24 results on '"Crunfli F"'
Search Results
2. Targeting the resolution of inflammation to solve treatment-resistant depression
- Author
-
Chaves, Y., primary, Crunfli, F., additional, Godoy, L., additional, Rodrigues, N., additional, Joca, S., additional, and Wegener, G., additional
- Published
- 2023
- Full Text
- View/download PDF
3. Diving into the proteomic atlas of SARS-CoV-2 infected cells.
- Author
-
Carregari VC, Reis-de-Oliveira G, Crunfli F, Smith BJ, de Souza GF, Muraro SP, Saia-Cereda VM, Vendramini PH, Baldasso PA, Silva-Costa LC, Zuccoli GS, Brandão-Teles C, Antunes A, Valença AF, Davanzo GG, Virgillio-da-Silva JV, Dos Reis Araújo T, Guimarães RC, Chaim FDM, Chaim EA, Kawagosi Onodera CM, Ludwig RG, Saccon TD, Damásio ARL, Leiria LOS, Vinolo MAR, Farias AS, Moraes-Vieira PM, Mori MA, Módena JLP, and Martins-de-Souza D
- Subjects
- Humans, Proteomics, Pandemics, SARS-CoV-2, COVID-19
- Abstract
The COVID-19 pandemic was initiated by the rapid spread of a SARS-CoV-2 strain. Though mainly classified as a respiratory disease, SARS-CoV-2 infects multiple tissues throughout the human body, leading to a wide range of symptoms in patients. To better understand how SARS-CoV-2 affects the proteome from cells with different ontologies, this work generated an infectome atlas of 9 cell models, including cells from brain, blood, digestive system, and adipocyte tissue. Our data shows that SARS-CoV-2 infection mainly trigger dysregulations on proteins related to cellular structure and energy metabolism. Despite these pivotal processes, heterogeneity of infection was also observed, highlighting many proteins and pathways uniquely dysregulated in one cell type or ontological group. These data have been made searchable online via a tool that will permit future submissions of proteomic data ( https://reisdeoliveira.shinyapps.io/Infectome_App/ ) to enrich and expand this knowledgebase., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
4. Induced-pluripotent stem cells and neuroproteomics as tools for studying neurodegeneration.
- Author
-
Brandão-Teles C, Zuccoli GS, de Moraes Vrechi TA, Ramos-da-Silva L, Santos AVS, Crunfli F, and Martins-de-Souza D
- Subjects
- Humans, Cellular Reprogramming, Induced Pluripotent Stem Cells metabolism, Induced Pluripotent Stem Cells pathology, Neurodegenerative Diseases metabolism
- Abstract
The investigation of neurodegenerative diseases advanced significantly with the advent of cell-reprogramming technology, leading to the creation of new models of human illness. These models, derived from induced pluripotent stem cells (iPSCs), facilitate the study of sporadic as well as hereditary diseases and provide a comprehensive understanding of the molecular mechanisms involved with neurodegeneration. Through proteomics, a quantitative tool capable of identifying thousands of proteins from small sample volumes, researchers have attempted to identify disease mechanisms by detecting differentially expressed proteins and proteoforms in disease models, biofluids, and postmortem brain tissue. The integration of these two technologies allows for the identification of novel pathological targets within the realm of neurodegenerative diseases. Here, we highlight studies from the past 5 years on the contributions of iPSCs within neuroproteomic investigations, which uncover the molecular mechanisms behind these illnesses., (© 2024 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.)
- Published
- 2024
- Full Text
- View/download PDF
5. SARS-CoV-2 uses CD4 to infect T helper lymphocytes.
- Author
-
Brunetti NS, Davanzo GG, de Moraes D, Ferrari AJR, Souza GF, Muraro SP, Knittel TL, Boldrini VO, Monteiro LB, Virgílio-da-Silva JV, Profeta GS, Wassano NS, Nunes Santos L, Carregari VC, Dias AHS, Veras FP, Tavares LA, Forato J, Castro IMS, Silva-Costa LC, Palma AC, Mansour E, Ulaf RG, Bernardes AF, Nunes TA, Ribeiro LC, Agrela MV, Moretti ML, Buscaratti LI, Crunfli F, Ludwig RG, Gerhardt JA, Munhoz-Alves N, Marques AM, Sesti-Costa R, Amorim MR, Toledo-Teixeira DA, Parise PL, Martini MC, Bispos-Dos-Santos K, Simeoni CL, Granja F, Silvestrini VC, de Oliveira EB, Faca VM, Carvalho M, Castelucci BG, Pereira AB, Coimbra LD, Dias MMG, Rodrigues PB, Gomes ABSP, Pereira FB, Santos LMB, Bloyet LM, Stumpf S, Pontelli MC, Whelan S, Sposito AC, Carvalho RF, Vieira AS, Vinolo MAR, Damasio A, Velloso L, Figueira ACM, da Silva LLP, Cunha TM, Nakaya HI, Marques-Souza H, Marques RE, Martins-de-Souza D, Skaf MS, Proenca-Modena JL, Moraes-Vieira PMM, Mori MA, and Farias AS
- Subjects
- Humans, CD8-Positive T-Lymphocytes, T-Lymphocytes, Helper-Inducer, Lung, SARS-CoV-2, COVID-19
- Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4
+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS- CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients., Competing Interests: NB, GD, Dd, AF, GS, SM, TK, VB, LM, JV, GP, NW, LN, VC, AD, FV, LT, JF, IC, LS, AP, EM, RU, AB, TN, LR, MA, MM, LB, FC, RL, JG, NM, AM, RS, MA, DT, PP, MM, KB, CS, FG, VS, Ed, VF, MC, BC, AP, LC, MD, PR, AG, FP, LS, LB, SS, MP, SW, AS, RC, AV, MV, AD, LV, AF, Ld, TC, HN, HM, RM, DM, MS, JP, PM, MM, AF No competing interests declared, (© 2023, Brunetti, Davanzo, de Moraes et al.)- Published
- 2023
- Full Text
- View/download PDF
6. SARS-CoV-2 infection impacts carbon metabolism and depends on glutamine for replication in Syrian hamster astrocytes.
- Author
-
de Oliveira LG, de Souza Angelo Y, Yamamoto P, Carregari VC, Crunfli F, Reis-de-Oliveira G, Costa L, Vendramini PH, Duque ÉA, Dos Santos NB, Firmino EM, Paiva IM, Almeida GM, Sebollela A, Polonio CM, Zanluqui NG, de Oliveira MG, da Silva P, Davanzo GG, Ayupe MC, Salgado CL, de Souza Filho AF, de Araújo MV, Silva-Pereira TT, de Almeida Campos AC, Góes LGB, Dos Passos Cunha M, Caldini EG, D'Império Lima MR, Fonseca DM, de Sá Guimarães AM, Minoprio PC, Munhoz CD, Mori CMC, Moraes-Vieira PM, Cunha TM, Martins-de-Souza D, and Peron JPS
- Subjects
- Animals, Astrocytes, Carbon, Cricetinae, Disease Models, Animal, Glucose, Glutamine, Ketoglutaric Acids, Mesocricetus, Pyruvates, SARS-CoV-2, COVID-19
- Abstract
COVID-19 causes more than million deaths worldwide. Although much is understood about the immunopathogenesis of the lung disease, a lot remains to be known on the neurological impact of COVID-19. Here, we evaluated immunometabolic changes using astrocytes in vitro and dissected brain areas of SARS-CoV-2 infected Syrian hamsters. We show that SARS-CoV-2 alters proteins of carbon metabolism, glycolysis, and synaptic transmission, many of which are altered in neurological diseases. Real-time respirometry evidenced hyperactivation of glycolysis, further confirmed by metabolomics, with intense consumption of glucose, pyruvate, glutamine, and alpha ketoglutarate. Consistent with glutamine reduction, the blockade of glutaminolysis impaired viral replication and inflammatory response in vitro. SARS-CoV-2 was detected in vivo in hippocampus, cortex, and olfactory bulb of intranasally infected animals. Our data evidence an imbalance in important metabolic molecules and neurotransmitters in infected astrocytes. We suggest this may correlate with the neurological impairment observed during COVID-19, as memory loss, confusion, and cognitive impairment., (© 2022 International Society for Neurochemistry.)
- Published
- 2022
- Full Text
- View/download PDF
7. Zika Virus Strains and Dengue Virus Induce Distinct Proteomic Changes in Neural Stem Cells and Neurospheres.
- Author
-
Nascimento JM, Gouvêa-Junqueira D, Zuccoli GS, Pedrosa CDSG, Brandão-Teles C, Crunfli F, Antunes ASLM, Cassoli JS, Karmirian K, Salerno JA, de Souza GF, Muraro SP, Proenca-Módena JL, Higa LM, Tanuri A, Garcez PP, Rehen SK, and Martins-de-Souza D
- Subjects
- Humans, Proteomics, Dengue Virus, Neural Stem Cells metabolism, Zika Virus, Zika Virus Infection
- Abstract
Brain abnormalities and congenital malformations have been linked to the circulating strain of Zika virus (ZIKV) in Brazil since 2016 during the microcephaly outbreak; however, the molecular mechanisms behind several of these alterations and differential viral molecular targets have not been fully elucidated. Here we explore the proteomic alterations induced by ZIKV by comparing the Brazilian (Br ZIKV) and the African (MR766) viral strains, in addition to comparing them to the molecular responses to the Dengue virus type 2 (DENV). Neural stem cells (NSCs) derived from induced pluripotent stem (iPSCs) were cultured both as monolayers and in suspension (resulting in neurospheres), which were then infected with ZIKV (Br ZIKV or ZIKV MR766) or DENV to assess alterations within neural cells. Large-scale proteomic analyses allowed the comparison not only between viral strains but also regarding the two- and three-dimensional cellular models of neural cells derived from iPSCs, and the effects on their interaction. Altered pathways and biological processes were observed related to cell death, cell cycle dysregulation, and neurogenesis. These results reinforce already published data and provide further information regarding the biological alterations induced by ZIKV and DENV in neural cells., (© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2022
- Full Text
- View/download PDF
8. Morphological, cellular, and molecular basis of brain infection in COVID-19 patients.
- Author
-
Crunfli F, Carregari VC, Veras FP, Silva LS, Nogueira MH, Antunes ASLM, Vendramini PH, Valença AGF, Brandão-Teles C, Zuccoli GDS, Reis-de-Oliveira G, Silva-Costa LC, Saia-Cereda VM, Smith BJ, Codo AC, de Souza GF, Muraro SP, Parise PL, Toledo-Teixeira DA, Santos de Castro ÍM, Melo BM, Almeida GM, Firmino EMS, Paiva IM, Silva BMS, Guimarães RM, Mendes ND, Ludwig RL, Ruiz GP, Knittel TL, Davanzo GG, Gerhardt JA, Rodrigues PB, Forato J, Amorim MR, Brunetti NS, Martini MC, Benatti MN, Batah SS, Siyuan L, João RB, Aventurato ÍK, Rabelo de Brito M, Mendes MJ, da Costa BA, Alvim MKM, da Silva Júnior JR, Damião LL, de Sousa IMP, da Rocha ED, Gonçalves SM, Lopes da Silva LH, Bettini V, Campos BM, Ludwig G, Tavares LA, Pontelli MC, Viana RMM, Martins RB, Vieira AS, Alves-Filho JC, Arruda E, Podolsky-Gondim GG, Santos MV, Neder L, Damasio A, Rehen S, Vinolo MAR, Munhoz CD, Louzada-Junior P, Oliveira RD, Cunha FQ, Nakaya HI, Mauad T, Duarte-Neto AN, Ferraz da Silva LF, Dolhnikoff M, Saldiva PHN, Farias AS, Cendes F, Moraes-Vieira PMM, Fabro AT, Sebollela A, Proença-Modena JL, Yasuda CL, Mori MA, Cunha TM, and Martins-de-Souza D
- Subjects
- Astrocytes pathology, Astrocytes virology, Humans, Post-Acute COVID-19 Syndrome, Brain pathology, Brain virology, COVID-19 complications, COVID-19 pathology, Central Nervous System Viral Diseases etiology, Central Nervous System Viral Diseases pathology, SARS-CoV-2
- Abstract
Although increasing evidence confirms neuropsychiatric manifestations associated mainly with severe COVID-19 infection, long-term neuropsychiatric dysfunction (recently characterized as part of "long COVID-19" syndrome) has been frequently observed after mild infection. We show the spectrum of cerebral impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, ranging from long-term alterations in mildly infected individuals (orbitofrontal cortical atrophy, neurocognitive impairment, excessive fatigue and anxiety symptoms) to severe acute damage confirmed in brain tissue samples extracted from the orbitofrontal region (via endonasal transethmoidal access) from individuals who died of COVID-19. In an independent cohort of 26 individuals who died of COVID-19, we used histopathological signs of brain damage as a guide for possible SARS-CoV-2 brain infection and found that among the 5 individuals who exhibited those signs, all of them had genetic material of the virus in the brain. Brain tissue samples from these five patients also exhibited foci of SARS-CoV-2 infection and replication, particularly in astrocytes. Supporting the hypothesis of astrocyte infection, neural stem cell-derived human astrocytes in vitro are susceptible to SARS-CoV-2 infection through a noncanonical mechanism that involves spike-NRP1 interaction. SARS-CoV-2-infected astrocytes manifested changes in energy metabolism and in key proteins and metabolites used to fuel neurons, as well as in the biogenesis of neurotransmitters. Moreover, human astrocyte infection elicits a secretory phenotype that reduces neuronal viability. Our data support the model in which SARS-CoV-2 reaches the brain, infects astrocytes, and consequently, leads to neuronal death or dysfunction. These deregulated processes could contribute to the structural and functional alterations seen in the brains of COVID-19 patients.
- Published
- 2022
- Full Text
- View/download PDF
9. Impact of Microbiota Depletion by Antibiotics on SARS-CoV-2 Infection of K18-hACE2 Mice.
- Author
-
Rodrigues PB, Gomes GF, Angelim MKSC, Souza GF, Muraro SP, Toledo-Teixeira DA, Rattis BAC, Passos AS, Pral LP, de Rezende Rodovalho V, Dos Santos P Gomes AB, Matheus VA, Antunes ASLM, Crunfli F, Antunes KH, de Souza APD, Consonni SR, Leiria LO, Alves-Filho JC, Cunha TM, Moraes-Vieira PMM, Proença-Módena JL, and R Vinolo MA
- Subjects
- Angiotensin-Converting Enzyme 2, Animals, Anti-Bacterial Agents pharmacology, Anti-Bacterial Agents therapeutic use, Disease Models, Animal, Melphalan, Mice, Mice, Transgenic, Peptidyl-Dipeptidase A metabolism, SARS-CoV-2, gamma-Globulins, Microbiota, COVID-19 Drug Treatment
- Abstract
Clinical and experimental data indicate that severe acute respiratory syndrome coronavirus (SARS-CoV)-2 infection is associated with significant changes in the composition and function of intestinal microbiota. However, the relevance of these effects for SARS-CoV-2 pathophysiology is unknown. In this study, we analyzed the impact of microbiota depletion after antibiotic treatment on the clinical and immunological responses of K18-hACE2 mice to SARS-CoV-2 infection. Mice were treated with a combination of antibiotics (kanamycin, gentamicin, metronidazole, vancomycin, and colistin, Abx) for 3 days, and 24 h later, they were infected with SARS-CoV-2 B lineage. Here, we show that more than 80% of mice succumbed to infection by day 11 post-infection. Treatment with Abx had no impact on mortality. However, Abx-treated mice presented better clinical symptoms, with similar weight loss between infected-treated and non-treated groups. We observed no differences in lung and colon histopathological scores or lung, colon, heart, brain and kidney viral load between groups on day 5 of infection. Despite some minor differences in the expression of antiviral and inflammatory markers in the lungs and colon, no robust change was observed in Abx-treated mice. Together, these findings indicate that microbiota depletion has no impact on SARS-CoV-2 infection in mice.
- Published
- 2022
- Full Text
- View/download PDF
10. What Can We Learn from Animal Models to Study Schizophrenia?
- Author
-
Crunfli F, Brandão-Teles C, Zuccoli GS, Chaves Filho AJM, Vieira GM, Silva-Amaral D, Crippa JA, Pedrazzi JFC, Macêdo DS, Del-Bel E, and Gomes FV
- Subjects
- Animals, Attention, Disease Models, Animal, Dopamine chemistry, Humans, Models, Animal, Proteomics, Schizophrenia diagnosis
- Abstract
Schizophrenia is a complex and heterogeneous neurodevelopmental psychiatric disorder characterized by a variety of symptoms classically grouped into three main domains: positive (hallucinations, delusions, and thought disorder) and negative symptoms (social withdrawal, lack of affect) and cognitive dysfunction (attention, working and episodic memory functions, and processing speed). This disorder places an immense emotional and economic pressure on the individual and society-at-large. Although the etiology of schizophrenia is not completely known, it is proposed to involve abnormalities in neurodevelopmental processes and dysregulation in the signaling mediated by several neurotransmitters, such as dopamine, glutamate, and GABA. Preclinical research using animal models are essential in our understanding of disease development and pathology as well as the discovery and advance of novel treatment choices. Here we describe rodent models for studying schizophrenia, including those based on the effects of drugs (pharmacological models), neurodevelopmental disruption, demyelination, and genetic alterations. The advantages and limitations of such models are highlighted. We also discussed the great potential of proteomic technologies in unraveling the molecular mechanism of schizophrenia through animal models., (© 2022. The Author(s), under exclusive license to Springer Nature Switzerland AG.)
- Published
- 2022
- Full Text
- View/download PDF
11. Modeling Schizophrenia In Vitro: Challenges and Insights on Studying Brain Cells.
- Author
-
Brandão-Teles C, Zuccoli GS, Smith BJ, Vieira GM, and Crunfli F
- Subjects
- Brain, Cell Culture Techniques methods, Humans, Neurons, Induced Pluripotent Stem Cells, Schizophrenia genetics
- Abstract
One of the challenges in studying neuropsychiatric disorders is the difficulty in accessing brain tissue from living patients. Schizophrenia is a chronic mental illness that affects 1% of the population worldwide, and its development stems from genetic and environmental factors. In order to better understand the pathophysiology underlying schizophrenia, the development of efficient in vitro methods to model this disorder has been required. In addition to several in vitro models, induced pluripotent stem cells (iPSCs) arose as a powerful tool, enabling access to the genetic background of the donor. Moreover, genetic modification of these cells can improve studies of specific dysfunctions observed in the pathophysiology of several neuropsychiatric disorders, not only schizophrenia. Here, we summarize which in vitro models are currently available and their applications in schizophrenia research, describing their advantages and limitations. These technologies in the cell culture field hold great potential to contribute to a better understanding of the pathophysiology of schizophrenia in an integrated manner, in addition to testing potential therapeutic interventions based on the genetic background of the patient., (© 2022. The Author(s), under exclusive license to Springer Nature Switzerland AG.)
- Published
- 2022
- Full Text
- View/download PDF
12. Molecular Findings Guiding the Modulation of the Endocannabinoid System as a Potential Target to Treat Schizophrenia.
- Author
-
Zuccoli GS, Brandão-Teles C, Vieira GM, Gomes FV, and Crunfli F
- Subjects
- Brain metabolism, Humans, Endocannabinoids metabolism, Schizophrenia drug therapy, Schizophrenia genetics
- Abstract
Schizophrenia is a psychiatric disorder of neurodevelopmental origin that is thought to result from the combination of genetic and socioenvironmental factors. Several studies have linked the endocannabinoid system with the pathophysiology of schizophrenia. Here, we provide a brief overview of the role of the endocannabinoid system (ECS) in the context of biological processes relevant to schizophrenia, such as neurodevelopment, synaptic plasticity, and brain energy metabolism. We also discuss alterations related to the ECS in schizophrenia and current efforts in both in vivo and in vitro studies that have provided a better understanding of the functioning of this system in the context of the disorder. Finally, we highlighted the modulation of the ECS as a potential for discovering novel therapeutic targets, suggesting new avenues for future research in the field., (© 2022. The Author(s), under exclusive license to Springer Nature Switzerland AG.)
- Published
- 2022
- Full Text
- View/download PDF
13. 14-3-3 proteins at the crossroads of neurodevelopment and schizophrenia.
- Author
-
Antunes ASLM, Saia-Cereda VM, Crunfli F, and Martins-de-Souza D
- Subjects
- Brain, Humans, Neurogenesis, Neurons, 14-3-3 Proteins genetics, Schizophrenia genetics
- Abstract
The 14-3-3 family comprises multifunctional proteins that play a role in neurogenesis, neuronal migration, neuronal differentiation, synaptogenesis and dopamine synthesis. 14-3-3 members function as adaptor proteins and impact a wide variety of cellular and physiological processes involved in the pathophysiology of neurological disorders. Schizophrenia is a psychiatric disorder and knowledge about its pathophysiology is still limited. 14-3-3 have been proven to be linked with the dopaminergic, glutamatergic and neurodevelopmental hypotheses of schizophrenia. Further, research using genetic models has demonstrated the role played by 14-3-3 proteins in neurodevelopment and neuronal circuits, however a more integrative and comprehensive approach is needed for a better understanding of their role in schizophrenia. For instance, we still lack an integrated assessment of the processes affected by 14-3-3 proteins in the dopaminergic and glutamatergic systems. In this context, it is also paramount to understand their involvement in the biology of brain cells other than neurons. Here, we present previous and recent research that has led to our current understanding of the roles 14-3-3 proteins play in brain development and schizophrenia, perform an assessment of their functional protein association network and discuss the use of protein-protein interaction modulators to target 14-3-3 as a potential therapeutic strategy.
- Published
- 2022
- Full Text
- View/download PDF
14. Corrigendum: Cannabidiol Displays Proteomic Similarities to Antipsychotics in Cuprizone-Exposed Human Oligodendrocytic Cell Line MO3.13.
- Author
-
Falvella ACB, Smith BJ, Silva-Costa LC, Valença AGF, Crunfli F, Zuardi AW, Hallak JE, Crippa JA, de Almeida V, and Martins-de-Souza D
- Abstract
[This corrects the article DOI: 10.3389/fnmol.2021.673144.]., (Copyright © 2021 Falvella, Smith, Silva-Costa, Valença, Crunfli, Zuardi, Hallak, Crippa, Almeida and Martins-de-Souza.)
- Published
- 2021
- Full Text
- View/download PDF
15. Cannabidiol Displays Proteomic Similarities to Antipsychotics in Cuprizone-Exposed Human Oligodendrocytic Cell Line MO3.13.
- Author
-
Falvella ACB, Smith BJ, Silva-Costa LC, Valença AGF, Crunfli F, Zuardi AW, Hallak JE, Crippa JA, de Almeida V, and Martins-de-Souza D
- Abstract
Cannabidiol, a compound of Cannabis sativa , has been proposed as an alternative treatment of schizophrenia. Preclinical and clinical data have suggested that cannabidiol shares more similarity with atypical antipsychotics than typical, both of which are customarily used to manage schizophrenia symptoms. While oligodendrocytes are known to be relevant targets of antipsychotics, the biochemical knowledge in this regard is still limited. Here we evaluated the molecular pathways modulated by cannabidiol compared to the antipsychotics clozapine (atypical) and haloperidol (typical), additionally evaluating the effects of benztropine, a muscarinic receptor antagonist that displays a protective effect in oligodendrocytes and myelination. For this purpose, we employed nano-chromatography coupled with mass spectrometry to investigate the proteomic response to these drugs both in healthy oligodendrocytic cells and in a cuprizone-based toxicity model, using the human oligodendrocyte precursor cell line MO3.13. Cannabidiol shares similarities of biochemical pathways with clozapine and benztropine, in agreement with other studies that indicated an atypical antipsychotic profile. All drugs tested affected metabolic and gene expression pathways and cannabidiol, benztropine, and clozapine modulated cell proliferation and apoptosis when administered after cuprizone-induced toxicity. These general pathways are associated with cuprizone-induced cytotoxicity in MO3.13 cells, indicating a possible proteomic approach when acting against the toxic effects of cuprizone. In conclusion, although modeling oligodendrocytic cytotoxicity with cuprizone does not represent the entirety of the pathophysiology of oligodendrocyte impairments, these results provide insight into the mechanisms associated with the effects of cannabidiol and antipsychotics against cuprizone toxicity, offering new directions of study for myelin-related processes and deficits., Competing Interests: JC is a member of the International Advisory Board of the Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE)—National Health and Medical Research Council (NHMRC). JC and JH have received travel support to attend scientific meetings and personal consultation fees from BSPG-Pharm. JC, JH, and AZ are co-inventors of the patent “Fluorinated CBD compounds, compositions and uses thereof. Pub. No. WO/2014/108899. International Application No. PCT/IL2014/050023,” Def. US number Reg. 62193296; July 29, 2015; INPI on August 19, 2015 (BR1120150164927; Mechoulam R, Zuardi AW, Kapczinski F, Hallak JEC, Guimarães FS, Crippa JAS, Breuer A). Universidade de São Paulo (USP) has licensed this patent to Phytecs Pharm (USP Resolution No. 15.1.130002.1.1) and has an agreement with Prati-Donaduzzi to “develop a pharmaceutical product containing synthetic CBD and prove its safety and therapeutic efficacy in the treatment of epilepsy, schizophrenia, Parkinson’s disease, and anxiety disorders.” JC, JH, and AZ are co-inventors of the patent “Cannabinoid-containing oral pharmaceutical composition, method for preparing and using same,” INPI on September 16, 2016 (BR 112018005423-2). The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Falvella, Smith, Silva-Costa, Valença, Crunfli, Zuardi, Hallak, Crippa, Almeida and Martins-de-Souza.)
- Published
- 2021
- Full Text
- View/download PDF
16. Proteomics for Target Identification in Psychiatric and Neurodegenerative Disorders.
- Author
-
Antunes ASLM, de Almeida V, Crunfli F, Carregari VC, and Martins-de-Souza D
- Subjects
- Biomarkers, Humans, Proteomics, Alzheimer Disease diagnosis, Alzheimer Disease genetics, Neurodegenerative Diseases genetics, Parkinson Disease
- Abstract
Psychiatric and neurodegenerative disorders such as schizophrenia (SCZ), Parkinson's disease (PD), and Alzheimer's disease (AD) continue to grow around the world with a high impact on health, social, and economic outcomes for the patient and society. Despite efforts, the etiology and pathophysiology of these disorders remain unclear. Omics technologies have contributed to the understanding of the molecular mechanisms that underlie these complex disorders and have suggested novel potential targets for treatment and diagnostics. Here, we have highlighted the unique and common pathways shared between SCZ, PD, and AD and highlight the main proteomic findings over the last 5 years using in vitro models, postmortem brain samples, and cerebrospinal fluid (CSF) or blood of patients. These studies have identified possible therapeutic targets and disease biomarkers. Further studies including target validation, the use of large sample sizes, and the integration of omics findings with bioinformatics tools are required to provide a better comprehension of pharmacological targets.
- Published
- 2021
- Full Text
- View/download PDF
17. Elevated Glucose Levels Favor SARS-CoV-2 Infection and Monocyte Response through a HIF-1α/Glycolysis-Dependent Axis.
- Author
-
Codo AC, Davanzo GG, Monteiro LB, de Souza GF, Muraro SP, Virgilio-da-Silva JV, Prodonoff JS, Carregari VC, de Biagi Junior CAO, Crunfli F, Jimenez Restrepo JL, Vendramini PH, Reis-de-Oliveira G, Bispo Dos Santos K, Toledo-Teixeira DA, Parise PL, Martini MC, Marques RE, Carmo HR, Borin A, Coimbra LD, Boldrini VO, Brunetti NS, Vieira AS, Mansour E, Ulaf RG, Bernardes AF, Nunes TA, Ribeiro LC, Palma AC, Agrela MV, Moretti ML, Sposito AC, Pereira FB, Velloso LA, Vinolo MAR, Damasio A, Proença-Módena JL, Carvalho RF, Mori MA, Martins-de-Souza D, Nakaya HI, Farias AS, and Moraes-Vieira PM
- Subjects
- Adult, COVID-19, Cell Line, Coronavirus Infections metabolism, Diabetes Complications metabolism, Diabetes Mellitus metabolism, Female, Glycolysis, Humans, Inflammation complications, Inflammation metabolism, Male, Middle Aged, Monocytes virology, Pandemics, Pneumonia, Viral metabolism, Reactive Oxygen Species metabolism, SARS-CoV-2, Signal Transduction, Betacoronavirus physiology, Blood Glucose metabolism, Coronavirus Infections complications, Diabetes Complications complications, Hypoxia-Inducible Factor 1, alpha Subunit metabolism, Monocytes metabolism, Pneumonia, Viral complications
- Abstract
COVID-19 can result in severe lung injury. It remained to be determined why diabetic individuals with uncontrolled glucose levels are more prone to develop the severe form of COVID-19. The molecular mechanism underlying SARS-CoV-2 infection and what determines the onset of the cytokine storm found in severe COVID-19 patients are unknown. Monocytes and macrophages are the most enriched immune cell types in the lungs of COVID-19 patients and appear to have a central role in the pathogenicity of the disease. These cells adapt their metabolism upon infection and become highly glycolytic, which facilitates SARS-CoV-2 replication. The infection triggers mitochondrial ROS production, which induces stabilization of hypoxia-inducible factor-1α (HIF-1α) and consequently promotes glycolysis. HIF-1α-induced changes in monocyte metabolism by SARS-CoV-2 infection directly inhibit T cell response and reduce epithelial cell survival. Targeting HIF-1ɑ may have great therapeutic potential for the development of novel drugs to treat COVID-19., Competing Interests: Declaration of Interests Authors declare no competing interests., (Copyright © 2020 Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
18. Ubiquitin-proteasome system, lipid metabolism and DNA damage repair are triggered by antipsychotic medication in human oligodendrocytes: implications in schizophrenia.
- Author
-
Seabra G, de Almeida V, Reis-de-Oliveira G, Crunfli F, Antunes ASLM, and Martins-de-Souza D
- Subjects
- Cells, Cultured, Clozapine pharmacology, DNA Repair, Haloperidol pharmacology, Humans, Oligodendroglia drug effects, Proteome analysis, Schizophrenia drug therapy, Schizophrenia pathology, Antipsychotic Agents pharmacology, DNA Damage, Lipid Metabolism drug effects, Oligodendroglia metabolism, Proteasome Endopeptidase Complex drug effects, Proteome metabolism, Schizophrenia metabolism
- Abstract
Schizophrenia is a chronic, severe and disabling psychiatric disorder, whose treatment is based on psychosocial interventions and the use of antipsychotic drugs. While the effects of these drugs are well elucidated in neuronal cells, they are still not so clear in oligodendrocytes, which play a vital role in schizophrenia. Thus, we aimed to characterize biochemical profiles by proteomic analyses of human oligodendrocytes (MO3.13) which were matured using a protocol we developed and treated with either haloperidol (a typical antipsychotic), clozapine (an atypical antipsychotic) or a clozapine + D-serine co-treatment, which has emerged lately as an alternative type of treatment. This was accomplished by employing shotgun proteomics, using nanoESI-LC-MS/MS label-free quantitation. Proteomic analysis revealed biochemical pathways commonly affected by all tested antipsychotics were mainly associated to ubiquitination, proteasome degradation, lipid metabolism and DNA damage repair. Clozapine and haloperidol treatments also affected proteins involved with the actin cytoskeleton and with EIF2 signaling. In turn, metabolic processes, especially the metabolism of nitrogenous compounds, were a predominant target of modulation of clozapine + D-serine treatment. In this context, we seek to contribute to the understanding of the biochemical and molecular mechanisms involved in the action of antipsychotics on oligodendrocytes, along with their possible implications in schizophrenia.
- Published
- 2020
- Full Text
- View/download PDF
19. Novel Treatment Strategies Targeting Myelin and Oligodendrocyte Dysfunction in Schizophrenia.
- Author
-
Gouvêa-Junqueira D, Falvella ACB, Antunes ASLM, Seabra G, Brandão-Teles C, Martins-de-Souza D, and Crunfli F
- Abstract
Oligodendrocytes are the glial cells responsible for the formation of the myelin sheath around axons. During neurodevelopment, oligodendrocytes undergo maturation and differentiation, and later remyelination in adulthood. Abnormalities in these processes have been associated with behavioral and cognitive dysfunctions and the development of various mental illnesses like schizophrenia. Several studies have implicated oligodendrocyte dysfunction and myelin abnormalities in the disorder, together with altered expression of myelin-related genes such as Olig2, CNP, and NRG1. However, the molecular mechanisms subjacent of these alterations remain elusive. Schizophrenia is a severe, chronic psychiatric disorder affecting more than 23 million individuals worldwide and its symptoms usually appear at the beginning of adulthood. Currently, the major therapeutic strategy for schizophrenia relies on the use of antipsychotics. Despite their widespread use, the effects of antipsychotics on glial cells, especially oligodendrocytes, remain unclear. Thus, in this review we highlight the current knowledge regarding oligodendrocyte dysfunction in schizophrenia, compiling data from (epi)genetic studies and up-to-date models to investigate the role of oligodendrocytes in the disorder. In addition, we examined potential targets currently investigated for the improvement of schizophrenia symptoms. Research in this area has been investigating potential beneficial compounds, including the D-amino acids D-aspartate and D-serine, that act as NMDA receptor agonists, modulating the glutamatergic signaling; the antioxidant N-acetylcysteine, a precursor in the synthesis of glutathione, protecting against the redox imbalance; as well as lithium, an inhibitor of glycogen synthase kinase 3β (GSK3β) signaling, contributing to oligodendrocyte survival and functioning. In conclusion, there is strong evidence linking oligodendrocyte dysfunction to the development of schizophrenia. Hence, a better understanding of oligodendrocyte differentiation, as well as the effects of antipsychotic medication in these cells, could have potential implications for understanding the development of schizophrenia and finding new targets for drug development., (Copyright © 2020 Gouvêa-Junqueira, Falvella, Antunes, Seabra, Brandão-Teles, Martins-de-Souza and Crunfli.)
- Published
- 2020
- Full Text
- View/download PDF
20. Cannabinoid Receptor Type 1 Agonist ACEA Improves Cognitive Deficit on STZ-Induced Neurotoxicity Through Apoptosis Pathway and NO Modulation.
- Author
-
Crunfli F, Vrechi TA, Costa AP, and Torrão AS
- Subjects
- Alzheimer Disease drug therapy, Alzheimer Disease metabolism, Animals, Apoptosis drug effects, Apoptosis physiology, Cell Line, Tumor, Cell Survival drug effects, Cell Survival physiology, Cognition Disorders metabolism, Male, Mice, Nerve Degeneration drug therapy, Nerve Degeneration metabolism, Nitric Oxide metabolism, Rats, Wistar, Receptor, Cannabinoid, CB1 metabolism, Streptozocin, Arachidonic Acids pharmacology, Cannabinoid Receptor Agonists pharmacology, Cognition Disorders drug therapy, Neuroprotective Agents pharmacology, Nootropic Agents pharmacology, Receptor, Cannabinoid, CB1 agonists
- Abstract
The cannabinoid system has the ability to modulate cellular and molecular mechanisms, including excitotoxicity, oxidative stress, apoptosis, and inflammation, acting as a neuroprotective agent, by its relationship with signaling pathways associated to the control of cell proliferation, differentiation, and survival. Recent reports have raised new perspectives on the possible role of cannabinoid system in neurodegenerative diseases like Alzheimer disease's (AD). AD is a neurodegenerative disorder characterized by the presence of amyloid plaques, neurofibrillary tangles, neuronal death, and progressive cognitive loss, which could be caused by energy metabolism impairment, changes in insulin signaling, chronic oxidative stress, neuroinflammation, Tau hyperphosphorylation, and Aβ deposition in the brain. Thus, we investigated the presumptive protective effect of the cannabinoid type 1 (CB1)-selective receptor agonist arachidonyl-2'-chloroethylamide (ACEA) against streptozotocin (STZ) exposure stimuli in an in vitro neuronal model (Neuro-2a neuroblastoma cells) and in vivo model (intracerebroventricular STZ injection), experimental models of sporadic AD. Our results demonstrated that ACEA treatment reversed cognitive impairment and increased activity of Akt and ERK triggered by STZ, and increased IR expression and increased the anti-apoptotic proteins levels, Bcl-2. In the in vitro model, ACEA was able to rescue cells from STZ-triggered death and modulated the NO release by STZ. Our study has demonstrated a participation of the cannabinoid system in cellular survival, involving the CB1 receptor, which occurs by positive regulation of the anti-apoptotic proteins, suggesting the participation of this system in neurodegenerative processes. Our data suggest that the cannabinoid system is an interesting therapeutic target for the treatment of neurodegenerative diseases.
- Published
- 2019
- Full Text
- View/download PDF
21. Cannabinoid Receptor Type 1 Agonist ACEA Protects Neurons from Death and Attenuates Endoplasmic Reticulum Stress-Related Apoptotic Pathway Signaling.
- Author
-
Vrechi TA, Crunfli F, Costa AP, and Torrão AS
- Subjects
- Animals, Cell Survival drug effects, Endoplasmic Reticulum drug effects, Lipopolysaccharides pharmacology, Neuroprotective Agents, Apoptosis drug effects, Arachidonic Acids pharmacology, Endocannabinoids pharmacology, Endoplasmic Reticulum Stress drug effects, Neurons drug effects
- Abstract
Neurodegeneration is the result of progressive destruction of neurons in the central nervous system, with unknown causes and pathological mechanisms not yet fully elucidated. Several factors contribute to neurodegenerative processes, including neuroinflammation, accumulation of neurotoxic factors, and misfolded proteins in the lumen of the endoplasmic reticulum (ER). Endocannabinoid signaling has been pointed out as an important modulatory system in several neurodegeneration-related processes, inhibiting the inflammatory response and increasing neuronal survival. Thus, we investigated the presumptive protective effect of the selective cannabinoid type 1 (CB1) receptor agonist arachidonyl-2'-chloroethylamide (ACEA) against inflammatory (lipopolysaccharide, LPS) and ER stress (tunicamycin) stimuli in an in vitro neuronal model (Neuro-2a neuroblastoma cells). Cell viability analysis revealed that ACEA was able to protect against cell death induced by LPS and tunicamycin. This neuroprotective effect occurs via the CB1 receptor in the inflammation process and via the transient receptor potential of vanilloid type-1 (TRPV1) channel in ER stress. Furthermore, the immunoblotting analyses indicated that the neuroprotective effect of ACEA seems to involve the modulation of eukaryotic initiation factor 2 (eIF2α), transcription factor C/EBP homologous protein (CHOP), and caspase 12, as well as the survival/death p44/42 MAPK, ERK1/2-related signaling pathways. Together, these data suggest that the endocannabinoid system is a potential therapeutic target in neurodegenerative processes, especially in ER-related neurodegenerative diseases.
- Published
- 2018
- Full Text
- View/download PDF
22. Thyroid hormone improves insulin signaling and reduces the activation of neurodegenerative pathway in the hippocampus of diabetic adult male rats.
- Author
-
Prieto-Almeida F, Panveloski-Costa AC, Crunfli F, da Silva Teixeira S, Nunes MT, and Torrão ADS
- Subjects
- Animals, Brain-Derived Neurotrophic Factor biosynthesis, Cell Survival drug effects, Enzyme Activation drug effects, Glycogen Synthase Kinase 3 metabolism, Male, Neurons drug effects, Neurons pathology, Rats, Rats, Wistar, Thyroxine blood, Triiodothyronine blood, Diabetes Mellitus, Experimental pathology, Hippocampus pathology, Insulin, Neurodegenerative Diseases pathology, Neurodegenerative Diseases prevention & control, Signal Transduction drug effects, Triiodothyronine therapeutic use
- Abstract
Aims: Diabetes mellitus (DM) and impairments of glucose metabolism and insulin resistance in the brain have been suggested as a likely etiology of Alzheimer's disease (AD). Studies have shown that thyroid hormones (THs) improve insulin sensitivity in DM rats and act as mediators of the plasticity of the nervous system altering behavior and cognitive function. Based on these findings, this study aimed to evaluate the effects of diabetes and triiodothyronine (T3) treatment upon proteins associated with DM and AD in the central nervous system., Main Methods: Euglycemic and Diabetic (alloxan-induced) male Wistar rats were daily treated with T3 (1.5μg/100g body weight) or vehicle (saline) for a 4-week period and subdivided into the following groups: euglycemic treated with saline (Control=C); diabetic treated with saline (Diabetic=D); euglycemic treated with T3 (T3); diabetic treated with T3 (DT3). The expression of insulin signaling, neurodegenerative and neuron survival markers was evaluated in the hippocampus by immunoblotting, ELISA, and RT-PCR., Key Findings: T3 treatment decreased glycemia, restored the insulin signaling and reduced the activation of glycogen synthase kinase 3 (GSK3) and tau proteins content in the hippocampus of diabetic rats., Significance: The present data provide evidence that T3 treatment of diabetic rats is able to improve insulin sensitivity and reduce the activation of the neurodegenerative pathway in the brain, which might provide neuroprotection in this experimental model., (Copyright © 2017 Elsevier Inc. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
23. NO-Dependent Akt Inactivation by S-Nitrosylation as a Possible Mechanism of STZ-Induced Neuronal Insulin Resistance.
- Author
-
Crunfli F, Mazucanti CH, de Moraes RCM, Costa AP, Rodrigues AC, Scavone C, and Torrão AS
- Subjects
- Animals, Cells, Cultured, Cyclic N-Oxides pharmacology, Free Radical Scavengers pharmacology, Gene Expression Regulation drug effects, Hippocampus drug effects, Hippocampus metabolism, Imidazoles pharmacology, Injections, Intraventricular, Male, Memory Disorders chemically induced, Memory Disorders metabolism, Neuroblastoma pathology, Neurons physiology, Proto-Oncogene Proteins c-bcl-2 metabolism, Rats, Rats, Wistar, Reactive Oxygen Species metabolism, Recognition, Psychology drug effects, Signal Transduction drug effects, Antibiotics, Antineoplastic administration & dosage, Insulin Resistance physiology, Neurons drug effects, Nitric Oxide metabolism, Proto-Oncogene Proteins c-akt metabolism, Streptozocin administration & dosage
- Abstract
Sporadic Alzheimer's disease (sAD) is associated with energy metabolism deficiency and impairment of insulin receptor (IR) signaling in the brain. In this context, low doses of intracerebroventricular (icv) injection of streptozotocin (STZ) in rodents has been used as an experimental model of sAD which leads to an insulin-resistant brain state and neurodegeneration. However, the STZ effects on brain insulin signaling-related proteins it is not appropriately elucidated. The aim of this study was to evaluate the beginning and progression of alterations in the brain IR pathway of rats after 1, 3, 5, and 7 days of STZ injection and investigate intracellular signaling involved on STZ induced insulin resistance. We observed that STZ injection causes cognitive impairment in the animals, a temporal variation of the insulin signaling-related proteins and apoptosis cell death in the hippocampus. We also have shown that STZ causes insulin resistance and impairment on phosphoinositide 3-kinase (PI3K) activity in the Neuro-2a cells through protein kinase B (Akt) inactivation by S-nitrosylation, which could upregulate GSK3-β activity. STZ ability to cause an insulin-resistant neuron state involves NO production and ROS production which may play an important role in the mechanism linked to STZ-induced neurotoxicity. The icv injection of STZ model and STZ exposed Neuro-2a cells may be potential experimental models for assessing molecules related to the pathogenesis of sAD.
- Published
- 2018
- Full Text
- View/download PDF
24. Cannabinoid CB1 receptors mediate the effects of dipyrone.
- Author
-
Crunfli F, Vilela FC, and Giusti-Paiva A
- Subjects
- Animals, Behavior, Animal drug effects, Body Temperature drug effects, Catalepsy chemically induced, Locomotion drug effects, Male, Mice, Analgesics pharmacology, Dipyrone pharmacology, Receptor, Cannabinoid, CB1 metabolism
- Abstract
Dipyrone is a non-steroidal anti-inflammatory drug used primarily as an analgesic and antipyretic. Some hypothesize that dipyrone activity can modulate other pathways, including endocannabinoid signalling. Thus, the aim of the present study was to evaluate the possible role of endocannabinoids in mediating dipyrone activity. This study is based on the tetrad effects of cannabinoids, namely an antinociceptive and cataleptic state, hypolocomotion and hypothermia. Dipyrone (500 mg/kg, i.p.) treatment decreased locomotor activity, increased the latency to a thermal analgesic response and induced a cataleptic and hypothermic state. These reactions are similar to the tetrad effects caused by the cannabinoid agonist WIN 55,212-2 (3 mg/kg, i.p.). The cannabinoid CB1 receptor antagonist AM251 (10 mg/kg, i.p.) reversed the effects of dipyrone on locomotor activity, the cataleptic response and thermal analgesia. Both AM251 (10 mg/kg, i.p.) and the transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine (10 mg/kg, i.p.) accentuated the reduction in body temperature caused by dipyrone. However, the CB2 receptor antagonist AM630 did not alter the hypothermic response to dipyrone. These results indicate involvement of the endocannabinoid system, especially CB1 receptors, in the analgesic and cataleptic effects of dipyrone, as well as hypolocomotion. However, cannabinoid receptors and TRPV1 were not involved in the hypothermic effects of dipyrone. We hypothesize that the mechanism of action of dipyrone may involve inhibition of cyclo-oxygenase and fatty acid amide hydrolase, which together provide additional arachidonic acid as substrate for endocannabinoid synthesis or other related molecules. This increase in endocannabinoid availability enhances CB1 receptor stimulation, contributing to the observed effects., (© 2014 Wiley Publishing Asia Pty Ltd.)
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.