13 results on '"Crawshaw AD"'
Search Results
2. VMXm - A sub-micron focus macromolecular crystallography beamline at Diamond Light Source.
- Author
-
Warren AJ, Trincao J, Crawshaw AD, Beale EV, Duller G, Stallwood A, Lunnon M, Littlewood R, Prescott A, Foster A, Smith N, Rehm G, Gayadeen S, Bloomer C, Alianelli L, Laundy D, Sutter J, Cahill L, and Evans G
- Abstract
VMXm joins the suite of operational macromolecular crystallography beamlines at Diamond Light Source. It has been designed to optimize rotation data collections from protein crystals less than 10 µm and down to below 1 µm in size. The beamline has a fully focused beam of 0.3 × 2.3 µm (vertical × horizontal) with a tuneable energy range (6-28 keV) and high flux (1.6 × 10
12 photons s-1 at 12.5 keV). The crystals are housed within a vacuum chamber to minimize background scatter from air. Crystals are plunge-cooled on cryo-electron microscopy grids, allowing much of the liquid surrounding the crystals to be removed. These factors improve the signal-to-noise during data collection and the lifetime of the microcrystals can be prolonged by exploiting photoelectron escape. A novel in vacuo sample environment has been designed which also houses a scanning electron microscope to aid with sample visualization. This combination of features at VMXm allows measurements at the physical limits of X-ray crystallography on biomacromolecules to be explored and exploited., (open access.)- Published
- 2024
- Full Text
- View/download PDF
3. Atomic structure of a nudivirus occlusion body protein determined from a 70-year-old crystal sample.
- Author
-
Keown JR, Crawshaw AD, Trincao J, Carrique L, Gildea RJ, Horrell S, Warren AJ, Axford D, Owen R, Evans G, Bézier A, Metcalf P, and Grimes JM
- Subjects
- Baculoviridae genetics, Viral Proteins metabolism, Nudiviridae
- Abstract
Infectious protein crystals are an essential part of the viral lifecycle for double-stranded DNA Baculoviridae and double-stranded RNA cypoviruses. These viral protein crystals, termed occlusion bodies or polyhedra, are dense protein assemblies that form a crystalline array, encasing newly formed virions. Here, using X-ray crystallography we determine the structure of a polyhedrin from Nudiviridae. This double-stranded DNA virus family is a sister-group to the baculoviruses, whose members were thought to lack occlusion bodies. The 70-year-old sample contains a well-ordered lattice formed by a predominantly α-helical building block that assembles into a dense, highly interconnected protein crystal. The lattice is maintained by extensive hydrophobic and electrostatic interactions, disulfide bonds, and domain switching. The resulting lattice is resistant to most environmental stresses. Comparison of this structure to baculovirus or cypovirus polyhedra shows a distinct protein structure, crystal space group, and unit cell dimensions, however, all polyhedra utilise common principles of occlusion body assembly., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
4. Investigation of the milling characteristics of different focused-ion-beam sources assessed by three-dimensional electron diffraction from crystal lamellae.
- Author
-
Parkhurst JM, Crawshaw AD, Siebert CA, Dumoux M, Owen CD, Nunes P, Waterman D, Glen T, Stuart DI, Naismith JH, and Evans G
- Abstract
Three-dimensional electron diffraction (3DED) from nanocrystals of biological macromolecules requires the use of very small crystals. These are typically less than 300 nm-thick in the direction of the electron beam due to the strong interaction between electrons and matter. In recent years, focused-ion-beam (FIB) milling has been used in the preparation of thin samples for 3DED. These instruments typically use a gallium liquid metal ion source. Inductively coupled plasma (ICP) sources in principle offer faster milling rates. Little work has been done to quantify the damage these sources cause to delicate biological samples at cryogenic temperatures. Here, an analysis of the effect that milling with plasma FIB (pFIB) instrumentation has on lysozyme crystals is presented. This work evaluates both argon and xenon plasmas and compares them with crystals milled with a gallium source. A milling protocol was employed that utilizes an overtilt to produce wedge-shaped lamellae with a shallow thickness gradient which yielded very thin crystalline samples. 3DED data were then acquired and standard data-processing statistics were employed to assess the quality of the diffraction data. An upper bound to the depth of the pFIB-milling damage layer of between 42.5 and 50 nm is reported, corresponding to half the thickness of the thinnest lamellae that resulted in usable diffraction data. A lower bound of between 32.5 and 40 nm is also reported, based on a literature survey of the minimum amount of diffracting material required for 3DED., (open access.)
- Published
- 2023
- Full Text
- View/download PDF
5. Alkyne Derivatives of SARS-CoV-2 Main Protease Inhibitors Including Nirmatrelvir Inhibit by Reacting Covalently with the Nucleophilic Cysteine.
- Author
-
Brewitz L, Dumjahn L, Zhao Y, Owen CD, Laidlaw SM, Malla TR, Nguyen D, Lukacik P, Salah E, Crawshaw AD, Warren AJ, Trincao J, Strain-Damerell C, Carroll MW, Walsh MA, and Schofield CJ
- Subjects
- Humans, Cysteine chemistry, Viral Nonstructural Proteins metabolism, Antiviral Agents pharmacology, COVID-19, Nitriles, SARS-CoV-2 metabolism, Viral Protease Inhibitors pharmacology, Coronavirus 3C Proteases
- Abstract
Nirmatrelvir (PF-07321332) is a nitrile-bearing small-molecule inhibitor that, in combination with ritonavir, is used to treat infections by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Nirmatrelvir interrupts the viral life cycle by inhibiting the SARS-CoV-2 main protease (M
pro ), which is essential for processing viral polyproteins into functional nonstructural proteins. We report studies which reveal that derivatives of nirmatrelvir and other Mpro inhibitors with a nonactivated terminal alkyne group positioned similarly to the electrophilic nitrile of nirmatrelvir can efficiently inhibit isolated Mpro and SARS-CoV-2 replication in cells. Mass spectrometric and crystallographic evidence shows that the alkyne derivatives inhibit Mpro by apparent irreversible covalent reactions with the active site cysteine (Cys145), while the analogous nitriles react reversibly. The results highlight the potential for irreversible covalent inhibition of Mpro and other nucleophilic cysteine proteases by alkynes, which, in contrast to nitriles, can be functionalized at their terminal position to optimize inhibition and selectivity, as well as pharmacodynamic and pharmacokinetic properties.- Published
- 2023
- Full Text
- View/download PDF
6. A Sample Preparation Pipeline for Microcrystals at the VMXm Beamline.
- Author
-
Crawshaw AD, Beale EV, Warren AJ, Stallwood A, Duller G, Trincao J, and Evans G
- Subjects
- Crystallization, Crystallography, X-Ray, X-Ray Diffraction, Proteins, Synchrotrons
- Abstract
The mounting of microcrystals (<10 µm) for single crystal cryo-crystallography presents a non-trivial challenge. Improvements in data quality have been seen for microcrystals with the development of beamline optics, beam stability and variable beam size focusing from submicron to microns, such as at the VMXm beamline at Diamond Light Source
1 . Further improvements in data quality will be gained through improvements in sample environment and sample preparation. Microcrystals inherently generate weaker diffraction, therefore improving the signal-to-noise is key to collecting quality X-ray diffraction data and will predominantly come from reductions in background noise. Major sources of X-ray background noise in a diffraction experiment are from their interaction with the air path before and after the sample, excess crystallization solution surrounding the sample, the presence of crystalline ice and scatter from any other beamline instrumentation or X-ray windows. The VMXm beamline comprises instrumentation and a sample preparation protocol to reduce all these sources of noise. Firstly, an in-vacuum sample environment at VMXm removes the air path between X-ray source and sample. Next, sample preparation protocols for macromolecular crystallography at VMXm utilize a number of processes and tools adapted from cryoTEM. These include copper grids with holey carbon support films, automated blotting and plunge cooling robotics making use of liquid ethane. These tools enable the preparation of hundreds of microcrystals on a single cryoTEM grid with minimal surrounding liquid on a low-noise support. They also minimize the formation of crystalline ice from any remaining liquid surrounding the crystals. We present the process for preparing and assessing the quality of soluble protein microcrystals using visible light and scanning electron microscopy before mounting the samples on the VMXm beamline for X-ray diffraction experiments. We will also provide examples of good quality samples as well as those which require further optimization and strategies to do so.- Published
- 2021
- Full Text
- View/download PDF
7. Scanning electron microscopy as a method for sample visualization in protein X-ray crystallography.
- Author
-
Beale EV, Warren AJ, Trincão J, Beilsten-Edmands J, Crawshaw AD, Sutton G, Stuart D, and Evans G
- Abstract
Developing methods to determine high-resolution structures from micrometre- or even submicrometre-sized protein crystals has become increasingly important in recent years. This applies to both large protein complexes and membrane proteins, where protein production and the subsequent growth of large homogeneous crystals is often challenging, and to samples which yield only micro- or nanocrystals such as amyloid or viral polyhedrin proteins. The versatile macromolecular crystallography microfocus (VMXm) beamline at Diamond Light Source specializes in X-ray diffraction measurements from micro- and nanocrystals. Because of the possibility of measuring data from crystalline samples that approach the resolution limit of visible-light microscopy, the beamline design includes a scanning electron microscope (SEM) to visualize, locate and accurately centre crystals for X-ray diffraction experiments. To ensure that scanning electron microscopy is an appropriate method for sample visualization, tests were carried out to assess the effect of SEM radiation on diffraction quality. Cytoplasmic polyhedrosis virus polyhedrin protein crystals cryocooled on electron-microscopy grids were exposed to SEM radiation before X-ray diffraction data were collected. After processing the data with DIALS , no statistically significant difference in data quality was found between datasets collected from crystals exposed and not exposed to SEM radiation. This study supports the use of an SEM as a tool for the visualization of protein crystals and as an integrated visualization tool on the VMXm beamline., (© Beale et al. 2020.)
- Published
- 2020
- Full Text
- View/download PDF
8. A practical overview of molecular replacement: Clostridioides difficile PilA1, a difficult case study.
- Author
-
Crawshaw AD, Baslé A, and Salgado PS
- Subjects
- Protein Conformation, alpha-Helical, Protein Structure, Tertiary, Software, Bacterial Proteins chemistry, Clostridiales chemistry, Fimbriae Proteins chemistry
- Abstract
Many biologists are now routinely seeking to determine the three-dimensional structures of their proteins of choice, illustrating the importance of this knowledge, but also of the simplification and streamlining of structure-determination processes. Despite the fact that most software packages offer simple pipelines, for the non-expert navigating the outputs and understanding the key aspects can be daunting. Here, the structure determination of the type IV pili (TFP) protein PilA1 from Clostridioides difficile is used to illustrate the different steps involved, the key decision criteria and important considerations when using the most common pipelines and software. Molecular-replacement pipelines within CCP4i2 are presented to illustrate the more commonly used processes. Previous knowledge of the biology and structure of TFP pilins, particularly the presence of a long, N-terminal α-helix required for pilus formation, allowed informed decisions to be made during the structure-determination strategy. The PilA1 structure was finally successfully determined using ARCIMBOLDO and the ab initio MR strategy used is described., (open access.)
- Published
- 2020
- Full Text
- View/download PDF
9. Measuring energy-dependent photoelectron escape in microcrystals.
- Author
-
Storm SLS, Crawshaw AD, Devenish NE, Bolton R, Hall DR, Tews I, and Evans G
- Abstract
With the increasing trend of using microcrystals and intense microbeams at synchrotron X-ray beamlines, radiation damage becomes a more pressing problem. Theoretical calculations show that the photoelectrons that primarily cause damage can escape microcrystals. This effect would become more pronounced with decreasing crystal size as well as at higher energies. To prove this effect, data from cryocooled lysozyme crystals of dimensions 5 × 3 × 3 and 20 × 8 × 8 µm mounted on cryo-transmission electron microscopy (cryo-TEM) grids were collected at 13.5 and 20.1 keV using a PILATUS CdTe 2M detector, which has a similar quantum efficiency at both energies. Accurate absorbed doses were calculated through the direct measurement of individual crystal sizes using scanning electron microscopy after the experiment and characterization of the X-ray microbeam. The crystal lifetime was then quantified based on the D
1/2 metric. In this first systematic study, a longer crystal lifetime for smaller crystals was observed and crystal lifetime increased at higher X-ray energies, supporting the theoretical predictions of photoelectron escape. The use of detector technologies specifically optimized for data collection at energies above 20 keV allows the theoretically predicted photoelectron escape to be quantified and exploited, guiding future beamline-design choices., (© Selina L. S. Storm et al. 2020.)- Published
- 2020
- Full Text
- View/download PDF
10. The SpoIIQ-SpoIIIAH complex of Clostridium difficile controls forespore engulfment and late stages of gene expression and spore morphogenesis.
- Author
-
Serrano M, Crawshaw AD, Dembek M, Monteiro JM, Pereira FC, Pinho MG, Fairweather NF, Salgado PS, and Henriques AO
- Subjects
- Amino Acid Sequence, Amino Acid Substitution, Bacterial Proteins chemistry, Bacterial Proteins genetics, Protein Binding, Protein Interaction Domains and Motifs, Sequence Deletion, Bacterial Proteins metabolism, Clostridioides difficile physiology, Gene Expression Regulation, Bacterial, Spores, Bacterial
- Abstract
Engulfment of the forespore by the mother cell is a universal feature of endosporulation. In Bacillus subtilis, the forespore protein SpoIIQ and the mother cell protein SpoIIIAH form a channel, essential for endosporulation, through which the developing spore is nurtured. The two proteins also form a backup system for engulfment. Unlike in B. subtilis, SpoIIQ of Clostridium difficile has intact LytM zinc-binding motifs. We show that spoIIQ or spoIIIAH deletion mutants of C. difficile result in anomalous engulfment, and that disruption of the SpoIIQ LytM domain via a single amino acid substitution (H120S) impairs engulfment differently. SpoIIQ and SpoIIQ(H120S) interact with SpoIIIAH throughout engulfment. SpoIIQ, but not SpoIIQ(H120S) , binds Zn(2+) , and metal absence alters the SpoIIQ-SpoIIIAH complex in vitro. Possibly, SpoIIQ(H120S) supports normal engulfment in some cells but not a second function of the complex, required following engulfment completion. We show that cells of the spoIIQ or spoIIIAH mutants that complete engulfment are impaired in post-engulfment, forespore and mother cell-specific gene expression, suggesting a channel-like function. Both engulfment and a channel-like function may be ancestral functions of SpoIIQ-SpoIIIAH while the requirement for engulfment was alleviated through the emergence of redundant mechanisms in B. subtilis and related organisms., (© 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.)
- Published
- 2016
- Full Text
- View/download PDF
11. Insight into Coenzyme A cofactor binding and the mechanism of acyl-transfer in an acylating aldehyde dehydrogenase from Clostridium phytofermentans.
- Author
-
Tuck LR, Altenbach K, Ang TF, Crawshaw AD, Campopiano DJ, Clarke DJ, and Marles-Wright J
- Subjects
- Acylation, Amino Acid Sequence, Catalytic Domain, Hydrogen Bonding, Hydrophobic and Hydrophilic Interactions, Kinetics, Models, Molecular, NAD chemistry, Protein Binding, Protein Conformation, alpha-Helical, Protein Interaction Domains and Motifs, Aldehyde Dehydrogenase chemistry, Bacterial Proteins chemistry, Clostridioides difficile enzymology, Coenzyme A chemistry
- Abstract
The breakdown of fucose and rhamnose released from plant cell walls by the cellulolytic soil bacterium Clostridium phytofermentans produces toxic aldehyde intermediates. To enable growth on these carbon sources, the pathway for the breakdown of fucose and rhamnose is encapsulated within a bacterial microcompartment (BMC). These proteinaceous organelles sequester the toxic aldehyde intermediates and allow the efficient action of acylating aldehyde dehydrogenase enzymes to produce an acyl-CoA that is ultimately used in substrate-level phosphorylation to produce ATP. Here we analyse the kinetics of the aldehyde dehydrogenase enzyme from the fucose/rhamnose utilisation BMC with different short-chain fatty aldehydes and show that it has activity against substrates with up to six carbon atoms, with optimal activity against propionaldehyde. We have also determined the X-ray crystal structure of this enzyme in complex with CoA and show that the adenine nucleotide of this cofactor is bound in a distinct pocket to the same group in NAD(+). This work is the first report of the structure of CoA bound to an aldehyde dehydrogenase enzyme and our crystallographic model provides important insight into the differences within the active site that distinguish the acylating from non-acylating aldehyde dehydrogenase enzymes.
- Published
- 2016
- Full Text
- View/download PDF
12. In vacuo X-ray data collection from graphene-wrapped protein crystals.
- Author
-
Warren AJ, Crawshaw AD, Trincao J, Aller P, Alcock S, Nistea I, Salgado PS, and Evans G
- Subjects
- Aldose-Ketose Isomerases chemistry, Animals, Chickens, Crystallization methods, Marantaceae chemistry, Muramidase chemistry, Plant Proteins chemistry, Streptomyces enzymology, Temperature, Vacuum, Water chemistry, Crystallography, X-Ray methods, Graphite chemistry, Proteins chemistry
- Abstract
The measurement of diffraction data from macromolecular crystal samples held in vacuo holds the promise of a very low X-ray background and zero absorption of incident and scattered beams, leading to better data and the potential for accessing very long X-ray wavelengths (>3 Å) for native sulfur phasing. Maintaining the hydration of protein crystals under vacuum is achieved by the use of liquid jets, as with serial data collection at free-electron lasers, or is side-stepped by cryocooling the samples, as implemented at new synchrotron beamlines. Graphene has been shown to protect crystals from dehydration by creating an extremely thin layer that is impermeable to any exchanges with the environment. Furthermore, owing to its hydrophobicity, most of the aqueous solution surrounding the crystal is excluded during sample preparation, thus eliminating most of the background caused by liquid. Here, it is shown that high-quality data can be recorded at room temperature from graphene-wrapped protein crystals in a rough vacuum. Furthermore, it was observed that graphene protects crystals exposed to different relative humidities and a chemically harsh environment.
- Published
- 2015
- Full Text
- View/download PDF
13. A mother cell-to-forespore channel: current understanding and future challenges.
- Author
-
Crawshaw AD, Serrano M, Stanley WA, Henriques AO, and Salgado PS
- Subjects
- Bacterial Proteins metabolism, Biological Transport, Bacillus subtilis growth & development, Bacillus subtilis metabolism, Clostridioides difficile growth & development, Clostridioides difficile metabolism, Membrane Transport Proteins metabolism, Spores, Bacterial growth & development, Spores, Bacterial metabolism
- Abstract
Formation of endospores allows some bacteria to survive extreme nutrient limitation. The resulting dormant cell, the spore, persists in the environment and is highly resistant to physical and chemical stresses. During spore formation, cells divide asymmetrically and the mother cell engulfs the developing spore, encasing it within a double membrane and isolating it from the medium. Communication between mother cell and isolated forespore involves a specialised connection system that allows nurturing of the forespore and continued macromolecular synthesis, required to finalise spore maturation. Here, we review current understanding of this feeding channel formed by a forespore protein, SpoIIQ, and a mother cell protein, SpoIIIAH, in the model organism Bacillus subtilis and the important human pathogen Clostridium difficile. We also analyse the presence of this channel across endospore-forming bacteria and highlight the main questions still remaining., (© 2014 The Authors FEMS Microbiology Letters published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.)
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.