, Mangu, A, Nati, F, Niemack, M, Raum, C, Renzullo, M, Salatino, M, Sasse, T, Simon, S, Staggs, S, Suzuki, A, Truitt, P, Ullom, J, Vivalda, J, Vissers, M, Walker, S, Westbrook, B, Wollack, E, Xu, Z, Yohannes, D, Stevens J. R., Cothard N. F., Vavagiakis E. M., Ali A., Arnold K., Austermann J. E., Choi S. K., Dober B. J., Duell C., Duff S. M., Hilton G. C., Ho S. -P. P., Hoang T. D., Hubmayr J., Lee A. T., Mangu A., Nati F., Niemack M. D., Raum C., Renzullo M., Salatino M., Sasse T., Simon S. M., Staggs S., Suzuki A., Truitt P., Ullom J., Vivalda J., Vissers M. R., Walker S., Westbrook B., Wollack E. J., Xu Z., Yohannes D., Stevens, J, Cothard, N, Vavagiakis, E, Ali, A, Arnold, K, Austermann, J, Choi, S, Dober, B, Duell, C, Duff, S, Hilton, G, Ho, S, Hoang, T, Hubmayr, J, Lee, A, Mangu, A, Nati, F, Niemack, M, Raum, C, Renzullo, M, Salatino, M, Sasse, T, Simon, S, Staggs, S, Suzuki, A, Truitt, P, Ullom, J, Vivalda, J, Vissers, M, Walker, S, Westbrook, B, Wollack, E, Xu, Z, Yohannes, D, Stevens J. R., Cothard N. F., Vavagiakis E. M., Ali A., Arnold K., Austermann J. E., Choi S. K., Dober B. J., Duell C., Duff S. M., Hilton G. C., Ho S. -P. P., Hoang T. D., Hubmayr J., Lee A. T., Mangu A., Nati F., Niemack M. D., Raum C., Renzullo M., Salatino M., Sasse T., Simon S. M., Staggs S., Suzuki A., Truitt P., Ullom J., Vivalda J., Vissers M. R., Walker S., Westbrook B., Wollack E. J., Xu Z., and Yohannes D.
- Abstract
The Simons Observatory is building both large (6 m) and small (0.5 m) aperture telescopes in the Atacama Desert in Chile to observe the cosmic microwave background CMB radiation with unprecedented sensitivity. Simons Observatory telescopes in total will use over 60,000 transition edge sensor (TES) detectors spanning center frequencies between 27 and 285 GHz and operating near 100 mK. TES devices have been fabricated for the Simons Observatory by NIST, Berkeley, and HYPRES/SeeQC corporation. Iterations of these devices have been tested cryogenically in order to inform the fabrication of further devices, which will culminate in the final TES designs to be deployed in the field. The detailed design specifications have been independently iterated at each fabrication facility for particular detector frequencies. We present test results for prototype devices, with emphasis on NIST high frequency detectors. A dilution refrigerator was used to achieve the required temperatures. Measurements were taken both with 4-lead resistance measurements and with a time-domain Superconducting Quantum Interference Device (SQUID) multiplexer system. The SQUID readout measurements include analysis of current versus voltage (IV) curves at various temperatures, square wave bias step measurements, and detector noise measurements. Normal resistance, superconducting critical temperature, saturation power, thermal and natural time constants, and thermal properties of the devices are extracted from these measurements.
- Published
- 2020
25. The Atacama Cosmology Telescope: Detection of the pairwise kinematic Sunyaev-Zel’dovich effect with SDSS DR15 galaxies
- Author
-
Calafut, V., primary, Gallardo, P. A., additional, Vavagiakis, E. M., additional, Amodeo, S., additional, Aiola, S., additional, Austermann, J. E., additional, Battaglia, N., additional, Battistelli, E. S., additional, Beall, J. A., additional, Bean, R., additional, Bond, J. R., additional, Calabrese, E., additional, Choi, S. K., additional, Cothard, N. F., additional, Devlin, M. J., additional, Duell, C. J., additional, Duff, S. M., additional, Duivenvoorden, A. J., additional, Dunkley, J., additional, Dunner, R., additional, Ferraro, S., additional, Guan, Y., additional, Hill, J. C., additional, Hilton, G. C., additional, Hilton, M., additional, Hložek, R., additional, Huber, Z. B., additional, Hubmayr, J., additional, Huffenberger, K. M., additional, Hughes, J. P., additional, Koopman, B. J., additional, Kosowsky, A., additional, Li, Y., additional, Lokken, M., additional, Madhavacheril, M., additional, McMahon, J., additional, Moodley, K., additional, Naess, S., additional, Nati, F., additional, Newburgh, L. B., additional, Niemack, M. D., additional, Page, L. A., additional, Partridge, B., additional, Schaan, E., additional, Schillaci, A., additional, Sifón, C., additional, Spergel, D. N., additional, Staggs, S. T., additional, Ullom, J. N., additional, Vale, L. R., additional, Van Engelen, A., additional, Van Lanen, J., additional, Wollack, E. J., additional, and Xu, Z., additional
- Published
- 2021
- Full Text
- View/download PDF
26. The Atacama Cosmology Telescope: Probing the baryon content of SDSS DR15 galaxies with the thermal and kinematic Sunyaev-Zel’dovich effects
- Author
-
Vavagiakis, E. M., primary, Gallardo, P. A., additional, Calafut, V., additional, Amodeo, S., additional, Aiola, S., additional, Austermann, J. E., additional, Battaglia, N., additional, Battistelli, E. S., additional, Beall, J. A., additional, Bean, R., additional, Bond, J. R., additional, Calabrese, E., additional, Choi, S. K., additional, Cothard, N. F., additional, Devlin, M. J., additional, Duell, C. J., additional, Duff, S. M., additional, Duivenvoorden, A. J., additional, Dunkley, J., additional, Dunner, R., additional, Ferraro, S., additional, Guan, Y., additional, Hill, J. C., additional, Hilton, G. C., additional, Hilton, M., additional, Hložek, R., additional, Huber, Z. B., additional, Hubmayr, J., additional, Huffenberger, K. M., additional, Hughes, J. P., additional, Koopman, B. J., additional, Kosowsky, A., additional, Li, Y., additional, Lokken, M., additional, Madhavacheril, M., additional, McMahon, J., additional, Moodley, K., additional, Naess, S., additional, Nati, F., additional, Newburgh, L. B., additional, Niemack, M. D., additional, Page, L. A., additional, Partridge, B., additional, Schaan, E., additional, Schillaci, A., additional, Sifón, C., additional, Spergel, D. N., additional, Staggs, S. T., additional, Ullom, J. N., additional, Vale, L. R., additional, Van Engelen, A., additional, Van Lanen, J., additional, Wollack, E. J., additional, and Xu, Z., additional
- Published
- 2021
- Full Text
- View/download PDF
27. The Atacama Cosmology Telescope: A Search for Planet 9
- Author
-
Naess, S, Aiola, S, Battaglia, N, Bond, R, Calabrese, E, Choi, S, Cothard, N, Halpern, M, Colin Hill, J, Koopman, B, Devlin, M, Mcmahon, J, Dicker, S, Duivenvoorden, A, Dunkley, J, Fanfani, V, Ferraro, S, Gallardo, P, Guan, Y, Han, D, Hasselfield, M, Hincks, A, Huffenberger, K, Kosowsky, A, Louis, T, Macinnis, A, Madhavacheril, M, Nati, F, Niemack, M, Page, L, Salatino, M, Schaan, E, Orlowski-Scherer, J, Schillaci, A, Schmitt, B, Sehgal, N, Sif??n, C, Staggs, S, Van Engelen, A, Wollack, E, Sigurd Naess, Simone Aiola, Nick Battaglia, Richard J. Bond, Erminia Calabrese, Steve K. Choi, Nicholas F. Cothard, Mark Halpern, J. Colin Hill, Brian J. Koopman, Mark Devlin, Jeff McMahon, Simon Dicker, Adriaan J. Duivenvoorden, Jo Dunkley, Valentina Fanfani, Simone Ferraro, Patricio A. Gallardo, Yilun Guan, Dongwon Han, Matthew Hasselfield, Adam D. Hincks, Kevin Huffenberger, Arthur B. Kosowsky, Thibaut Louis, Amanda Macinnis, Mathew S. Madhavacheril, Federico Nati, Michael D. Niemack, Lyman Page, Maria Salatino, Emmanuel Schaan, John Orlowski-Scherer, Alessandro Schillaci, Benjamin Schmitt, Neelima Sehgal, Crist??bal Sif??n, Suzanne Staggs, Alexander Van Engelen, Edward J. Wollack, Naess, S, Aiola, S, Battaglia, N, Bond, R, Calabrese, E, Choi, S, Cothard, N, Halpern, M, Colin Hill, J, Koopman, B, Devlin, M, Mcmahon, J, Dicker, S, Duivenvoorden, A, Dunkley, J, Fanfani, V, Ferraro, S, Gallardo, P, Guan, Y, Han, D, Hasselfield, M, Hincks, A, Huffenberger, K, Kosowsky, A, Louis, T, Macinnis, A, Madhavacheril, M, Nati, F, Niemack, M, Page, L, Salatino, M, Schaan, E, Orlowski-Scherer, J, Schillaci, A, Schmitt, B, Sehgal, N, Sif??n, C, Staggs, S, Van Engelen, A, Wollack, E, Sigurd Naess, Simone Aiola, Nick Battaglia, Richard J. Bond, Erminia Calabrese, Steve K. Choi, Nicholas F. Cothard, Mark Halpern, J. Colin Hill, Brian J. Koopman, Mark Devlin, Jeff McMahon, Simon Dicker, Adriaan J. Duivenvoorden, Jo Dunkley, Valentina Fanfani, Simone Ferraro, Patricio A. Gallardo, Yilun Guan, Dongwon Han, Matthew Hasselfield, Adam D. Hincks, Kevin Huffenberger, Arthur B. Kosowsky, Thibaut Louis, Amanda Macinnis, Mathew S. Madhavacheril, Federico Nati, Michael D. Niemack, Lyman Page, Maria Salatino, Emmanuel Schaan, John Orlowski-Scherer, Alessandro Schillaci, Benjamin Schmitt, Neelima Sehgal, Crist??bal Sif??n, Suzanne Staggs, Alexander Van Engelen, and Edward J. Wollack
- Abstract
We use Atacama Cosmology Telescope (ACT) observations at 98 GHz (2015-2019), 150 GHz (2013-2019), and 229 GHz (2017-2019) to perform a blind shift-and-stack search for Planet 9. The search explores distances from 300 au to 2000 au and velocities up to 6.'3 per year, depending on the distance (r). For a 5 Earth-mass Planet 9 the detection limit varies from 325 au to 625 au, depending on the sky location. For a 10 Earth-mass planet the corresponding range is 425 au to 775 au. The predicted aphelion and most likely location of the planet corresponds to the shallower end of these ranges. The search covers the whole 18,000 square degrees of the ACT survey. No significant detections are found, which is used to place limits on the millimeter-wave flux density of Planet 9 over much of its orbit. Overall we eliminate roughly 17% and 9% of the parameter space for a 5 and 10 Earth-mass Planet 9, respectively. These bounds approach those of a recent INPOP19a ephemeris-based analysis, but do not exceed it. We also provide a list of the 10 strongest candidates from the search for possible follow-up. More generally, we exclude (at 95% confidence) the presence of an unknown solar system object within our survey area brighter than 4-12 mJy (depending on position) at 150 GHz with current distance 300 au < r < 600 au and heliocentric angular velocity 1.'5 yr(-1) < nu.500 au/r< 2.'' 3 yr(-1), corresponding to low-to-moderate eccentricities. These limits worsen gradually beyond 600 au, reaching 5-15 mJy by 1500 au.
- Published
- 2021
28. The Simons Observatory Large Aperture Telescope Receiver
- Author
-
Zhu, N, Bhandarkar, T, Coppi, G, Kofman, A, Orlowski-Scherer, J, Xu, Z, Adachi, S, Ade, P, Aiola, S, Austermann, J, Bazarko, A, Beall, J, Bhimani, S, Richard Bond, J, Chesmore, G, Choi, S, Connors, J, Cothard, N, Devlin, M, Dicker, S, Dober, B, Duell, C, Duff, S, Dünner, R, Fabbian, G, Galitzki, N, Gallardo, P, Golec, J, Haridas, S, Harrington, K, Healy, E, Patty Ho, S, Huber, Z, Hubmayr, J, Iuliano, J, Johnson, B, Keatin, B, Kiuchi, K, Koopman, B, Lashner, J, Lee, A, Li, Y, Limon, M, Link, M, J Lucas, T, Mccarrick, H, Moore, J, Nati, F, Newburgh, L, Niemack, M, Pierpaoli, E, Randall, M, Perez Sarmiento, K, Saunders, L, Seibert, J, Sierra, C, Sonka, R, Spisak, J, Sutariya, S, Tajima, O, Teply, G, Thornton, R, Tsan, T, Tucker, C, Ullom, J, Vavagiakis, E, Vissers, M, Walker, S, Westbrook, B, Wollack, E, Zannoni, M, Ningfeng Zhu, Tanay Bhandarkar, Gabriele Coppi, Anna M. Kofman, John L. Orlowski-Scherer, Zhilei Xu, Shunsuke Adachi, Peter Ade, Simone Aiola, Jason Austermann, Andrew O. Bazarko, James A. Beall, Sanah Bhimani, J. Richard Bond, Grace E. Chesmore, Steve K. Choi, Jake Connors, Nicholas F. Cothard, Mark Devlin, Simon Dicker, Bradley Dober, Cody J. Duell, Shannon M. Duff, Rolando Dünner, Giulio Fabbian, Nicholas Galitzki, Patricio A. Gallardo, Joseph E. Golec, Saianeesh K. Haridas, Kathleen Harrington, Erin Healy, Shuay-Pwu Patty Ho, Zachary B. Huber, Johannes Hubmayr, Jeffrey Iuliano, Bradley R. Johnson, Brian Keatin, Kenji Kiuchi, Brian J. Koopman, Jack Lashner, Adrian T. Lee, Yaqiong Li, Michele Limon, Michael Link, Tammy J Lucas, Heather McCarrick, Jenna Moore, Federico Nati, Laura B. Newburgh, Michael D. Niemack, Elena Pierpaoli, Michael J. Randall, Karen Perez Sarmiento, Lauren J. Saunders, Joseph Seibert, Carlos Sierra, Rita Sonka, Jacob Spisak, Shreya Sutariya, Osamu Tajima, Grant P. Teply, Robert J. Thornton, Tran Tsan, Carole Tucker, Joel Ullom, Eve M. Vavagiakis, Michael R. Vissers, Samantha Walker, Benjamin Westbrook, Edward J. Wollack, Mario Zannoni, Zhu, N, Bhandarkar, T, Coppi, G, Kofman, A, Orlowski-Scherer, J, Xu, Z, Adachi, S, Ade, P, Aiola, S, Austermann, J, Bazarko, A, Beall, J, Bhimani, S, Richard Bond, J, Chesmore, G, Choi, S, Connors, J, Cothard, N, Devlin, M, Dicker, S, Dober, B, Duell, C, Duff, S, Dünner, R, Fabbian, G, Galitzki, N, Gallardo, P, Golec, J, Haridas, S, Harrington, K, Healy, E, Patty Ho, S, Huber, Z, Hubmayr, J, Iuliano, J, Johnson, B, Keatin, B, Kiuchi, K, Koopman, B, Lashner, J, Lee, A, Li, Y, Limon, M, Link, M, J Lucas, T, Mccarrick, H, Moore, J, Nati, F, Newburgh, L, Niemack, M, Pierpaoli, E, Randall, M, Perez Sarmiento, K, Saunders, L, Seibert, J, Sierra, C, Sonka, R, Spisak, J, Sutariya, S, Tajima, O, Teply, G, Thornton, R, Tsan, T, Tucker, C, Ullom, J, Vavagiakis, E, Vissers, M, Walker, S, Westbrook, B, Wollack, E, Zannoni, M, Ningfeng Zhu, Tanay Bhandarkar, Gabriele Coppi, Anna M. Kofman, John L. Orlowski-Scherer, Zhilei Xu, Shunsuke Adachi, Peter Ade, Simone Aiola, Jason Austermann, Andrew O. Bazarko, James A. Beall, Sanah Bhimani, J. Richard Bond, Grace E. Chesmore, Steve K. Choi, Jake Connors, Nicholas F. Cothard, Mark Devlin, Simon Dicker, Bradley Dober, Cody J. Duell, Shannon M. Duff, Rolando Dünner, Giulio Fabbian, Nicholas Galitzki, Patricio A. Gallardo, Joseph E. Golec, Saianeesh K. Haridas, Kathleen Harrington, Erin Healy, Shuay-Pwu Patty Ho, Zachary B. Huber, Johannes Hubmayr, Jeffrey Iuliano, Bradley R. Johnson, Brian Keatin, Kenji Kiuchi, Brian J. Koopman, Jack Lashner, Adrian T. Lee, Yaqiong Li, Michele Limon, Michael Link, Tammy J Lucas, Heather McCarrick, Jenna Moore, Federico Nati, Laura B. Newburgh, Michael D. Niemack, Elena Pierpaoli, Michael J. Randall, Karen Perez Sarmiento, Lauren J. Saunders, Joseph Seibert, Carlos Sierra, Rita Sonka, Jacob Spisak, Shreya Sutariya, Osamu Tajima, Grant P. Teply, Robert J. Thornton, Tran Tsan, Carole Tucker, Joel Ullom, Eve M. Vavagiakis, Michael R. Vissers, Samantha Walker, Benjamin Westbrook, Edward J. Wollack, and Mario Zannoni
- Abstract
The Simons Observatory is a ground-based cosmic microwave background experiment that consists of three 0.4 m small-aperture telescopes and one 6 m Large Aperture Telescope, located at an elevation of 5300 m on Cerro Toco in Chile. The Simons Observatory Large Aperture Telescope Receiver (LATR) is the cryogenic camera that will be coupled to the Large Aperture Telescope. The resulting instrument will produce arcminute-resolution millimeter-wave maps of half the sky with unprecedented precision. The LATR is the largest cryogenic millimeter-wave camera built to date, with a diameter of 2.4 m and a length of 2.6 m. The coldest stage of the camera is cooled to 100 mK, the operating temperature of the bolometric detectors with bands centered around 27, 39, 93, 145, 225, and 280 GHz. Ultimately, the LATR will accommodate 13 40 cm diameter optics tubes, each with three detector wafers and a total of 62,000 detectors. The LATR design must simultaneously maintain the optical alignment of the system, control stray light, provide cryogenic isolation, limit thermal gradients, and minimize the time to cool the system from room temperature to 100 mK. The interplay between these competing factors poses unique challenges. We discuss the trade studies involved with the design, the final optimization, the construction, and ultimate performance of the system.
- Published
- 2021
29. The Simons Observatory: modeling optical systematics in the Large Aperture Telescope
- Author
-
Gudmundsson, J, Gallardo, P, Puddu, R, Dicker, S, Adler, A, Ali, A, Bazarko, A, Chesmore, G, Coppi, G, Cothard, N, Dachlythra, N, Devlin, M, Dünner, R, Fabbian, G, Galitzki, N, Golec, J, Patty Ho, S, Hargrave, P, Kofman, A, Lee, A, Limon, M, Matsuda, F, Mauskopf, P, Moodley, K, Nati, F, Niemack, M, Orlowski-Scherer, J, Page, L, Partridge, B, Puglisi, G, Reichardt, C, Sierra, C, Simon, S, Teply, G, Tucker, C, Wollack, E, Xu, Z, Zhu, N, Gudmundsson, Jon E., Gallardo, Patricio A., Puddu, Roberto, Dicker, Simon R., Adler, Alexandre E., Ali, Aamir M., Bazarko, Andrew, Chesmore, Grace E., Coppi, Gabriele, Cothard, Nicholas F., Dachlythra, Nadia, Devlin, Mark, Dünner, Rolando, Fabbian, Giulio, Galitzki, Nicholas, Golec, Joseph E., Patty Ho, Shuay-Pwu, Hargrave, Peter C., Kofman, Anna M., Lee, Adrian T., Limon, Michele, Matsuda, Frederick T., Mauskopf, Philip D., Moodley, Kavilan, Nati, Federico, Niemack, Michael D., Orlowski-Scherer, John, Page, Lyman A., Partridge, Bruce, Puglisi, Giuseppe, Reichardt, Christian L., Sierra, Carlos E., Simon, Sara M., Teply, Grant P., Tucker, Carole, Wollack, Edward J., Xu, Zhilei, Zhu, Ningfeng, Gudmundsson, J, Gallardo, P, Puddu, R, Dicker, S, Adler, A, Ali, A, Bazarko, A, Chesmore, G, Coppi, G, Cothard, N, Dachlythra, N, Devlin, M, Dünner, R, Fabbian, G, Galitzki, N, Golec, J, Patty Ho, S, Hargrave, P, Kofman, A, Lee, A, Limon, M, Matsuda, F, Mauskopf, P, Moodley, K, Nati, F, Niemack, M, Orlowski-Scherer, J, Page, L, Partridge, B, Puglisi, G, Reichardt, C, Sierra, C, Simon, S, Teply, G, Tucker, C, Wollack, E, Xu, Z, Zhu, N, Gudmundsson, Jon E., Gallardo, Patricio A., Puddu, Roberto, Dicker, Simon R., Adler, Alexandre E., Ali, Aamir M., Bazarko, Andrew, Chesmore, Grace E., Coppi, Gabriele, Cothard, Nicholas F., Dachlythra, Nadia, Devlin, Mark, Dünner, Rolando, Fabbian, Giulio, Galitzki, Nicholas, Golec, Joseph E., Patty Ho, Shuay-Pwu, Hargrave, Peter C., Kofman, Anna M., Lee, Adrian T., Limon, Michele, Matsuda, Frederick T., Mauskopf, Philip D., Moodley, Kavilan, Nati, Federico, Niemack, Michael D., Orlowski-Scherer, John, Page, Lyman A., Partridge, Bruce, Puglisi, Giuseppe, Reichardt, Christian L., Sierra, Carlos E., Simon, Sara M., Teply, Grant P., Tucker, Carole, Wollack, Edward J., Xu, Zhilei, and Zhu, Ningfeng
- Abstract
We present geometrical and physical optics simulation results for the Simons Observatory Large Aperture Telescope. This work was developed as part of the general design process for the telescope, allowing us to evaluate the impact of various design choices on performance metrics and potential systematic effects. The primary goal of the simulations was to evaluate the final design of the reflectors and the cold optics that are now being built. We describe nonsequential ray tracing used to inform the design of the cold optics, including absorbers internal to each optics tube. We discuss ray tracing simulations of the telescope structure that allow us to determine geometries that minimize detector loading and mitigate spurious near-field effects that have not been resolved by the internal baffling. We also describe physical optics simulations, performed over a range of frequencies and field locations, that produce estimates of monochromatic far-field beam patterns, which in turn are used to gauge general optical performance. Finally, we describe simulations that shed light on beam sidelobes from panel gap diffraction.
- Published
- 2021
30. Advanced ACTPol Low-Frequency Array: Readout and Characterization of Prototype 27 and 39 GHz Transition Edge Sensors
- Author
-
Koopman, B, Cothard, N, Choi, S, Crowley, K, Duff, S, Henderson, S, Ho, S, Hubmayr, J, Gallardo, P, Nati, F, Niemack, M, Simon, S, Staggs, S, Stevens, J, Vavagiakis, E, Wollack, E, Koopman B. J., Cothard N. F., Choi S. K., Crowley K. T., Duff S. M., Henderson S. W., Ho S. P., Hubmayr J., Gallardo P. A., Nati F., Niemack M. D., Simon S. M., Staggs S. T., Stevens J. R., Vavagiakis E. M., Wollack E. J., Koopman, B, Cothard, N, Choi, S, Crowley, K, Duff, S, Henderson, S, Ho, S, Hubmayr, J, Gallardo, P, Nati, F, Niemack, M, Simon, S, Staggs, S, Stevens, J, Vavagiakis, E, Wollack, E, Koopman B. J., Cothard N. F., Choi S. K., Crowley K. T., Duff S. M., Henderson S. W., Ho S. P., Hubmayr J., Gallardo P. A., Nati F., Niemack M. D., Simon S. M., Staggs S. T., Stevens J. R., Vavagiakis E. M., and Wollack E. J.
- Abstract
Advanced ACTPol (AdvACT) is a third-generation polarization upgrade to the Atacama Cosmology Telescope, designed to observe the cosmic microwave background (CMB). AdvACT expands on the 90 and 150 GHz transition edge sensor (TES) bolometer arrays of the ACT Polarimeter (ACTPol), adding both high-frequency (HF, 150/230 GHz) and low-frequency (LF, 27/39 GHz) multichroic arrays. The addition of the high- and low-frequency detectors allows for the characterization of synchrotron and spinning dust emission at the low frequencies and foreground emission from galactic dust and dusty star-forming galaxies at the high frequencies. The increased spectral coverage of AdvACT will enable a wide range of CMB science, such as improving constraints on dark energy, the sum of the neutrino masses, and the existence of primordial gravitational waves. The LF array will be the final AdvACT array, replacing one of the MF arrays for a single season. Prior to the fabrication of the final LF detector array, we designed and characterized prototype TES bolometers. Detector geometries in these prototypes are varied in order to inform and optimize the bolometer designs for the LF array, which requires significantly lower noise levels and saturation powers (as low as ∼1 pW) than the higher-frequency detectors. Here we present results from tests of the first LF prototype TES detectors for AdvACT, including measurements of the saturation power, critical temperature, thermal conductance, and time constants. We also describe the modifications to the time-division SQUID readout architecture compared to the MF and HF arrays.
- Published
- 2018
31. Magnetic Sensitivity of AlMn TESes and Shielding Considerations for Next-Generation CMB Surveys
- Author
-
Vavagiakis, E, Henderson, S, Zheng, K, Cho, H, Cothard, N, Dober, B, Duff, S, Gallardo, P, Hilton, G, Hubmayr, J, Irwin, K, Koopman, B, Li, D, Nati, F, Niemack, M, Reintsema, C, Simon, S, Stevens, J, Suzuki, A, Westbrook, B, Vavagiakis E. M., Henderson S. W., Zheng K., Cho H. -M., Cothard N. F., Dober B., Duff S. M., Gallardo P. A., Hilton G., Hubmayr J., Irwin K. D., Koopman B. J., Li D., Nati F., Niemack M. D., Reintsema C. D., Simon S., Stevens J. R., SUZUKI, AKANE, Westbrook B., Vavagiakis, E, Henderson, S, Zheng, K, Cho, H, Cothard, N, Dober, B, Duff, S, Gallardo, P, Hilton, G, Hubmayr, J, Irwin, K, Koopman, B, Li, D, Nati, F, Niemack, M, Reintsema, C, Simon, S, Stevens, J, Suzuki, A, Westbrook, B, Vavagiakis E. M., Henderson S. W., Zheng K., Cho H. -M., Cothard N. F., Dober B., Duff S. M., Gallardo P. A., Hilton G., Hubmayr J., Irwin K. D., Koopman B. J., Li D., Nati F., Niemack M. D., Reintsema C. D., Simon S., Stevens J. R., SUZUKI, AKANE, and Westbrook B.
- Abstract
In the next decade, new ground-based cosmic microwave background (CMB) experiments such as Simons Observatory, CCAT-prime, and CMB-S4 will increase the number of detectors observing the CMB by an order of magnitude or more, dramatically improving our understanding of cosmology and astrophysics. These projects will deploy receivers with as many as hundreds of thousands of transition edge sensor (TES) bolometers coupled to superconducting quantum interference device (SQUID)-based readout systems. It is well known that superconducting devices such as TESes and SQUIDs are sensitive to magnetic fields. However, the effects of magnetic fields on TESes are not easily predicted due to the complex behavior of the superconducting transition, which motivates direct measurements of the magnetic sensitivity of these devices. We present comparative four-lead measurements of the critical temperature versus applied magnetic field of AlMn TESes varying in geometry, doping, and leg length, including Advanced ACT and POLARBEAR-2/Simons Array bolometers. MoCu ACTPol TESes are also tested and are found to be more sensitive to magnetic fields than the AlMn devices. We present an observation of weak-link-like behavior in AlMn TESes at low critical currents. We also compare measurements of magnetic sensitivity for time division multiplexing SQUIDs and frequency division multiplexing microwave rf-SQUIDs. We discuss the implications of our measurements on the magnetic shielding required for future experiments that aim to map the CMB to near-fundamental limits.
- Published
- 2018
32. The Advanced ACTPol 27/39 GHz Array
- Author
-
Simon, S, Beall, J, Cothard, N, Duff, S, Gallardo, P, Ho, S, Hubmayr, J, Koopman, B, Mcmahon, J, Nati, F, Niemack, M, Staggs, S, Vavagiakis, E, Wollack, E, Simon S. M., Beall J. A., Cothard N. F., Duff S. M., Gallardo P. A., Ho S. P., Hubmayr J., Koopman B. J., McMahon J. J., Nati F., Niemack M. D., Staggs S. T., Vavagiakis E. M., Wollack E. J., Simon, S, Beall, J, Cothard, N, Duff, S, Gallardo, P, Ho, S, Hubmayr, J, Koopman, B, Mcmahon, J, Nati, F, Niemack, M, Staggs, S, Vavagiakis, E, Wollack, E, Simon S. M., Beall J. A., Cothard N. F., Duff S. M., Gallardo P. A., Ho S. P., Hubmayr J., Koopman B. J., McMahon J. J., Nati F., Niemack M. D., Staggs S. T., Vavagiakis E. M., and Wollack E. J.
- Abstract
Advanced ACTPol (AdvACT) will observe the temperature and polarization of the cosmic microwave background (CMB) at multiple frequencies and high resolution to place improved constraints on inflation, dark matter, and dark energy. Foregrounds from synchrotron and dust radiation are a source of contamination that must be characterized and removed across a wide range of frequencies. AdvACT will thus observe at five frequency bands from 27 to 230 GHz. We discuss the design of the pixels and feedhorns for the 27/39 GHz multichroic array for AdvACT, which will target the synchrotron radiation that dominates at these frequencies. To gain 35% in mapping speed in the 39 GHz band where the foreground signals are faintest, the pixel number was increased through reducing the pixel diameter to 1.08 lambda at the lowest frequency, which represents a 22% decrease in size compared to our previously most tightly packed pixels.
- Published
- 2018
33. Studies of Systematic uncertainties in the Simons Observatory: Optical effects and sensitivity considerations
- Author
-
Gallardo, P, Gudmundsson, J, Koopman, B, Matsuda, F, Simon, S, Ali, A, Bryan, S, Chinone, Y, Coppi, G, Cothard, N, Devlin, M, Dicker, S, Fabbian, G, Galitzki, N, Hill, C, Keating, B, Kusaka, A, Lashner, J, Lee, A, Limon, M, Mauskopf, P, Mcmahon, J, Nati, F, Niemack, M, Orlowski-Scherer, J, Parshley, S, Puglisi, G, Reichardt, C, Salatino, M, Staggs, S, Suzuki, A, Vavagiakis, E, Wollack, E, Xu, Z, Zhu, N, Gallardo P. A., Gudmundsson J., Koopman B. J., Matsuda F. T., Simon S. M., Ali A., Bryan S., Chinone Y., Coppi G., Cothard N., Devlin M. J., Dicker S., Fabbian G., Galitzki N., Hill C. A., Keating B., Kusaka A., Lashner J., Lee A. T., Limon M., Mauskopf P. D., McMahon J., Nati F., Niemack M. D., Orlowski-Scherer J. L., Parshley S. C., Puglisi G., Reichardt C. L., Salatino M., Staggs S., Suzuki A., Vavagiakis E. M., Wollack E. J., Xu Z., Zhu N., Gallardo, P, Gudmundsson, J, Koopman, B, Matsuda, F, Simon, S, Ali, A, Bryan, S, Chinone, Y, Coppi, G, Cothard, N, Devlin, M, Dicker, S, Fabbian, G, Galitzki, N, Hill, C, Keating, B, Kusaka, A, Lashner, J, Lee, A, Limon, M, Mauskopf, P, Mcmahon, J, Nati, F, Niemack, M, Orlowski-Scherer, J, Parshley, S, Puglisi, G, Reichardt, C, Salatino, M, Staggs, S, Suzuki, A, Vavagiakis, E, Wollack, E, Xu, Z, Zhu, N, Gallardo P. A., Gudmundsson J., Koopman B. J., Matsuda F. T., Simon S. M., Ali A., Bryan S., Chinone Y., Coppi G., Cothard N., Devlin M. J., Dicker S., Fabbian G., Galitzki N., Hill C. A., Keating B., Kusaka A., Lashner J., Lee A. T., Limon M., Mauskopf P. D., McMahon J., Nati F., Niemack M. D., Orlowski-Scherer J. L., Parshley S. C., Puglisi G., Reichardt C. L., Salatino M., Staggs S., Suzuki A., Vavagiakis E. M., Wollack E. J., Xu Z., and Zhu N.
- Abstract
The Simons Observatory (SO) is a new experiment that aims to measure the cosmic microwave background (CMB) in temperature and polarization. SO will measure the polarized sky over a large range of microwave frequencies and angular scales using a combination of small (∼0.5 m) and large (∼6 m) aperture telescopes and will be located in the Atacama Desert in Chile. This work is part of a series of papers studying calibration, sensitivity, and systematic errors for SO. In this paper, we discuss current efforts to model optical systematic effects, how these have been used to guide the design of the SO instrument, and how these studies can be used to inform instrument design of future experiments like CMB-S4. While optical systematics studies are underway for both the small aperture and large aperture telescopes, we limit the focus of this paper to the more mature large aperture telescope design for which our studies include: pointing errors, optical distortions, beam ellipticity, cross-polar response, instrumental polarization rotation and various forms of sidelobe pickup.
- Published
- 2018
34. Studies of Systematic uncertainties in the Simons Observatory: Optical effects and sensitivity considerations
- Author
-
Gallardo, Pa, Gudmundsson, J, Koopman, Bj, Matsuda, Ft, Simon, Sm, Ali, A, Bryan, S, Chinone, Y, Coppi, G, Cothard, N, Devlin, Mj, Dicker, S, Fabbian, G, Galitzki, N, Hill, Ca, Keating, B, Kusaka, A, Lashner, J, Lee, At, Limon, M, Mauskopf, Pd, Mcmahon, J, Nati, F, Niemack, Md, Orlowski-Scherer, Jl, Parshley, Sc, Puglisi, G, Reichardt, Cl, Salatino, M, Staggs, S, Suzuki, A, Vavagiakis, Em, Wollack, Ej, Xu, Z, Zhu, N, Gallardo, P, Gudmundsson, J, Koopman, B, Matsuda, F, Simon, S, Ali, A, Bryan, S, Chinone, Y, Coppi, G, Cothard, N, Devlin, M, Dicker, S, Fabbian, G, Galitzki, N, Hill, C, Keating, B, Kusaka, A, Lashner, J, Lee, A, Limon, M, Mauskopf, P, Mcmahon, J, Nati, F, Niemack, M, Orlowski-Scherer, J, Parshley, S, Puglisi, G, Reichardt, C, Salatino, M, Staggs, S, Suzuki, A, Vavagiakis, E, Wollack, E, Xu, Z, and Zhu, N
- Subjects
systematic effects ,pointing ,Simons Observatory ,Settore FIS/05 ,sub-mm astronomy ,beam ellipticity ,CMB ,cross-polarization ,instrumental polarization ,optics ,sidelobes ,sidelobe ,Beam ellipticity ,optic - Abstract
The Simons Observatory (SO) is a new experiment that aims to measure the cosmic microwave background (CMB) in temperature and polarization. SO will measure the polarized sky over a large range of microwave frequencies and angular scales using a combination of small (∼0.5 m) and large (∼6 m) aperture telescopes and will be located in the Atacama Desert in Chile. This work is part of a series of papers studying calibration, sensitivity, and systematic errors for SO. In this paper, we discuss current efforts to model optical systematic effects, how these have been used to guide the design of the SO instrument, and how these studies can be used to inform instrument design of future experiments like CMB-S4. While optical systematics studies are underway for both the small aperture and large aperture telescopes, we limit the focus of this paper to the more mature large aperture telescope design for which our studies include: pointing errors, optical distortions, beam ellipticity, cross-polar response, instrumental polarization rotation and various forms of sidelobe pickup.
- Published
- 2018
35. The Simons Observatory: science goals and forecasts
- Author
-
Ade, P, Aguirre, J, Ahmed, Z, Aiola, S, Ali, A, Alonso, D, Alvarez, M, Arnold, K, Ashton, P, Austermann, J, Awan, H, Baccigalupi, C, Baildon, T, Barron, D, Battaglia, N, Battye, R, Baxter, E, Bazarko, A, Beall, J, Bean, R, Beck, D, Beckman, S, Beringue, B, Bianchini, F, Boada, S, Boettger, D, Bond, J, Borrill, J, Brown, M, Bruno, S, Bryan, S, Calabrese, E, Calafut, V, Calisse, P, Carron, J, Challinor, A, Chesmore, G, Chinone, Y, Chluba, J, Cho, H, Choi, S, Coppi, G, Cothard, N, Coughlin, K, Crichton, D, Crowley, K, Cukierman, A, D'Ewart, J, Dünner, R, de Haan, T, Devlin, M, Dicker, S, Didier, J, Dobbs, M, Dober, B, Duell, C, Duff, S, Duivenvoorden, A, Dunkley, J, Dusatko, J, Errard, J, Fabbian, G, Feeney, S, Ferraro, S, Fluxà, P, Freese, K, Frisch, J, Frolov, A, Fuller, G, Fuzia, B, Galitzki, N, Gallardo, P, Ghersi, J, Gao, J, Gawiser, E, Gerbino, M, Gluscevic, V, Goeckner-Wald, N, Golec, J, Gordon, S, Gralla, M, Green, D, Grigorian, A, Groh, J, Groppi, C, Guan, Y, Gudmundsson, J, Han, D, Hargrave, P, Hasegawa, M, Hasselfield, M, Hattori, M, Haynes, V, Hazumi, M, He, Y, Healy, E, Henderson, S, Hervias-Caimapo, C, Hill, C, Hill, J, Hilton, G, Hilton, M, Hincks, A, Hinshaw, G, Hložek, R, Ho, S, Howe, L, Huang, Z, Hubmayr, J, Huffenberger, K, Hughes, J, Ijjas, A, Ikape, M, Irwin, K, Jaffe, A, Jain, B, Jeong, O, Kaneko, D, Karpel, E, Katayama, N, Keating, B, Kernasovskiy, S, Keskitalo, R, Kisner, T, Kiuchi, K, Klein, J, Knowles, K, Koopman, B, Kosowsky, A, Krachmalnicoff, N, Kuenstner, S, Kuo, C, Kusaka, A, Lashner, J, Lee, A, Lee, E, Leon, D, Leung, J, Lewis, A, Li, Y, Li, Z, Limon, M, Linder, E, Lopez-Caraballo, C, Louis, T, Lowry, L, Lungu, M, Madhavacheril, M, Mak, D, Maldonado, F, Mani, H, Mates, B, Matsuda, F, Maurin, L, Mauskopf, P, May, A, Mccallum, N, Mckenney, C, Mcmahon, J, Meerburg, P, Meyers, J, Miller, A, Mirmelstein, M, Moodley, K, Munchmeyer, M, Munson, C, Naess, S, Nati, F, Navaroli, M, Newburgh, L, Nguyen, H, Niemack, M, Nishino, H, Orlowski-Scherer, J, Page, L, Partridge, B, Peloton, J, Perrotta, F, Piccirillo, L, Pisano, G, Poletti, D, Puddu, R, Puglisi, G, Raum, C, Reichardt, C, Remazeilles, M, Rephaeli, Y, Riechers, D, Rojas, F, Roy, A, Sadeh, S, Sakurai, Y, Salatino, M, Rao, M, Schaan, E, Schmittfull, M, Sehgal, N, Seibert, J, Seljak, U, Sherwin, B, Shimon, M, Sierra, C, Sievers, J, Sikhosana, P, Silva-Feaver, M, Simon, S, Sinclair, A, Siritanasak, P, Smith, K, Smith, S, Spergel, D, Staggs, S, Stein, G, Stevens, J, Stompor, R, Suzuki, A, Tajima, O, Takakura, S, Teply, G, Thomas, D, Thorne, B, Thornton, R, Trac, H, Tsai, C, Tucker, C, Ullom, J, Vagnozzi, S, Engelen, A, Lanen, J, Winkle, D, Vavagiakis, E, Vergès, C, Vissers, M, Wagoner, K, Walker, S, Ward, J, Westbrook, B, Whitehorn, N, Williams, J, Wollack, E, Xu, Z, Yu, B, Yu, C, Zago, F, Zhang, H, Zhu, N, Ade, Peter, Aguirre, James, Ahmed, Zeeshan, Aiola, Simone, Ali, Aamir, Alonso, David, Alvarez, Marcelo A., Arnold, Kam, Ashton, Peter, Austermann, Jason, Awan, Humna, Baccigalupi, Carlo, Baildon, Taylor, Barron, Darcy, Battaglia, Nick, Battye, Richard, Baxter, Eric, Bazarko, Andrew, Beall, James A., Bean, Rachel, Beck, Dominic, Beckman, Shawn, Beringue, Benjamin, Bianchini, Federico, Boada, Steven, Boettger, David, Bond, J. Richard, Borrill, Julian, Brown, Michael L., Bruno, Sarah Marie, Bryan, Sean, Calabrese, Erminia, Calafut, Victoria, Calisse, Paolo, Carron, Julien, Challinor, Anthony, Chesmore, Grace, Chinone, Yuji, Chluba, Jens, Cho, Hsiao-Mei Sherry, Choi, Steve, Coppi, Gabriele, Cothard, Nicholas F., Coughlin, Kevin, Crichton, Devin, Crowley, Kevin D., Crowley, Kevin T., Cukierman, Ari, D'Ewart, John M., Dünner, Rolando, de Haan, Tijmen, Devlin, Mark, Dicker, Simon, Didier, Joy, Dobbs, Matt, Dober, Bradley, Duell, Cody J., Duff, Shannon, Duivenvoorden, Adri, Dunkley, Jo, Dusatko, John, Errard, Josquin, Fabbian, Giulio, Feeney, Stephen, Ferraro, Simone, Fluxà, Pedro, Freese, Katherine, Frisch, Josef C., Frolov, Andrei, Fuller, George, Fuzia, Brittany, Galitzki, Nicholas, Gallardo, Patricio A., Ghersi, Jose Tomas Galvez, Gao, Jiansong, Gawiser, Eric, Gerbino, Martina, Gluscevic, Vera, Goeckner-Wald, Neil, Golec, Joseph, Gordon, Sam, Gralla, Megan, Green, Daniel, Grigorian, Arpi, Groh, John, Groppi, Chris, Guan, Yilun, Gudmundsson, Jon E., Han, Dongwon, Hargrave, Peter, Hasegawa, Masaya, Hasselfield, Matthew, Hattori, Makoto, Haynes, Victor, Hazumi, Masashi, He, Yizhou, Healy, Erin, Henderson, Shawn W., Hervias-Caimapo, Carlos, Hill, Charles A., Hill, J. Colin, Hilton, Gene, Hilton, Matt, Hincks, Adam D., Hinshaw, Gary, Hložek, Renée, Ho, Shirley, Ho, Shuay-Pwu Patty, Howe, Logan, Huang, Zhiqi, Hubmayr, Johannes, Huffenberger, Kevin, Hughes, John P., Ijjas, Anna, Ikape, Margaret, Irwin, Kent, Jaffe, Andrew H., Jain, Bhuvnesh, Jeong, Oliver, Kaneko, Daisuke, Karpel, Ethan D., Katayama, Nobuhiko, Keating, Brian, Kernasovskiy, Sarah S., Keskitalo, Reijo, Kisner, Theodore, Kiuchi, Kenji, Klein, Jeff, Knowles, Kenda, Koopman, Brian, Kosowsky, Arthur, Krachmalnicoff, Nicoletta, Kuenstner, Stephen E., Kuo, Chao-Lin, Kusaka, Akito, Lashner, Jacob, Lee, Adrian, Lee, Eunseong, Leon, David, Leung, Jason S. -Y., Lewis, Antony, Li, Yaqiong, Li, Zack, Limon, Michele, Linder, Eric, Lopez-Caraballo, Carlos, Louis, Thibaut, Lowry, Lindsay, Lungu, Marius, Madhavacheril, Mathew, Mak, Daisy, Maldonado, Felipe, Mani, Hamdi, Mates, Ben, Matsuda, Frederick, Maurin, Loïc, Mauskopf, Phil, May, Andrew, McCallum, Nialh, McKenney, Chris, McMahon, Jeff, Meerburg, P. Daniel, Meyers, Joel, Miller, Amber, Mirmelstein, Mark, Moodley, Kavilan, Munchmeyer, Moritz, Munson, Charles, Naess, Sigurd, Nati, Federico, Navaroli, Martin, Newburgh, Laura, Nguyen, Ho Nam, Niemack, Michael, Nishino, Haruki, Orlowski-Scherer, John, Page, Lyman, Partridge, Bruce, Peloton, Julien, Perrotta, Francesca, Piccirillo, Lucio, Pisano, Giampaolo, Poletti, Davide, Puddu, Roberto, Puglisi, Giuseppe, Raum, Chris, Reichardt, Christian L., Remazeilles, Mathieu, Rephaeli, Yoel, Riechers, Dominik, Rojas, Felipe, Roy, Anirban, Sadeh, Sharon, Sakurai, Yuki, Salatino, Maria, Rao, Mayuri Sathyanarayana, Schaan, Emmanuel, Schmittfull, Marcel, Sehgal, Neelima, Seibert, Joseph, Seljak, Uros, Sherwin, Blake, Shimon, Meir, Sierra, Carlos, Sievers, Jonathan, Sikhosana, Precious, Silva-Feaver, Maximiliano, Simon, Sara M., Sinclair, Adrian, Siritanasak, Praween, Smith, Kendrick, Smith, Stephen R., Spergel, David, Staggs, Suzanne T., Stein, George, Stevens, Jason R., Stompor, Radek, Suzuki, Aritoki, Tajima, Osamu, Takakura, Satoru, Teply, Grant, Thomas, Daniel B., Thorne, Ben, Thornton, Robert, Trac, Hy, Tsai, Calvin, Tucker, Carole, Ullom, Joel, Vagnozzi, Sunny, Engelen, Alexander van, Lanen, Jeff Van, Winkle, Daniel D. Van, Vavagiakis, Eve M., Vergès, Clara, Vissers, Michael, Wagoner, Kasey, Walker, Samantha, Ward, Jon, Westbrook, Ben, Whitehorn, Nathan, Williams, Jason, Williams, Joel, Wollack, Edward J., Xu, Zhilei, Yu, Byeonghee, Yu, Cyndia, Zago, Fernando, Zhang, Hezi, Zhu, Ningfeng, Ade, P, Aguirre, J, Ahmed, Z, Aiola, S, Ali, A, Alonso, D, Alvarez, M, Arnold, K, Ashton, P, Austermann, J, Awan, H, Baccigalupi, C, Baildon, T, Barron, D, Battaglia, N, Battye, R, Baxter, E, Bazarko, A, Beall, J, Bean, R, Beck, D, Beckman, S, Beringue, B, Bianchini, F, Boada, S, Boettger, D, Bond, J, Borrill, J, Brown, M, Bruno, S, Bryan, S, Calabrese, E, Calafut, V, Calisse, P, Carron, J, Challinor, A, Chesmore, G, Chinone, Y, Chluba, J, Cho, H, Choi, S, Coppi, G, Cothard, N, Coughlin, K, Crichton, D, Crowley, K, Cukierman, A, D'Ewart, J, Dünner, R, de Haan, T, Devlin, M, Dicker, S, Didier, J, Dobbs, M, Dober, B, Duell, C, Duff, S, Duivenvoorden, A, Dunkley, J, Dusatko, J, Errard, J, Fabbian, G, Feeney, S, Ferraro, S, Fluxà, P, Freese, K, Frisch, J, Frolov, A, Fuller, G, Fuzia, B, Galitzki, N, Gallardo, P, Ghersi, J, Gao, J, Gawiser, E, Gerbino, M, Gluscevic, V, Goeckner-Wald, N, Golec, J, Gordon, S, Gralla, M, Green, D, Grigorian, A, Groh, J, Groppi, C, Guan, Y, Gudmundsson, J, Han, D, Hargrave, P, Hasegawa, M, Hasselfield, M, Hattori, M, Haynes, V, Hazumi, M, He, Y, Healy, E, Henderson, S, Hervias-Caimapo, C, Hill, C, Hill, J, Hilton, G, Hilton, M, Hincks, A, Hinshaw, G, Hložek, R, Ho, S, Howe, L, Huang, Z, Hubmayr, J, Huffenberger, K, Hughes, J, Ijjas, A, Ikape, M, Irwin, K, Jaffe, A, Jain, B, Jeong, O, Kaneko, D, Karpel, E, Katayama, N, Keating, B, Kernasovskiy, S, Keskitalo, R, Kisner, T, Kiuchi, K, Klein, J, Knowles, K, Koopman, B, Kosowsky, A, Krachmalnicoff, N, Kuenstner, S, Kuo, C, Kusaka, A, Lashner, J, Lee, A, Lee, E, Leon, D, Leung, J, Lewis, A, Li, Y, Li, Z, Limon, M, Linder, E, Lopez-Caraballo, C, Louis, T, Lowry, L, Lungu, M, Madhavacheril, M, Mak, D, Maldonado, F, Mani, H, Mates, B, Matsuda, F, Maurin, L, Mauskopf, P, May, A, Mccallum, N, Mckenney, C, Mcmahon, J, Meerburg, P, Meyers, J, Miller, A, Mirmelstein, M, Moodley, K, Munchmeyer, M, Munson, C, Naess, S, Nati, F, Navaroli, M, Newburgh, L, Nguyen, H, Niemack, M, Nishino, H, Orlowski-Scherer, J, Page, L, Partridge, B, Peloton, J, Perrotta, F, Piccirillo, L, Pisano, G, Poletti, D, Puddu, R, Puglisi, G, Raum, C, Reichardt, C, Remazeilles, M, Rephaeli, Y, Riechers, D, Rojas, F, Roy, A, Sadeh, S, Sakurai, Y, Salatino, M, Rao, M, Schaan, E, Schmittfull, M, Sehgal, N, Seibert, J, Seljak, U, Sherwin, B, Shimon, M, Sierra, C, Sievers, J, Sikhosana, P, Silva-Feaver, M, Simon, S, Sinclair, A, Siritanasak, P, Smith, K, Smith, S, Spergel, D, Staggs, S, Stein, G, Stevens, J, Stompor, R, Suzuki, A, Tajima, O, Takakura, S, Teply, G, Thomas, D, Thorne, B, Thornton, R, Trac, H, Tsai, C, Tucker, C, Ullom, J, Vagnozzi, S, Engelen, A, Lanen, J, Winkle, D, Vavagiakis, E, Vergès, C, Vissers, M, Wagoner, K, Walker, S, Ward, J, Westbrook, B, Whitehorn, N, Williams, J, Wollack, E, Xu, Z, Yu, B, Yu, C, Zago, F, Zhang, H, Zhu, N, Ade, Peter, Aguirre, James, Ahmed, Zeeshan, Aiola, Simone, Ali, Aamir, Alonso, David, Alvarez, Marcelo A., Arnold, Kam, Ashton, Peter, Austermann, Jason, Awan, Humna, Baccigalupi, Carlo, Baildon, Taylor, Barron, Darcy, Battaglia, Nick, Battye, Richard, Baxter, Eric, Bazarko, Andrew, Beall, James A., Bean, Rachel, Beck, Dominic, Beckman, Shawn, Beringue, Benjamin, Bianchini, Federico, Boada, Steven, Boettger, David, Bond, J. Richard, Borrill, Julian, Brown, Michael L., Bruno, Sarah Marie, Bryan, Sean, Calabrese, Erminia, Calafut, Victoria, Calisse, Paolo, Carron, Julien, Challinor, Anthony, Chesmore, Grace, Chinone, Yuji, Chluba, Jens, Cho, Hsiao-Mei Sherry, Choi, Steve, Coppi, Gabriele, Cothard, Nicholas F., Coughlin, Kevin, Crichton, Devin, Crowley, Kevin D., Crowley, Kevin T., Cukierman, Ari, D'Ewart, John M., Dünner, Rolando, de Haan, Tijmen, Devlin, Mark, Dicker, Simon, Didier, Joy, Dobbs, Matt, Dober, Bradley, Duell, Cody J., Duff, Shannon, Duivenvoorden, Adri, Dunkley, Jo, Dusatko, John, Errard, Josquin, Fabbian, Giulio, Feeney, Stephen, Ferraro, Simone, Fluxà, Pedro, Freese, Katherine, Frisch, Josef C., Frolov, Andrei, Fuller, George, Fuzia, Brittany, Galitzki, Nicholas, Gallardo, Patricio A., Ghersi, Jose Tomas Galvez, Gao, Jiansong, Gawiser, Eric, Gerbino, Martina, Gluscevic, Vera, Goeckner-Wald, Neil, Golec, Joseph, Gordon, Sam, Gralla, Megan, Green, Daniel, Grigorian, Arpi, Groh, John, Groppi, Chris, Guan, Yilun, Gudmundsson, Jon E., Han, Dongwon, Hargrave, Peter, Hasegawa, Masaya, Hasselfield, Matthew, Hattori, Makoto, Haynes, Victor, Hazumi, Masashi, He, Yizhou, Healy, Erin, Henderson, Shawn W., Hervias-Caimapo, Carlos, Hill, Charles A., Hill, J. Colin, Hilton, Gene, Hilton, Matt, Hincks, Adam D., Hinshaw, Gary, Hložek, Renée, Ho, Shirley, Ho, Shuay-Pwu Patty, Howe, Logan, Huang, Zhiqi, Hubmayr, Johannes, Huffenberger, Kevin, Hughes, John P., Ijjas, Anna, Ikape, Margaret, Irwin, Kent, Jaffe, Andrew H., Jain, Bhuvnesh, Jeong, Oliver, Kaneko, Daisuke, Karpel, Ethan D., Katayama, Nobuhiko, Keating, Brian, Kernasovskiy, Sarah S., Keskitalo, Reijo, Kisner, Theodore, Kiuchi, Kenji, Klein, Jeff, Knowles, Kenda, Koopman, Brian, Kosowsky, Arthur, Krachmalnicoff, Nicoletta, Kuenstner, Stephen E., Kuo, Chao-Lin, Kusaka, Akito, Lashner, Jacob, Lee, Adrian, Lee, Eunseong, Leon, David, Leung, Jason S. -Y., Lewis, Antony, Li, Yaqiong, Li, Zack, Limon, Michele, Linder, Eric, Lopez-Caraballo, Carlos, Louis, Thibaut, Lowry, Lindsay, Lungu, Marius, Madhavacheril, Mathew, Mak, Daisy, Maldonado, Felipe, Mani, Hamdi, Mates, Ben, Matsuda, Frederick, Maurin, Loïc, Mauskopf, Phil, May, Andrew, McCallum, Nialh, McKenney, Chris, McMahon, Jeff, Meerburg, P. Daniel, Meyers, Joel, Miller, Amber, Mirmelstein, Mark, Moodley, Kavilan, Munchmeyer, Moritz, Munson, Charles, Naess, Sigurd, Nati, Federico, Navaroli, Martin, Newburgh, Laura, Nguyen, Ho Nam, Niemack, Michael, Nishino, Haruki, Orlowski-Scherer, John, Page, Lyman, Partridge, Bruce, Peloton, Julien, Perrotta, Francesca, Piccirillo, Lucio, Pisano, Giampaolo, Poletti, Davide, Puddu, Roberto, Puglisi, Giuseppe, Raum, Chris, Reichardt, Christian L., Remazeilles, Mathieu, Rephaeli, Yoel, Riechers, Dominik, Rojas, Felipe, Roy, Anirban, Sadeh, Sharon, Sakurai, Yuki, Salatino, Maria, Rao, Mayuri Sathyanarayana, Schaan, Emmanuel, Schmittfull, Marcel, Sehgal, Neelima, Seibert, Joseph, Seljak, Uros, Sherwin, Blake, Shimon, Meir, Sierra, Carlos, Sievers, Jonathan, Sikhosana, Precious, Silva-Feaver, Maximiliano, Simon, Sara M., Sinclair, Adrian, Siritanasak, Praween, Smith, Kendrick, Smith, Stephen R., Spergel, David, Staggs, Suzanne T., Stein, George, Stevens, Jason R., Stompor, Radek, Suzuki, Aritoki, Tajima, Osamu, Takakura, Satoru, Teply, Grant, Thomas, Daniel B., Thorne, Ben, Thornton, Robert, Trac, Hy, Tsai, Calvin, Tucker, Carole, Ullom, Joel, Vagnozzi, Sunny, Engelen, Alexander van, Lanen, Jeff Van, Winkle, Daniel D. Van, Vavagiakis, Eve M., Vergès, Clara, Vissers, Michael, Wagoner, Kasey, Walker, Samantha, Ward, Jon, Westbrook, Ben, Whitehorn, Nathan, Williams, Jason, Williams, Joel, Wollack, Edward J., Xu, Zhilei, Yu, Byeonghee, Yu, Cyndia, Zago, Fernando, Zhang, Hezi, and Zhu, Ningfeng
- Abstract
The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial con figuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping approximate to 10% of the sky to a white noise level of 2 mu K-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of sigma(r) = 0.003. The large aperture telescope will map approximate to 40% of the sky at arcminute angular resolution to an expected white noise level of 6 mu K-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and
- Published
- 2019
36. Developing AlMn Films for Argonne TES Fabrication
- Author
-
Vavagiakis, E. M., primary, Cothard, N. F., additional, Stevens, J. R., additional, Chang, C. L., additional, Niemack, M. D., additional, Wang, G., additional, Yefremenko, V. G., additional, and Zhang, J., additional
- Published
- 2019
- Full Text
- View/download PDF
37. Prime-Cam: A first-light instrument for the CCAT-prime telescope.
- Author
-
Vavagiakis, E. M., Ahmed, Z., Ali, A., Basu, K., Battaglia, N., Bertoldi, F., Bond, R., Bustos, R., Chapman, S. C., Chung, D., Coppi, G., Cothard, N. F., Dicker, S., Duell, C. J., Duff, S. M., Erler, J., Fich, M., Galitzki, N., Gallardo, P. A., and Henderson, S. W.
- Published
- 2018
- Full Text
- View/download PDF
38. Readout of two-kilopixel transition-edge sensor arrays for Advanced ACTPol
- Author
-
Henderson, S, Stevens, J, Amiri, M, Austermann, J, Beall, J, Chaudhuri, S, Cho, H, Choi, S, Cothard, N, Crowley, K, Duff, S, Fitzgerald, C, Gallardo, P, Halpern, M, Hasselfield, M, Hilton, G, Ho, S, Hubmayr, J, Irwin, K, Koopman, B, Li, D, Li, Y, Mcmahon, J, Nati, F, Niemack, M, Reintsema, C, Salatino, M, Schillaci, A, Schmitt, B, Simon, S, Staggs, S, Vavagiakis, E, Ward, J, Henderson, SW, Stevens, JR, Beall, JA, Cho, HM, Choi, SK, Cothard, NF, Crowley, KT, Duff, SM, Fitzgerald, CP, Gallardo, PA, Ho, SP, Irwin, KD, Koopman, BJ, McMahon, J, Reintsema, CD, Schmitt, BL, Simon, SM, Staggs, ST, Vavagiakis, EM, Ward, JT, Henderson, S, Stevens, J, Amiri, M, Austermann, J, Beall, J, Chaudhuri, S, Cho, H, Choi, S, Cothard, N, Crowley, K, Duff, S, Fitzgerald, C, Gallardo, P, Halpern, M, Hasselfield, M, Hilton, G, Ho, S, Hubmayr, J, Irwin, K, Koopman, B, Li, D, Li, Y, Mcmahon, J, Nati, F, Niemack, M, Reintsema, C, Salatino, M, Schillaci, A, Schmitt, B, Simon, S, Staggs, S, Vavagiakis, E, Ward, J, Henderson, SW, Stevens, JR, Beall, JA, Cho, HM, Choi, SK, Cothard, NF, Crowley, KT, Duff, SM, Fitzgerald, CP, Gallardo, PA, Ho, SP, Irwin, KD, Koopman, BJ, McMahon, J, Reintsema, CD, Schmitt, BL, Simon, SM, Staggs, ST, Vavagiakis, EM, and Ward, JT
- Abstract
Advanced ACTPol is an instrument upgrade for the six-meter Atacama Cosmology Telescope (ACT) designed to measure the cosmic microwave background (CMB) temperature and polarization with arcminute-scale angular resolution. To achieve its science goals, Advanced ACTPol utilizes a larger readout multiplexing factor than any previous CMB experiment to measure detector arrays with approximately two thousand transition-edge sensor (TES) bolometers in each 150 mm detector wafer. We present the implementation and testing of the Advanced ACTPol time-division multiplexing readout architecture with a 64-row multiplexing factor. This includes testing of individual multichroic detector pixels and superconducting quantum interference device (SQUID) multiplexing chips as well as testing and optimizing of the integrated readout electronics. In particular, we describe the new automated multiplexing SQUID tuning procedure developed to select and optimize the thousands of SQUID parameters required to readout each Advanced ACTPol array. The multichroic detector pixels in each array use separate channels for each polarization and each of the two frequencies, such that four TESes must be read out per pixel. Challenges addressed include doubling the number of detectors per multiplexed readout channel compared to ACTPol and optimizing the Nyquist inductance to minimize detector and SQUID noise aliasing.
- Published
- 2016
39. Prime-Cam: a first-light instrument for the CCAT-prime telescope
- Author
-
Zmuidzinas, Jonas, Gao, Jian-Rong, Vavagiakis, E. M., Ahmed, Z., Ali, A., Basu, K., Battaglia, N., Bertoldi, F., Bond, R., Bustos, R., Chapman, S. C., Chung, D., Coppi, G., Cothard, N. F., Dicker, S., Duell, C. J., Duff, S. M., Erler, J., Fich, M., Galitzki, N., Gallardo, P. A., Henderson, S. W., Herter, T. L., Hilton, G., Hubmayr, J., Irwin, K. D., Koopman, B. J., McMahon, J., Murray, N., Niemack, M. D., Nikola, T., Nolta, M., Orlowski-Scherer, J., Parshley, S. C., Riechers, D. A., Rossi, K., Scott, D., Sierra, C., Silva-Feaver, M., Simon, S. M., Stacey, G. J., Stevens, J. R., Ullom, J. N., Vissers, M. R., Walker, S., Wollack, E. J., Xu, Z., and Zhu, N.
- Published
- 2018
- Full Text
- View/download PDF
40. CCAT-Prime: science with an ultra-widefield submillimeter observatory on Cerro Chajnantor
- Author
-
Marshall, Heather K., Spyromilio, Jason, Stacey, G. J., Aravena, M., Basu, K., Battaglia, N., Beringue, B., Bertoldi, F., Bond, J. R., Breysse, P., Bustos, R., Chapman, S., Chung, D. T., Cothard, N., Erler, J., Fich, M., Foreman, S., Gallardo, P., Giovanelli, R., Graf, U. U., Haynes, M. P., Herrera-Camus, R., Herter, T. L., Hložek, R., Johnstone, D., Keating, L., Magnelli, B., Meerburg, D., Meyers, J., Murray, N., Niemack, M., Nikola, T., Nolta, M., Parshley, S. C., Riechers, D. A., Schilke, P., Scott, D., Stein, G., Stevens, J., Stutzki, J., Vavagiakis, E. M., and Viero, M. P.
- Published
- 2018
- Full Text
- View/download PDF
41. The Atacama Cosmology Telescope: a search for Planet 9
- Author
-
Sigurd Naess, Simone Aiola, Nick Battaglia, Richard J. Bond, Erminia Calabrese, Steve K. Choi, Nicholas F. Cothard, Mark Halpern, J. Colin Hill, Brian J. Koopman, Mark Devlin, Jeff McMahon, Simon Dicker, Adriaan J. Duivenvoorden, Jo Dunkley, Valentina Fanfani, Simone Ferraro, Patricio A. Gallardo, Yilun Guan, Dongwon Han, Matthew Hasselfield, Adam D. Hincks, Kevin Huffenberger, Arthur B. Kosowsky, Thibaut Louis, Amanda Macinnis, Mathew S. Madhavacheril, Federico Nati, Michael D. Niemack, Lyman Page, Maria Salatino, Emmanuel Schaan, John Orlowski-Scherer, Alessandro Schillaci, Benjamin Schmitt, Neelima Sehgal, Cristóbal Sifón, Suzanne Staggs, Alexander Van Engelen, Edward J. Wollack, Naess, S, Aiola, S, Battaglia, N, Bond, R, Calabrese, E, Choi, S, Cothard, N, Halpern, M, Colin Hill, J, Koopman, B, Devlin, M, Mcmahon, J, Dicker, S, Duivenvoorden, A, Dunkley, J, Fanfani, V, Ferraro, S, Gallardo, P, Guan, Y, Han, D, Hasselfield, M, Hincks, A, Huffenberger, K, Kosowsky, A, Louis, T, Macinnis, A, Madhavacheril, M, Nati, F, Niemack, M, Page, L, Salatino, M, Schaan, E, Orlowski-Scherer, J, Schillaci, A, Schmitt, B, Sehgal, N, Sif??n, C, Staggs, S, Van Engelen, A, Wollack, E, Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), and Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,010308 nuclear & particles physics ,Molecular ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astronomy & Astrophysics ,Sky surveys ,Atomic ,01 natural sciences ,Millimeter astronomy ,Particle and Plasma Physics ,13. Climate action ,Space and Planetary Science ,0103 physical sciences ,Nuclear ,Solar system planet ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,010303 astronomy & astrophysics ,Astronomical and Space Sciences ,Astrophysics - Earth and Planetary Astrophysics ,Physical Chemistry (incl. Structural) - Abstract
We use Atacama Cosmology Telescope (ACT) observations at 98 GHz (2015--2019), 150 GHz (2013--2019) and 229 GHz (2017--2019) to perform a blind shift-and-stack search for Planet 9. The search explores distances from 300 AU to 2000 AU and velocities up to 6.3 arcmin per year, depending on the distance. For a 5 Earth-mass Planet 9 the detection limit varies from 325 AU to 625 AU, depending on the sky location. For a 10 Earth-mass planet the corresponding range is 425 AU to 775 AU. The search covers the whole 18,000 square degrees of the ACT survey, though a slightly deeper search is performed for the parts of the sky consistent with Planet 9's expected orbital inclination. No significant detections are found, which is used to place limits on the mm-wave flux density of Planet 9 over much of its orbit. Overall we eliminate roughly 17% and 9% of the parameter space for a 5 and 10 Earth-mass Planet 9 respectively. We also provide a list of the 10 strongest candidates from the search for possible follow-up. More generally, we exclude (at 95% confidence) the presence of an unknown Solar system object within our survey area brighter than 4--12 mJy (depending on position) at 150 GHz with current distance $300 \text{ AU} < r < 600 \text{ AU}$ and heliocentric angular velocity $1.5'/\text{yr} < v \cdot \frac{500 \text{ AU}}{r} < 2.3'\text{yr}$, corresponding to low-to-moderate eccentricities. These limits worsen gradually beyond 600 AU, reaching 5--15 mJy by 1500 AU., 23 pages, 10 figures, 5 tables, submitted to ApJ
- Published
- 2021
- Full Text
- View/download PDF
42. The Atacama Cosmology Telescope: microwave intensity and polarization maps of the Galactic Center
- Author
-
Federico Nati, Simone Aiola, Rolando Dünner, Jeff McMahon, Edward J. Wollack, Matthew Hasselfield, Sigurd Naess, Susan E. Clark, Steve K. Choi, Emmanuel Schaan, Cody J. Duell, Mathew S. Madhavacheril, Simone Ferraro, Eve M. Vavagiakis, Patricio A. Gallardo, Michael D. Niemack, John P. Hughes, Suzanne T. Staggs, Maria Salatino, Nicholas F. Cothard, Lyman A. Page, Cristóbal Sifón, Adriaan J. Duivenvoorden, Brandon S. Hensley, Neelima Sehgal, Zachary Atkins, Mark J. Devlin, Yilun Guan, Arthur Kosowsky, Brian J. Koopman, Zhilei Xu, Erminia Calabrese, Jo Dunkley, Guan, Y, Clark, S, Hensley, B, Gallardo, P, Naess, S, Duell, C, Aiola, S, Atkins, Z, Calabrese, E, Choi, S, Cothard, N, Devlin, M, Duivenvoorden, A, Dunkley, J, Dunner, R, Ferraro, S, Hasselfield, M, Hughes, J, Koopman, B, Kosowsky, A, Madhavacheril, M, Mcmahon, J, Nati, F, Niemack, M, Page, L, Salatino, M, Schaan, E, Sehgal, N, Sifon, C, Staggs, S, Vavagiakis, E, Wollack, E, and Xu, Z
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Astrophysics::High Energy Astrophysical Phenomena ,Cosmic microwave background ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,01 natural sciences ,Pulsar wind nebula ,Atomic ,symbols.namesake ,Particle and Plasma Physics ,0103 physical sciences ,Nuclear ,Planck ,Supernova remnant ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Cosmic dust ,Physics ,010308 nuclear & particles physics ,Molecular cloud ,Galactic Center ,Molecular ,Astronomy and Astrophysics ,Cosmology, Galactic Science ,Astrophysics - Astrophysics of Galaxies ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Atacama Cosmology Telescope ,symbols ,Astronomical and Space Sciences ,Physical Chemistry (incl. Structural) ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present arcminute-resolution intensity and polarization maps of the Galactic center made with the Atacama Cosmology Telescope (ACT). The maps cover a 32 deg$^2$ field at 98, 150, and 224 GHz with $\vert l\vert\le4^\circ$, $\vert b\vert\le2^\circ$. We combine these data with Planck observations at similar frequencies to create coadded maps with increased sensitivity at large angular scales. With the coadded maps, we are able to resolve many known features of the Central Molecular Zone (CMZ) in both total intensity and polarization. We map the orientation of the plane-of-sky component of the Galactic magnetic field inferred from the polarization angle in the CMZ, finding significant changes in morphology in the three frequency bands as the underlying dominant emission mechanism changes from synchrotron to dust emission. Selected Galactic center sources, including Sgr A*, the Brick molecular cloud (G0.253+0.016), the Mouse pulsar wind nebula (G359.23-0.82), and the Tornado supernova remnant candidate (G357.7-0.1), are examined in detail. These data illustrate the potential for leveraging ground-based Cosmic Microwave Background polarization experiments for Galactic science., 26 pages, 14 figures, accepted for publication in ApJ
- Published
- 2021
43. The Atacama Cosmology Telescope: Probing the baryon content of SDSS DR15 galaxies with the thermal and kinematic Sunyaev-Zel’dovich effects
- Author
-
Nick Battaglia, J. P. Hughes, K. Moodley, Erminia Calabrese, Leila R. Vale, David N. Spergel, Michael D. Niemack, Nicholas F. Cothard, R. Hložek, Victoria Calafut, Eve M. Vavagiakis, Lyman A. Page, Rachel Bean, B. Partridge, Shannon M. Duff, S. Ferraro, M. Hilton, J. A. Beall, Gene C. Hilton, Kevin M. Huffenberger, Simone Aiola, Y. Guan, J. R. Bond, Jason E. Austermann, Sigurd Naess, C. Sifon, A. van Engelen, A. Kosowsky, E. Schaan, M. Lokken, J. C. Hill, L. B. Newburgh, S. T. Staggs, Cody J. Duell, Yaqiong Li, J. Van Lanen, Zachary B. Huber, Joel N. Ullom, Alessandro Schillaci, S. Amodeo, Edward J. Wollack, F. Nati, Johannes Hubmayr, Mark J. Devlin, Patricio A. Gallardo, A. J. Duivenvoorden, R. Dunner, Jo Dunkley, Elia S. Battistelli, Steve K. Choi, M. Madhavacheril, Zhilei Xu, Brian J. Koopman, Jeff McMahon, Vavagiakis, E, Gallardo, P, Calafut, V, Amodeo, S, Aiola, S, Austermann, J, Battaglia, N, Battistelli, E, Beall, J, Bean, R, Bond, J, Calabrese, E, Choi, S, Cothard, N, Devlin, M, Duell, C, Duff, S, Duivenvoorden, A, Dunkley, J, Dunner, R, Ferraro, S, Guan, Y, Hill, J, Hilton, G, Hilton, M, Hlozek, R, Huber, Z, Hubmayr, J, Huffenberger, K, Hughes, J, Koopman, B, Kosowsky, A, Li, Y, Lokken, M, Madhavacheril, M, Mcmahon, J, Moodley, K, Naess, S, Nati, F, Newburgh, L, Niemack, M, Page, L, Partridge, B, Schaan, E, Schillaci, A, Sifon, C, Spergel, D, Staggs, S, Ullom, J, Vale, L, Van Engelen, A, Van Lanen, J, Wollack, E, and Xu, Z
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Cosmic microwave background ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Atomic ,01 natural sciences ,Luminosity ,Particle and Plasma Physics ,Galaxy groups and clusters ,0103 physical sciences ,Optical depth (astrophysics) ,CMB, Cosmology, SZ Effect ,Nuclear ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Physics ,Quantum Physics ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Molecular ,Nuclear & Particles Physics ,Galaxy ,Baryon ,13. Climate action ,Atacama Cosmology Telescope ,Content (measure theory) ,astro-ph.CO ,Astronomical and Space Sciences ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present high signal-to-noise measurements (up to 12$\sigma$) of the average thermal Sunyaev Zel'dovich (tSZ) effect from optically selected galaxy groups and clusters and estimate their baryon content within a 2.1$^\prime$ radius aperture. Sources from the Sloan Digital Sky Survey (SDSS) Baryon Oscillation Spectroscopic Survey (BOSS) DR15 catalog overlap with 3,700 sq. deg. of sky observed by the Atacama Cosmology Telescope (ACT) from 2008 to 2018 at 150 and 98 GHz (ACT DR5), and 2,089 sq. deg. of internal linear combination component-separated maps combining ACT and $\it{Planck}$ data (ACT DR4). The corresponding optical depths, $\bar{\tau}$, which depend on the baryon content of the halos, are estimated using results from cosmological hydrodynamic simulations assuming an AGN feedback radiative cooling model. We estimate the mean mass of the halos in multiple luminosity bins, and compare the tSZ-based $\bar{\tau}$ estimates to theoretical predictions of the baryon content for a Navarro-Frenk-White profile. We do the same for $\bar{\tau}$ estimates extracted from fits to pairwise baryon momentum measurements of the kinematic Sunyaev-Zel'dovich effect (kSZ) for the same data set obtained in a companion paper. We find that the $\bar{\tau}$ estimates from the tSZ measurements in this work and the kSZ measurements in the companion paper agree within $1\sigma$ for two out of the three disjoint luminosity bins studied, while they differ by 2-3$\sigma$ in the highest luminosity bin. The optical depth estimates account for one third to all of the theoretically predicted baryon content in the halos across luminosity bins. Potential systematic uncertainties are discussed. The tSZ and kSZ measurements provide a step towards empirical Compton-$\bar{y}$-$\bar{\tau}$ relationships to provide new tests of cluster formation and evolution models., Comment: 19 pages, 9 figures
- Published
- 2021
44. The Atacama Cosmology Telescope: Detection of the pairwise kinematic Sunyaev-Zel’dovich effect with SDSS DR15 galaxies
- Author
-
C. Sifon, S. T. Staggs, E. Schaan, Brian J. Koopman, Edward J. Wollack, M. Lokken, Jeff McMahon, Michael D. Niemack, Johannes Hubmayr, A. van Engelen, Mark J. Devlin, Patricio A. Gallardo, A. Kosowsky, Nicholas F. Cothard, Victoria Calafut, Elia S. Battistelli, Yaqiong Li, Nick Battaglia, J. Van Lanen, Joel N. Ullom, M. Hilton, Kevin M. Huffenberger, David N. Spergel, F. Nati, Zhilei Xu, Gene C. Hilton, Y. Guan, Alessandro Schillaci, Erminia Calabrese, Jason E. Austermann, Jo Dunkley, Zachary B. Huber, A. J. Duivenvoorden, S. Amodeo, K. Moodley, Leila R. Vale, R. Hložek, Eve M. Vavagiakis, R. Dunner, M. Madhavacheril, Steve K. Choi, Sigurd Naess, J. P. Hughes, J. C. Hill, J. R. Bond, Shannon M. Duff, S. Ferraro, Cody J. Duell, Rachel Bean, B. Partridge, J. A. Beall, L. B. Newburgh, Lyman A. Page, Simone Aiola, Calafut, V, Gallardo, P, Vavagiakis, E, Amodeo, S, Aiola, S, Austermann, J, Battaglia, N, Battistelli, E, Beall, J, Bean, R, Bond, J, Calabrese, E, Choi, S, Cothard, N, Devlin, M, Duell, C, Duff, S, Duivenvoorden, A, Dunkley, J, Dunner, R, Ferraro, S, Guan, Y, Hill, J, Hilton, G, Hilton, M, Hlozek, R, Huber, Z, Hubmayr, J, Huffenberger, K, Hughes, J, Koopman, B, Kosowsky, A, Li, Y, Lokken, M, Madhavacheril, M, Mcmahon, J, Moodley, K, Naess, S, Nati, F, Newburgh, L, Niemack, M, Page, L, Partridge, B, Schaan, E, Schillaci, A, Sifon, C, Spergel, D, Staggs, S, Ullom, J, Vale, L, Van Engelen, A, Van Lanen, J, Wollack, E, and Xu, Z
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,media_common.quotation_subject ,Cosmic microwave background ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Sunyaev–Zel'dovich effect ,01 natural sciences ,Atomic ,Cosmology ,Photometry (optics) ,Galaxy groups and clusters ,Particle and Plasma Physics ,CMB, Cosmology, SZ Effect ,0103 physical sciences ,Nuclear ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,media_common ,Physics ,Quantum Physics ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Molecular ,Nuclear & Particles Physics ,Galaxy ,13. Climate action ,Sky ,Atacama Cosmology Telescope ,astro-ph.CO ,Astronomical and Space Sciences ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present a 5.4$\sigma$ detection of the pairwise kinematic Sunyaev-Zel'dovich (kSZ) effect using Atacama Cosmology Telescope (ACT) and $\it{Planck}$ CMB observations in combination with Luminous Red Galaxy samples from the Sloan Digital Sky Survey (SDSS) DR15 catalog. Results are obtained using three ACT CMB maps: co-added 150 GHz and 98 GHz maps, combining observations from 2008-2018 (ACT DR5), which overlap with SDSS DR15 over 3,700 sq. deg., and a component-separated map using night-time only observations from 2014-2015 (ACT DR4), overlapping with SDSS DR15 over 2,089 sq. deg. Comparisons of the results from these three maps provide consistency checks in relation to potential frequency-dependent foreground contamination. A total of 343,647 galaxies are used as tracers to identify and locate galaxy groups and clusters from which the kSZ signal is extracted using aperture photometry. We consider the impact of various aperture photometry assumptions and covariance estimation methods on the signal extraction. Theoretical predictions of the pairwise velocities are used to obtain best-fit, mass-averaged, optical depth estimates for each of five luminosity-selected tracer samples. A comparison of the kSZ-derived optical depth measurements obtained here to those derived from the thermal SZ effect for the same sample is presented in a companion paper., Comment: 17 pages, 10 figures. Updated to match published version in PRD
- Published
- 2021
45. The Atacama Cosmology Telescope: Detection of Millimeter-wave Transient Sources
- Author
-
Mathew S. Madhavacheril, Mark Halpern, Rolando Dünner, Federico Nati, Mark J. Devlin, Patricio A. Gallardo, Neelima Sehgal, Kevin M. Huffenberger, Michael D. Niemack, Megan Gralla, Erminia Calabrese, Nicholas F. Cothard, J. Colin Hill, Nick Battaglia, Sigurd Naess, Brian J. Koopman, Edward J. Wollack, Jeff McMahon, Adriaan J. Duivenvoorden, Jo Dunkley, Zhilei Xu, Bruce Partridge, Maria Salatino, Steve K. Choi, Yilun Guan, Matt Hilton, Arthur Kosowsky, J. Richard Bond, Suzanne T. Staggs, David N. Spergel, Lyman A. Page, Cody J. Duell, Naess, S, Battaglia, N, Richard Bond, J, Calabrese, E, Choi, S, Cothard, N, Devlin, M, Duell, C, Duivenvoorden, A, Dunkley, J, Dunner, R, Gallardo, P, Gralla, M, Guan, Y, Halpern, M, Colin Hill, J, Hilton, M, Huffenberger, K, Koopman, B, Kosowsky, A, Madhavacheril, M, Mcmahon, J, Nati, F, Niemack, M, Page, L, Partridge, B, Salatino, M, Sehgal, N, Spergel, D, Staggs, S, Wollack, E, and Xu, Z
- Subjects
Physics ,Spectral index ,010308 nuclear & particles physics ,Flux ,Astronomy and Astrophysics ,Astrophysics ,01 natural sciences ,Cosmology ,Stars ,13. Climate action ,Space and Planetary Science ,Coincident ,0103 physical sciences ,Atacama Cosmology Telescope ,Extremely high frequency ,transient millimeter-wave sources, cosmology ,Maximum flux ,010303 astronomy & astrophysics - Abstract
We report on the serendipitous discovery of three transient millimeter-wave sources using data from the Atacama Cosmology Telescope. The first, detected at R.A. = 273.8138, decl. = −49.4628 at ~50σ total, brightened from less than 5 mJy to at least 1100 mJy at 150 GHz with an unknown rise time shorter than 13 days, during which the increase from 250 mJy to 1100 mJy took only 8 minutes. Maximum flux was observed on 2019 November 8. The source's spectral index in flux between 90–150 GHz was positive, α = 1.5 ± 0.2. The second, detected at R.A. = 105.1584, decl. = −11.2434 at ~20σ total, brightened from less than 20 mJy to at least 300 mJy at 150 GHz with an unknown rise time shorter than 8 days. Maximum flux was observed on 2019 December 15. Its spectral index was also positive, α = 1.8 ± 0.2. The third, detected at R.A. = 301.9952, decl. = 16.1652 at ~40σ total, brightened from less than 8 mJy to at least 300 mJy at 150 GHz over a day or less but decayed over a few days. Maximum flux was observed on 2018 September 11. Its spectrum was approximately flat, with a spectral index of α = −0.2 ± 0.1. None of the sources were polarized to the limits of these measurements. The two rising-spectrum sources are coincident in position with M and K stars, while the third is coincident with a G star.
- Published
- 2021
46. The Simons Observatory: modeling optical systematics in the Large Aperture Telescope
- Author
-
Rolando Dünner, John Orlowski-Scherer, Adrian T. Lee, Kavilan Moodley, Aamir Ali, Philip Daniel Mauskopf, Giuseppe Puglisi, Patricio A. Gallardo, Sara M. Simon, Carlos Sierra, Michael D. Niemack, Grace E. Chesmore, Giulio Fabbian, Alexandre E. Adler, Nicholas F. Cothard, Lyman A. Page, Gabriele Coppi, Ningfeng Zhu, Nicholas Galitzki, Edward J. Wollack, Federico Nati, Shuay-Pwu Patty Ho, Nadia Dachlythra, Bruce Partridge, Michele Limon, Zhilei Xu, Christian L. Reichardt, A. M. Kofman, Jon E. Gudmundsson, Simon Dicker, Peter Charles Hargrave, Joseph E. Golec, Andrew Bazarko, Roberto Puddu, Frederick Matsuda, Carole Tucker, Mark J. Devlin, Grant Teply, Gudmundsson, J, Gallardo, P, Puddu, R, Dicker, S, Adler, A, Ali, A, Bazarko, A, Chesmore, G, Coppi, G, Cothard, N, Dachlythra, N, Devlin, M, Dünner, R, Fabbian, G, Galitzki, N, Golec, J, Patty Ho, S, Hargrave, P, Kofman, A, Lee, A, Limon, M, Matsuda, F, Mauskopf, P, Moodley, K, Nati, F, Niemack, M, Orlowski-Scherer, J, Page, L, Partridge, B, Puglisi, G, Reichardt, C, Sierra, C, Simon, S, Teply, G, Tucker, C, Wollack, E, Xu, Z, and Zhu, N
- Subjects
FOS: Physical sciences ,01 natural sciences ,law.invention ,010309 optics ,Telescope ,Optics ,Observatory ,law ,0103 physical sciences ,Light beam ,Electrical and Electronic Engineering ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Engineering (miscellaneous) ,Physics ,Geometrical optics ,business.industry ,Stray light ,Settore FIS/05 ,Optical Design, Telescope, Simons Observatory ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Physical optics ,Atomic and Molecular Physics, and Optics ,Ray tracing (graphics) ,Astrophysics - Instrumentation and Methods for Astrophysics ,business - Abstract
We present geometrical and physical optics simulation results for the Simons Observatory Large Aperture Telescope. This work was developed as part of the general design process for the telescope; allowing us to evaluate the impact of various design choices on performance metrics and potential systematic effects. The primary goal of the simulations was to evaluate the final design of the reflectors and the cold optics which are now being built. We describe non-sequential ray tracing used to inform the design of the cold optics, including absorbers internal to each optics tube. We discuss ray tracing simulations of the telescope structure that allow us to determine geometries that minimize detector loading and mitigate spurious near-field effects that have not been resolved by the internal baffling. We also describe physical optics simulations, performed over a range of frequencies and field locations, that produce estimates of monochromatic far field beam patterns which in turn are used to gauge general optical performance. Finally, we describe simulations that shed light on beam sidelobes from panel gap diffraction., 15 pages, 13 figures
- Published
- 2021
47. The Simons Observatory: Magnetic Sensitivity Measurements of Microwave SQUID Multiplexers
- Author
-
Jake Connors, Zhilei Xu, Aamir Ali, Suzanne T. Staggs, Simon Dicker, Kasey Wagoner, Eve M. Vavagiakis, Jason E. Austermann, Steve K. Choi, Gene C. Hilton, Maximiliano Silva-Feaver, Yaqiong Li, Michael D. Niemack, Ningfeng Zhu, Jason R. Stevens, Johannes Hubmayr, Kam Arnold, Michael R. Vissers, Erin Healy, Nicholas F. Cothard, Zeeshan Ahmed, Sarah Marie Bruno, Shawn W. Henderson, Joel N. Ullom, Nicoletta Krachmalnicoff, B. Dober, Shannon M. Duff, Shuay-Pwu Patty Ho, Heather McCarrick, Valentina Fanfani, John A. B. Mates, Federico Nati, Duc-Thuong Hoang, Vavagiakis, E, Ahmed, Z, Ali, A, Arnold, K, Austermann, J, Bruno, S, Choi, S, Connors, J, Cothard, N, Dicker, S, Dober, B, Duff, S, Fanfani, V, Healy, E, Henderson, S, Ho, S, Hoang, D, Hilton, G, Hubmayr, J, Krachmalnicoff, N, Li, Y, Mates, J, Mccarrick, H, Nati, F, Niemack, M, Silva-Feaver, M, Staggs, S, Stevens, J, Vissers, M, Ullom, J, Wagoner, K, Xu, Z, and Zhu, N
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Physics::Instrumentation and Detectors ,Cosmic microwave background ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Lenslet ,SQUID ,01 natural sciences ,7. Clean energy ,microwave multiplexing ,law.invention ,Telescope ,Optics ,Settore FIS/05 - Astronomia e Astrofisica ,law ,Observatory ,0103 physical sciences ,Electrical and Electronic Engineering ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics ,business.industry ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,supercondcuting detector ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Electromagnetic shielding ,supercondcuting detectors ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,SQUIDs ,Microwave ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Magnetic field dependence - Abstract
The Simons Observatory (SO) will be a cosmic microwave background (CMB) survey experiment with three small-aperture telescopes and one large-aperture telescope, which will observe from the Atacama Desert in Chile. In total, SO will field $\sim$70,000 transition-edge sensor (TES) bolometers in six spectral bands centered between 27 and 280 GHz in order to achieve the sensitivity necessary to measure or constrain numerous cosmological quantities. The SO Universal Focal Plane Modules (UFMs) each contain a 150 mm diameter TES detector array, horn or lenslet optical coupling, cold readout components, and magnetic shielding. SO will use a microwave SQUID multiplexing ($\mu$MUX) readout at an initial multiplexing factor of $\sim$1000; the cold (100 mK) readout components are packaged in a $\mu$MUX readout module, which is part of the UFM, and can also be characterized independently. The 100 mK stage TES bolometer arrays and microwave SQUIDs are sensitive to magnetic fields, and their measured response will vary with the degree to which they are magnetically shielded. We present measurements of the magnetic pickup of test microwave SQUID multiplexers as a study of various shielding configurations for the Simons Observatory. We discuss how these measurements motivated the material choice and design of the UFM magnetic shielding., Comment: 5 pages, 6 figures, conference proceedings submitted to IEEE Transactions on Applied Superconductivity
- Published
- 2021
48. The Simons Observatory: the Large Aperture Telescope Receiver (LATR) Integration and Validation Results
- Author
-
Suzanne T. Staggs, Jenna Moore, Jake Connors, John Orlowski-Scherer, Steve K. Choi, Federico Nati, Michael D. Niemack, Erin Healy, Ningfeng Zhu, Joseph Seibert, Bradley Dober, Robert Thornton, Brian J. Koopman, Zhilei Xu, Johannes Hubmayr, Jack Lashner, Tanay Bhandarkar, Christian L. Reichardt, Nicholas F. Cothard, Jason E. Austermann, Giulio Fabbian, Shuay-Pwu Patty Ho, Edward J. Wollack, Gabriele Coppi, Yuhan Wang, Michele Limon, Jeffrey Iuliano, Mark J. Devlin, Kathleen Harrington, Kaiwen Zheng, Shannon M. Duff, Kam Arnold, Heather McCarrick, Samantha Walker, Simon Dicker, Eve M. Vavagiakis, Maximiliano Silva-Feaver, Nicholas Galitzki, A. M. Kofman, Rita Sonka, Michael R. Vissers, Karen Perez Sarmiento, Yaqiong Li, Aamir Ali, Saianeesh K. Haridas, Zmuidzinas J.,Gao J.-R., Xu, Z, Bhandarkar, T, Coppi, G, Kofman, A, Orlowski-Scherer, J, Zhu, N, Ali, A, Arnold, K, Austermann, J, Choi, S, Connors, J, Cothard, N, Devlin, M, Dicker, S, Dober, B, Duff, S, Fabbian, G, Galitzki, N, Haridas, S, Harrington, K, Healy, E, Ho, S, Hubmayr, J, Iuliano, J, Lashner, J, Li, Y, Limon, M, Koopman, B, Mccarrick, H, Moore, J, Nati, F, Niemack, M, Reichardt, C, Sarmiento, K, Seibert, J, Silva-Feaver, M, Sonka, R, Staggs, S, Thornton, R, Vavagiakis, E, Vissers, M, Walker, S, Wang, Y, Wollack, E, and Zheng, K
- Subjects
Physics ,COSMIC cancer database ,Astrophysics::High Energy Astrophysical Phenomena ,Cosmic microwave background ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,Observa-tional Cosmology ,Astronomy ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Radio spectrum ,Cryogenic Technology ,law.invention ,Astronomical Instrumentation ,Telescope ,law ,Observatory ,Observational cosmology ,Cosmic Microwave Background ,Astrophysics::Earth and Planetary Astrophysics ,Neutrino ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) - Abstract
The Simons Observatory (SO) will observe the cosmic microwave background (CMB) from Cerro Toco in the Atacama Desert of Chile. The observatory consists of three 0.5 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT), covering six frequency bands centering around 30, 40, 90, 150, 230, and 280 GHz. The SO observations will transform the understanding of our universe by characterizing the properties of the early universe, measuring the number of relativistic species and the mass of neutrinos, improving our understanding of galaxy evolution, and constraining the properties of cosmic reionization. As a critical instrument, the Large Aperture Telescope Receiver (LATR) is designed to cool $\sim$ 60,000 transition-edge sensors (TES) to $, Comment: 20 pages, 12 figures, submitted to the 2020 SPIE Astronomical Telescopes + Instrumentation
- Published
- 2020
49. The Atacama Cosmology Telescope: DR4 maps and cosmological parameters
- Author
-
Simone Aiola, Suzanne T. Staggs, C. Sifon, J. Richard Bond, Martine Lokken, Bruce Partridge, Brittany Fuzia, Giampaolo Pisano, Matthew Hasselfield, Vincent Lakey, Shannon M. Duff, H. M. Cho, Naomi Robertson, Brandon S. Hensley, Laura Newburgh, Alexander van Engelen, Jesus Rivera, Kirsten Hall, Matt Hilton, Susan E. Clark, Kavilan Moodley, Rachel Bean, Kent D. Irwin, David Alonso, Andrina Nicola, Edward J. Wollack, Mathew S. Madhavacheril, Dhaneshwar D. Sunder, Brian J. Koopman, David N. Spergel, Rolando Dünner, Jakob M. Helton, Toshiya Namikawa, Zhilei Xu, Sigurd Naess, Leopoldo Infante, Adam D. Hincks, Emily Grace, Renée Hložek, Ningfeng Zhu, Felipe Rojas, Jeff McMahon, Grace E. Chesmore, Jacob Klein, Max Fankhanel, Frank J. Qu, Heather Prince, S. Henderson, Yaqiong Li, Timothy D. Morton, Dale Li, Jason E. Austermann, E. V. Denison, Jason R. Stevens, Robert Thornton, Kenda Knowles, Christine G. Pappas, Amanda MacInnis, Yuhan Wang, Joseph E. Golec, Precious Sikhosana, Adriaan J. Duivenvoorden, Neelima Sehgal, John P. Hughes, Felipe Maldonado, Eve M. Vavagiakis, Peter Charles Hargrave, Sarah Marie Bruno, Michael R. Nolta, Zack Li, Dongwon Han, John P. Nibarger, Sara M. Simon, Jon Sievers, Kasey Wagoner, Blake D. Sherwin, J. Colin Hill, Lyman A. Page, Thibaut Louis, John Orlowski-Sherer, Fernando Zago, Arthur Kosowsky, Benjamin L. Schmitt, Carlos Sierra, Felipe Menanteau, Loïc Maurin, B. Thorne, Vera Gluscevic, Eric R. Switzer, Kevin M. Huffenberger, Marius Lungu, Jo Dunkley, Emilie R. Storer, Felipe Carrero, Gene C. Hilton, Maya Mallaby-Kay, Steve K. Choi, Roberto Puddu, Phumlani Phakathi, Jeff Van Lanen, Jonathan T. Ward, Omar Darwish, Yilun Guan, Maria Salatino, Daniel T. Becker, Anna E. Fox, James A. Beall, Kevin T. Crowley, Federico Nati, Carole Tucker, Alessandro Schillaci, Graeme E. Addison, Shuay-Pwu Patty Ho, Elio Angile, S. Amodeo, Erminia Calabrese, Leila R. Vale, Megan Gralla, Mandana Amiri, Nick Battaglia, Rahul Datta, Peter A. R. Ade, Devin Crichton, Michael D. Niemack, Nicholas F. Cothard, Victoria Calafut, Jesse Treu, Thomas Essinger-Hileman, Cody J. Duell, Luis E. Campusano, Danica Marsden, Rebecca Jackson, Emmanuel Schaan, Johannes Hubmayr, Mark Halpern, Simone Ferraro, Hy Trac, Mark J. Devlin, Patricio A. Gallardo, Maximilian H. Abitbol, Taylor Baildon, Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ACT, Aiola, S, Calabrese, E, Maurin, L, Naess, S, Schmitt, B, Abitbol, M, Addison, G, Ade, P, Alonso, D, Amiri, M, Amodeo, S, Angile, E, Austermann, J, Baildon, T, Battaglia, N, Beall, J, Bean, R, Becker, D, Richard Bond, J, Bruno, S, Calafut, V, Campusano, L, Carrero, F, Chesmore, G, Cho, H, Choi, S, Clark, S, Cothard, N, Crichton, D, Crowley, K, Darwish, O, Datta, R, Denison, E, Devlin, M, Duell, C, Duff, S, Duivenvoorden, A, Dunkley, J, Dunner, R, Essinger-Hileman, T, Fankhanel, M, Ferraro, S, Fox, A, Fuzia, B, Gallardo, P, Gluscevic, V, Golec, J, Grace, E, Gralla, M, Guan, Y, Hall, K, Halpern, M, Han, D, Hargrave, P, Hasselfield, M, Helton, J, Henderson, S, Hensley, B, Colin Hill, J, Hilton, G, Hilton, M, Hincks, A, Hlozek, R, Ho, S, Hubmayr, J, Huffenberger, K, Hughes, J, Infante, L, Irwin, K, Jackson, R, Klein, J, Knowles, K, Koopman, B, Kosowsky, A, Lakey, V, Li, D, Li, Y, Li, Z, Lokken, M, Louis, T, Lungu, M, Macinnis, A, Madhavacheril, M, Maldonado, F, Mallaby-Kay, M, Marsden, D, Mcmahon, J, Menanteau, F, Moodley, K, Morton, T, Namikawa, T, Nati, F, Newburgh, L, Nibarger, J, Nicola, A, Niemack, M, Nolta, M, Orlowski-Sherer, J, Page, L, Pappas, C, Partridge, B, Phakathi, P, Pisano, G, Prince, H, Puddu, R, Qu, F, Rivera, J, Robertson, N, Rojas, F, Salatino, M, Schaan, E, Schillaci, A, Sehgal, N, Sherwin, B, Sierra, C, Sievers, J, Sifon, C, Sikhosana, P, Simon, S, Spergel, D, Staggs, S, Stevens, J, Storer, E, Sunder, D, Switzer, E, Thorne, B, Thornton, R, Trac, H, Treu, J, Tucker, C, Vale, L, van Engelen, A, van Lanen, J, Vavagiakis, E, Wagoner, K, Wang, Y, Ward, J, Wollack, E, Xu, Z, Zago, F, and Zhu, N
- Subjects
CMBR polarisation ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Cosmic microwave background ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Cosmology ,symbols.namesake ,0103 physical sciences ,CMBR experiments ,Planck ,Physics ,Spectral index ,010308 nuclear & particles physics ,Spectral density ,Astronomy and Astrophysics ,CMB cold spot ,Baryon ,Cosmological parameters from CMBR ,13. Climate action ,Atacama Cosmology Telescope ,symbols ,CMBR experiment ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present new arcminute-resolution maps of the Cosmic Microwave Background temperature and polarization anisotropy from the Atacama Cosmology Telescope, using data taken from 2013-2016 at 98 and 150 GHz. The maps cover more than 17,000 deg$^2$, the deepest 600 deg$^2$ with noise levels below 10 $\mu$K-arcmin. We use the power spectrum derived from almost 6,000 deg$^2$ of these maps to constrain cosmology. The ACT data enable a measurement of the angular scale of features in both the divergence-like polarization and the temperature anisotropy, tracing both the velocity and density at last-scattering. From these one can derive the distance to the last-scattering surface and thus infer the local expansion rate, $H_0$. By combining ACT data with large-scale information from WMAP we measure $H_0 = 67.6 \pm 1.1$ km/s/Mpc, at 68% confidence, in excellent agreement with the independently-measured Planck satellite estimate (from ACT alone we find $H_0 = 67.9 \pm 1.5$ km/s/Mpc). The $\Lambda$CDM model provides a good fit to the ACT data, and we find no evidence for deviations: both the spatial curvature, and the departure from the standard lensing signal in the spectrum, are zero to within 1$\sigma$; the number of relativistic species, the primordial Helium fraction, and the running of the spectral index are consistent with $\Lambda$CDM predictions to within $1.5 - 2.2\sigma$. We compare ACT, WMAP, and Planck at the parameter level and find good consistency; we investigate how the constraints on the correlated spectral index and baryon density parameters readjust when adding CMB large-scale information that ACT does not measure. The DR4 products presented here will be publicly released on the NASA Legacy Archive for Microwave Background Data Analysis., Comment: 33 pages, 24 figures, products available on the NASA LAMBDA website, version accepted for publication in JCAP
- Published
- 2020
- Full Text
- View/download PDF
50. The Atacama Cosmology Telescope: A Measurement of the Cosmic Microwave Background Power Spectra at 98 and 150 GHz
- Author
-
Kavilan Moodley, Emilie R. Storer, Simone Aiola, Phumlani Phakathi, Jeff Van Lanen, E. Grace, Stefania Amodeo, Felipe Rojas, Yaqiong Li, Nick Battaglia, Precious Sikhosana, Suzanne T. Staggs, Vera Gluscevic, Robert Thornton, Benjamin L. Schmitt, Christine G. Pappas, Rolando Dünner, Danica Marsden, Yilun Guan, Felipe Carrero, Blake D. Sherwin, Sigurd Naess, Leopoldo Infante, Adam D. Hincks, Toshiya Namikawa, Zhilei Xu, Brittany Fuzia, Graeme E. Addison, Kasey Wagoner, Daniel T. Becker, J. Richard Bond, Jason E. Austermann, Sarah Marie Bruno, Matthew Hasselfield, Naomi Robertson, Jesse Treu, Vincent Lakey, John P. Nibarger, Timothy D. Morton, Sara M. Simon, David N. Spergel, Jesus Rivera, Michael R. Nolta, Zack Li, Shawn W. Henderson, Max Fankhanel, Martine Lokken, B. Thorne, Mark J. Devlin, Thomas Essinger-Hileman, James A. Beall, Yuhan Wang, Kevin T. Crowley, John Orlowski-Sherer, Bruce Partridge, Adriaan J. Duivenvoorden, Laura Newburgh, Grace E. Chesmore, Alessandro Schillaci, Jon Sievers, Dhaneshwar D. Sunder, Federico Nati, Rahul Datta, Dale Li, Shuay-Pwu Patty Ho, Shannon M. Duff, Edward V. Denison, Peter A. R. Ade, Mathew S. Madhavacheril, Maya Mallaby-Kay, Erminia Calabrese, Roberto Puddu, J. Colin Hill, Elio Angile, Jo Dunkley, Omar Darwish, Kenda Knowles, Marius Lungu, Megan Gralla, Susan E. Clark, Jeff Klein, Fernando Zago, Dongwon Han, Brandon S. Hensley, Devin Crichton, Renée Hložek, Peter Charles Hargrave, Frank J. Qu, Neelima Sehgal, Leila R. Vale, Matt Hilton, Gene C. Hilton, Joseph E. Golec, Heather Prince, Mandana Amiri, Alexander van Engelen, Maria Salatino, Loïc Maurin, Andrina Nicola, Lyman A. Page, Thibaut Louis, Steve K. Choi, Michael D. Niemack, Eve M. Vavagiakis, Nicholas F. Cothard, Victoria Calafut, Jonathan T. Ward, Carole Tucker, Arthur Kosowsky, Kevin M. Huffenberger, Kent D. Irwin, Hsiao-Mei Cho, Edward J. Wollack, Anna E. Fox, Ningfeng Zhu, Amanda MacInnis, Felipe Maldonado, Brian J. Koopman, Jeff McMahon, Cristóbal Sifón, Emmanuel Schaan, Johannes Hubmayr, Mark Halpern, Simone Ferraro, Hy Trac, Patricio A. Gallardo, Maximilian H. Abitbol, Taylor Baildon, Luis E. Campusano, Rebecca Jackson, Carlos Sierra, Felipe Menanteau, Jason R. Stevens, John P. Hughes, Cody J. Duell, Eric R. Switzer, Kirsten Hall, Rachel Bean, David Alonso, Choi, S, Hasselfield, M, Ho, S, Koopman, B, Lungu, M, Abitbol, M, Addison, G, Ade, P, Aiola, S, Alonso, D, Amiri, M, Amodeo, S, Angile, E, Austermann, J, Baildon, T, Battaglia, N, Beall, J, Bean, R, Becker, D, Richard Bond, J, Bruno, S, Calabrese, E, Calafut, V, Campusano, L, Carrero, F, Chesmore, G, Cho, H, Clark, S, Cothard, N, Crichton, D, Crowley, K, Darwish, O, Datta, R, Denison, E, Devlin, M, Duell, C, Duff, S, Duivenvoorden, A, Dunkley, J, Dunner, R, Essinger-Hileman, T, Fankhanel, M, Ferraro, S, Fox, A, Fuzia, B, Gallardo, P, Gluscevic, V, Golec, J, Grace, E, Gralla, M, Guan, Y, Hall, K, Halpern, M, Han, D, Hargrave, P, Henderson, S, Hensley, B, Colin Hill, J, Hilton, G, Hilton, M, Hincks, A, Hlozek, R, Hubmayr, J, Huffenberger, K, Hughes, J, Infante, L, Irwin, K, Jackson, R, Klein, J, Knowles, K, Kosowsky, A, Lakey, V, Li, D, Li, Y, Li, Z, Lokken, M, Louis, T, Macinnis, A, Madhavacheril, M, Maldonado, F, Mallaby-Kay, M, Marsden, D, Maurin, L, Mcmahon, J, Menanteau, F, Moodley, K, Morton, T, Naess, S, Namikawa, T, Nati, F, Newburgh, L, Nibarger, J, Nicola, A, Niemack, M, Nolta, M, Orlowski-Sherer, J, Page, L, Pappas, C, Partridge, B, Phakathi, P, Prince, H, Puddu, R, Qu, F, Rivera, J, Robertson, N, Rojas, F, Salatino, M, Schaan, E, Schillaci, A, Schmitt, B, Sehgal, N, Sherwin, B, Sierra, C, Sievers, J, Sifon, C, Sikhosana, P, Simon, S, Spergel, D, Staggs, S, Stevens, J, Storer, E, Sunder, D, Switzer, E, Thorne, B, Thornton, R, Trac, H, Treu, J, Tucker, C, Vale, L, van Engelen, A, van Lanen, J, Vavagiakis, E, Wagoner, K, Wang, Y, Ward, J, Wollack, E, Xu, Z, Zago, F, Zhu, N, Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), and ACT
- Subjects
Physics ,CMBR polarisation ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,Cosmic microwave background ,Library science ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Cosmological parameters from CMBR ,0103 physical sciences ,Atacama Cosmology Telescope ,CMBR experiment ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the temperature and polarization angular power spectra of the CMB measured by the Atacama Cosmology Telescope (ACT) from 5400 deg$^2$ of the 2013-2016 survey, which covers $>$15000 deg$^2$ at 98 and 150 GHz. For this analysis we adopt a blinding strategy to help avoid confirmation bias and, related to this, show numerous checks for systematic error done before unblinding. Using the likelihood for the cosmological analysis we constrain secondary sources of anisotropy and foreground emission, and derive a "CMB-only" spectrum that extends to $\ell=4000$. At large angular scales, foreground emission at 150 GHz is $\sim$1% of TT and EE within our selected regions and consistent with that found by Planck. Using the same likelihood, we obtain the cosmological parameters for $\Lambda$CDM for the ACT data alone with a prior on the optical depth of $\tau=0.065\pm0.015$. $\Lambda$CDM is a good fit. The best-fit model has a reduced $\chi^2$ of 1.07 (PTE=0.07) with $H_0=67.9\pm1.5$ km/s/Mpc. We show that the lensing BB signal is consistent with $\Lambda$CDM and limit the celestial EB polarization angle to $\psi_P =-0.07^{\circ}\pm0.09^{\circ}$. We directly cross correlate ACT with Planck and observe generally good agreement but with some discrepancies in TE. All data on which this analysis is based will be publicly released., Comment: 44 pages, 27 figures, products available on the NASA LAMBDA website, version accepted for publication in JCAP
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.