1. Going beyond API Calls in Dynamic Malware Analysis: A Novel Dataset.
- Author
-
Ilić, Slaviša, Gnjatović, Milan, Tot, Ivan, Jovanović, Boriša, Maček, Nemanja, and Gavrilović Božović, Marijana
- Subjects
RANDOM forest algorithms ,FACTORIAL experiment designs ,RANDOM sets ,MALWARE ,CUCKOOS - Abstract
Automated sandbox-based analysis systems are dominantly focused on sequences of API calls, which are widely acknowledged as discriminative and easily extracted features. In this paper, we argue that an extension of the feature set beyond API calls may improve the malware detection performance. For this purpose, we apply the Cuckoo open-source sandbox system, carefully configured for the production of a novel dataset for dynamic malware analysis containing 22,200 annotated samples (11,735 benign and 10,465 malware). Each sample represents a full-featured report generated by the Cuckoo sandbox when a corresponding binary file is submitted for analysis. To support our position that the discriminative power of the full-featured sandbox reports is greater than the discriminative power of just API call sequences, we consider samples obtained from binary files whose execution induced API calls. In addition, we derive an additional dataset from samples in the full-featured dataset, whose samples contain only information on API calls. In a three-way factorial design experiment (considering the feature set, the feature representation technique, and the random forest model hyperparameter settings), we trained and tested a set of random forest models in a two-class classification task. The obtained results demonstrate that resorting to full-featured sandbox reports improves malware detection performance. The accuracy of 95.56 percent obtained for API call sequences was increased to 99.74 percent when full-featured sandbox reports were considered. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF