37 results on '"Culley AI"'
Search Results
2. Distinct and rich assemblages of giant viruses in Arctic and Antarctic lakes.
- Author
-
Pitot TM, Rapp JZ, Schulz F, Girard C, Roux S, and Culley AI
- Abstract
Giant viruses (GVs) are key players in ecosystem functioning, biogeochemistry, and eukaryotic genome evolution. GV diversity and abundance in aquatic systems can exceed that of prokaryotes, but their diversity and ecology in lakes, especially polar ones, remain poorly understood. We conducted a comprehensive survey and meta-analysis of GV diversity across 20 lakes, spanning polar to temperate regions, combining our extensive lake metagenome database from the Canadian Arctic and subarctic with publicly available datasets. Leveraging a novel GV genome identification tool, we identified 3304 GV metagenome-assembled genomes, revealing lakes as untapped GV reservoirs. Phylogenomic analysis highlighted their dispersion across all Nucleocytoviricota orders. Strong GV population endemism emerged between lakes from similar regions and biomes (Antarctic and Arctic), but a polar/temperate barrier in lacustrine GV populations and differences in their gene content could be observed. Our study establishes a robust genomic reference for future investigations into lacustrine GV ecology in fast changing polar environments., Competing Interests: The authors declare no conflicts of interest., (© The Author(s) 2024. Published by Oxford University Press on behalf of the International Society for Microbial Ecology.)
- Published
- 2024
- Full Text
- View/download PDF
3. Arctic bacterial diversity and connectivity in the coastal margin of the Last Ice Area.
- Author
-
Girard C, Vincent WF, and Culley AI
- Abstract
Arctic climate change is leading to sea-ice attrition in the Last Ice Area along the northern coast of Canada and Greenland, but less attention has been given to the associated land-based ecosystems. Here we evaluated bacterial community structure in a hydrologically coupled cryo-ecosystem in the region: Thores Glacier, proglacial Thores Lake, and its outlet to the sea. Deep amplicon sequencing revealed that Polaromonas was ubiquitous, but differed genetically among diverse niches. Surface glacier-ice was dominated by Cyanobacteria, while the perennially ice-capped, well-mixed water column of Thores Lake had a unique assemblage of Chloroflexi, Actinobacteriota, and Planctomycetota. Species richness increased downstream, but glacier microbes were little detected in the lake, suggesting strong taxonomic sorting. Ongoing climate change and the retreat of Thores Glacier would lead to complete drainage and loss of the lake microbial ecosystem, indicating the extreme vulnerability of diverse cryohabitats and unique microbiomes in the Last Ice coastal margin., (© 2023. ISME Publications B.V.)
- Published
- 2023
- Full Text
- View/download PDF
4. A Tale of Two Seasons: Distinct Seasonal Viral Communities in a Thermokarst Lake.
- Author
-
Langlois V, Girard C, Vincent WF, and Culley AI
- Abstract
Thermokarst lakes are important features of subarctic landscapes and are a substantial source of greenhouse gases, although the extent of gas produced varies seasonally. Microbial communities are responsible for the production of methane and CO
2 but the "top down" forces that influence microbial dynamics (i.e., grazers and viruses) and how they vary temporally within these lakes are still poorly understood. The aim of this study was to examine viral diversity over time to elucidate the seasonal structure of the viral communities in thermokarst lakes. We produced virus-enriched metagenomes from a subarctic peatland thermokarst lake in the summer and winter over three years. The vast majority of vOTUs assigned to viral families belonged to Caudovirales (Caudoviricetes), notably the morphological groups myovirus, siphovirus and podovirus. We identified two distinct communities: a dynamic, seasonal community in the oxygenated surface layer during the summer and a stable community found in the anoxic water layer at the bottom of the lake in summer and throughout much of the water column in winter. Comparison with other permafrost and northern lake metagenomes highlighted the distinct composition of viral communities in this permafrost thaw lake ecosystem.- Published
- 2023
- Full Text
- View/download PDF
5. The RNA virosphere: How big and diverse is it?
- Author
-
Dominguez-Huerta G, Wainaina JM, Zayed AA, Culley AI, Kuhn JH, and Sullivan MB
- Subjects
- Evolution, Molecular, Phylogeny, RNA Viruses classification, RNA Viruses physiology, Biodiversity
- Published
- 2023
- Full Text
- View/download PDF
6. Climate-Endangered Arctic Epishelf Lake Harbors Viral Assemblages with Distinct Genetic Repertoires.
- Author
-
Labbé M, Thaler M, Pitot TM, Rapp JZ, Vincent WF, and Culley AI
- Subjects
- Arctic Regions, Ice Cover, Lakes, Seawater, Ecosystem, Microbiota
- Abstract
Milne Fiord, located on the coastal margin of the Last Ice Area (LIA) in the High Arctic (82°N, Canada), harbors an epishelf lake, a rare type of ice-dependent ecosystem in which a layer of freshwater overlies marine water connected to the open ocean. This microbe-dominated ecosystem faces catastrophic change due to the deterioration of its ice environment related to warming temperatures. We produced the first assessment of viral abundance, diversity, and distribution in this vulnerable ecosystem and explored the niches available for viral taxa and the functional genes underlying their distribution. We found that the viral community in the freshwater layer was distinct from, and more diverse than, the community in the underlying seawater and contained a different set of putative auxiliary metabolic genes, including the sulfur starvation-linked gene tauD and the gene coding for patatin-like phospholipase. The halocline community resembled the freshwater more than the marine community, but harbored viral taxa unique to this layer. We observed distinct viral assemblages immediately below the halocline, at a depth that was associated with a peak of prasinophyte algae and the viral family Phycodnaviridae. We also assembled 15 complete circular genomes, including a putative Pelagibacter phage with a marine distribution. It appears that despite its isolated and precarious situation, the varied niches in this epishelf lake support a diverse viral community, highlighting the importance of characterizing underexplored microbiota in the Last Ice Area before these ecosystems undergo irreversible change. IMPORTANCE Viruses are key to understanding polar aquatic ecosystems, which are dominated by microorganisms. However, studies of viral communities are challenging to interpret because the vast majority of viruses are known only from sequence fragments, and their taxonomy, hosts, and genetic repertoires are unknown. Our study establishes a basis for comparison that will advance understanding of viral ecology in diverse global environments, particularly in the High Arctic. Rising temperatures in this region mean that researchers have limited time remaining to understand the biodiversity and biogeochemical cycles of ice-dependent environments and the consequences of these rapid, irreversible changes. The case of the Milne Fiord epishelf lake has special urgency because of the rarity of this type of "floating lake" ecosystem and its location in the Last Ice Area, a region of thick sea ice with global importance for conservation efforts.
- Published
- 2022
- Full Text
- View/download PDF
7. Antimicrobial Resistance in the Environment: Towards Elucidating the Roles of Bioaerosols in Transmission and Detection of Antibacterial Resistance Genes.
- Author
-
George PBL, Rossi F, St-Germain MW, Amato P, Badard T, Bergeron MG, Boissinot M, Charette SJ, Coleman BL, Corbeil J, Culley AI, Gaucher ML, Girard M, Godbout S, Kirychuk SP, Marette A, McGeer A, O'Shaughnessy PT, Parmley EJ, Simard S, Reid-Smith RJ, Topp E, Trudel L, Yao M, Brassard P, Delort AM, Larios AD, Létourneau V, Paquet VE, Pedneau MH, Pic É, Thompson B, Veillette M, Thaler M, Scapino I, Lebeuf M, Baghdadi M, Castillo Toro A, Cayouette AB, Dubois MJ, Durocher AF, Girard SB, Diaz AKC, Khalloufi A, Leclerc S, Lemieux J, Maldonado MP, Pilon G, Murphy CP, Notling CA, Ofori-Darko D, Provencher J, Richer-Fortin A, Turgeon N, and Duchaine C
- Abstract
Antimicrobial resistance (AMR) is continuing to grow across the world. Though often thought of as a mostly public health issue, AMR is also a major agricultural and environmental problem. As such, many researchers refer to it as the preeminent One Health issue. Aerial transport of antimicrobial-resistant bacteria via bioaerosols is still poorly understood. Recent work has highlighted the presence of antibiotic resistance genes in bioaerosols. Emissions of AMR bacteria and genes have been detected from various sources, including wastewater treatment plants, hospitals, and agricultural practices; however, their impacts on the broader environment are poorly understood. Contextualizing the roles of bioaerosols in the dissemination of AMR necessitates a multidisciplinary approach. Environmental factors, industrial and medical practices, as well as ecological principles influence the aerial dissemination of resistant bacteria. This article introduces an ongoing project assessing the presence and fate of AMR in bioaerosols across Canada. Its various sub-studies include the assessment of the emissions of antibiotic resistance genes from many agricultural practices, their long-distance transport, new integrative methods of assessment, and the creation of dissemination models over short and long distances. Results from sub-studies are beginning to be published. Consequently, this paper explains the background behind the development of the various sub-studies and highlight their shared aspects.
- Published
- 2022
- Full Text
- View/download PDF
8. Detection of Cryptosporidium spp. and Giardia spp. in Environmental Water Samples: A Journey into the Past and New Perspectives.
- Author
-
Fradette MS, Culley AI, and Charette SJ
- Abstract
Among the major issues linked with producing safe water for consumption is the presence of the parasitic protozoa Cryptosporidium spp. and Giardia spp. Since they are both responsible for gastrointestinal illnesses that can be waterborne, their monitoring is crucial, especially in water sources feeding treatment plants. Although their discovery was made in the early 1900s and even before, it was only in 1999 that the U.S. Environmental Protection Agency (EPA) published a standardized protocol for the detection of these parasites, modified and named today the U.S. EPA 1623.1 Method. It involves the flow-through filtration of a large volume of the water of interest, the elution of the biological material retained on the filter, the purification of the (oo)cysts, and the detection by immunofluorescence of the target parasites. Since the 1990s, several molecular-biology-based techniques were also developed to detect Cryptosporidium and Giardia cells from environmental or clinical samples. The application of U.S. EPA 1623.1 as well as numerous biomolecular methods are reviewed in this article, and their advantages and disadvantages are discussed guiding the readers, such as graduate students, researchers, drinking water managers, epidemiologists, and public health specialists, through the ever-expanding number of techniques available in the literature for the detection of Cryptosporidium spp. and Giardia spp. in water.
- Published
- 2022
- Full Text
- View/download PDF
9. Cryptic and abundant marine viruses at the evolutionary origins of Earth's RNA virome.
- Author
-
Zayed AA, Wainaina JM, Dominguez-Huerta G, Pelletier E, Guo J, Mohssen M, Tian F, Pratama AA, Bolduc B, Zablocki O, Cronin D, Solden L, Delage E, Alberti A, Aury JM, Carradec Q, da Silva C, Labadie K, Poulain J, Ruscheweyh HJ, Salazar G, Shatoff E, Bundschuh R, Fredrick K, Kubatko LS, Chaffron S, Culley AI, Sunagawa S, Kuhn JH, Wincker P, Sullivan MB, Acinas SG, Babin M, Bork P, Boss E, Bowler C, Cochrane G, de Vargas C, Gorsky G, Guidi L, Grimsley N, Hingamp P, Iudicone D, Jaillon O, Kandels S, Karp-Boss L, Karsenti E, Not F, Ogata H, Poulton N, Pesant S, Sardet C, Speich S, Stemmann L, Sullivan MB, Sungawa S, and Wincker P
- Subjects
- Biological Evolution, Ecosystem, Oceans and Seas, Phylogeny, RNA, Virome genetics, Genome, Viral, RNA Viruses genetics, Viruses genetics
- Abstract
Whereas DNA viruses are known to be abundant, diverse, and commonly key ecosystem players, RNA viruses are insufficiently studied outside disease settings. In this study, we analyzed ≈28 terabases of Global Ocean RNA sequences to expand Earth's RNA virus catalogs and their taxonomy, investigate their evolutionary origins, and assess their marine biogeography from pole to pole. Using new approaches to optimize discovery and classification, we identified RNA viruses that necessitate substantive revisions of taxonomy (doubling phyla and adding >50% new classes) and evolutionary understanding. "Species"-rank abundance determination revealed that viruses of the new phyla " Taraviricota ," a missing link in early RNA virus evolution, and " Arctiviricota " are widespread and dominant in the oceans. These efforts provide foundational knowledge critical to integrating RNA viruses into ecological and epidemiological models.
- Published
- 2022
- Full Text
- View/download PDF
10. Local Habitat Filtering Shapes Microbial Community Structure in Four Closely Spaced Lakes in the High Arctic.
- Author
-
Marois C, Girard C, Klanten Y, Vincent WF, Culley AI, and Antoniades D
- Abstract
Arctic lakes are experiencing increasingly shorter periods of ice cover due to accelerated warming at northern high latitudes. Given the control of ice cover thickness and duration over many limnological processes, these changes will have pervasive effects. However, due to their remote and extreme locations even first-order data on lake ecology is lacking for many ecosystems. The aim of this study was to characterize and compare the microbial communities of four closely spaced lakes in Stuckberry Valley (northern Ellesmere Island, Canadian Arctic Archipelago), in the coastal margin zone of the Last Ice Area, that differed in their physicochemical, morphological and catchment characteristics. We performed high-throughput amplicon sequencing of the V4 16S rRNA gene to provide inter- and intra-lake comparisons. Two deep (>25 m) and mostly oxygenated lakes showed highly similar community assemblages that were distinct from those of two shallower lakes (<10 m) with anoxic bottom waters. Proteobacteria , Verrucomicrobia , and Planctomycetes were the major phyla present in the four water bodies. One deep lake contained elevated proportions of Cyanobacteria and Thaumarchaeota that distinguished it from the others, while the shallow lakes had abundant communities of predatory bacteria, as well as microbes in their bottom waters that contribute to sulfur and methane cycles. Despite their proximity, our data suggest that local habitat filtering is the primary determinant of microbial diversity in these systems. This study provides the first detailed examination of the microbial assemblages of the Stuckberry lakes system, resulting in new insights into the microbial ecology of the High Arctic., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Marois, Girard, Klanten, Vincent, Culley and Antoniades.)
- Published
- 2022
- Full Text
- View/download PDF
11. ICTV Virus Taxonomy Profile: Marnaviridae 2021.
- Author
-
Lang AS, Vlok M, Culley AI, Suttle CA, Takao Y, Tomaru Y, and Ictv Report Consortium
- Subjects
- Animals, Capsid Proteins, Eukaryota, Host Specificity, Hydrobiology, Metagenomics, RNA Virus Infections virology, RNA Viruses ultrastructure, RNA, Viral, Virion classification, Virion genetics, Virion ultrastructure, Virus Replication, Genome, Viral, Phylogeny, RNA Viruses classification, RNA Viruses genetics
- Abstract
The family Marnaviridae comprises small non-enveloped viruses with positive-sense RNA genomes of 8.6-9.6 kb. Isolates infect marine single-celled eukaryotes (protists) that come from diverse lineages. Some members are known from metagenomic studies of ocean virioplankton, with additional unclassified viruses described from metagenomic datasets derived from marine and freshwater environments. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Marnaviridae , which is available at ictv.global/report/marnaviridae.
- Published
- 2021
- Full Text
- View/download PDF
12. Genomic diversity and CRISPR-Cas systems in the cyanobacterium Nostoc in the High Arctic.
- Author
-
Jungblut AD, Raymond F, Dion MB, Moineau S, Mohit V, Nguyen GQ, Déraspe M, Francovic-Fontaine É, Lovejoy C, Culley AI, Corbeil J, and Vincent WF
- Subjects
- Genomics, Multigene Family, Phylogeny, CRISPR-Cas Systems, Nostoc genetics
- Abstract
Nostoc (Nostocales, Cyanobacteria) has a global distribution in the Polar Regions. However, the genomic diversity of Nostoc is little known and there are no genomes available for polar Nostoc. Here we carried out the first genomic analysis of the Nostoc commune morphotype with a recent sample from the High Arctic and a herbarium specimen collected during the British Arctic Expedition (1875-76). Comparisons of the polar genomes with 26 present-day non-polar members of the Nostocales family highlighted that there are pronounced genetic variations among Nostoc strains and species. Osmoprotection and other stress genes were found in all Nostoc strains, but the two Arctic strains had markedly higher numbers of biosynthetic gene clusters for uncharacterised non-ribosomal peptide synthetases, suggesting a high diversity of secondary metabolites. Since viral-host interactions contribute to microbial diversity, we analysed the CRISPR-Cas systems in the Arctic and two temperate Nostoc species. There were a large number of unique repeat-spacer arrays in each genome, indicating diverse histories of viral attack. All Nostoc strains had a subtype I-D system, but the polar specimens also showed evidence of a subtype I-B system that has not been previously reported in cyanobacteria, suggesting diverse cyanobacteria-virus interactions in the Arctic., (© 2021 Society for Applied Microbiology and John Wiley & Sons Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
13. Genomic evidence for sulfur intermediates as new biogeochemical hubs in a model aquatic microbial ecosystem.
- Author
-
Vigneron A, Cruaud P, Culley AI, Couture RM, Lovejoy C, and Vincent WF
- Subjects
- Aquatic Organisms genetics, Aquatic Organisms metabolism, Canada, Oxidation-Reduction, Bacteria genetics, Bacteria metabolism, Ecosystem, Lakes microbiology, Metagenome, Sulfur metabolism
- Abstract
Background: The sulfur cycle encompasses a series of complex aerobic and anaerobic transformations of S-containing molecules and plays a fundamental role in cellular and ecosystem-level processes, influencing biological carbon transfers and other biogeochemical cycles. Despite their importance, the microbial communities and metabolic pathways involved in these transformations remain poorly understood, especially for inorganic sulfur compounds of intermediate oxidation states (thiosulfate, tetrathionate, sulfite, polysulfides). Isolated and highly stratified, the extreme geochemical and environmental features of meromictic ice-capped Lake A, in the Canadian High Arctic, provided an ideal model ecosystem to resolve the distribution and metabolism of aquatic sulfur cycling microorganisms along redox and salinity gradients., Results: Applying complementary molecular approaches, we identified sharply contrasting microbial communities and metabolic potentials among the markedly distinct water layers of Lake A, with similarities to diverse fresh, brackish and saline water microbiomes. Sulfur cycling genes were abundant at all depths and covaried with bacterial abundance. Genes for oxidative processes occurred in samples from the oxic freshwater layers, reductive reactions in the anoxic and sulfidic bottom waters and genes for both transformations at the chemocline. Up to 154 different genomic bins with potential for sulfur transformation were recovered, revealing a panoply of taxonomically diverse microorganisms with complex metabolic pathways for biogeochemical sulfur reactions. Genes for the utilization of sulfur cycle intermediates were widespread throughout the water column, co-occurring with sulfate reduction or sulfide oxidation pathways. The genomic bin composition suggested that in addition to chemical oxidation, these intermediate sulfur compounds were likely produced by the predominant sulfur chemo- and photo-oxidisers at the chemocline and by diverse microbial degraders of organic sulfur molecules., Conclusions: The Lake A microbial ecosystem provided an ideal opportunity to identify new features of the biogeochemical sulfur cycle. Our detailed metagenomic analyses across the broad physico-chemical gradients of this permanently stratified lake extend the known diversity of microorganisms involved in sulfur transformations over a wide range of environmental conditions. The results indicate that sulfur cycle intermediates and organic sulfur molecules are major sources of electron donors and acceptors for aquatic and sedimentary microbial communities in association with the classical sulfur cycle. Video abstract.
- Published
- 2021
- Full Text
- View/download PDF
14. Water column gradients beneath the summer ice of a High Arctic freshwater lake as indicators of sensitivity to climate change.
- Author
-
Bégin PN, Tanabe Y, Rautio M, Wauthy M, Laurion I, Uchida M, Culley AI, and Vincent WF
- Abstract
Ice cover persists throughout summer over many lakes at extreme polar latitudes but is likely to become increasingly rare with ongoing climate change. Here we addressed the question of how summer ice-cover affects the underlying water column of Ward Hunt Lake, a freshwater lake in the Canadian High Arctic, with attention to its vertical gradients in limnological properties that would be disrupted by ice loss. Profiling in the deepest part of the lake under thick mid-summer ice revealed a high degree of vertical structure, with gradients in temperature, conductivity and dissolved gases. Dissolved oxygen, nitrous oxide, carbon dioxide and methane rose with depth to concentrations well above air-equilibrium, with oxygen values at > 150% saturation in a mid-water column layer of potential convective mixing. Fatty acid signatures of the seston also varied with depth. Benthic microbial mats were the dominant phototrophs, growing under a dim green light regime controlled by the ice cover, water itself and weakly colored dissolved organic matter that was mostly autochthonous in origin. In this and other polar lakes, future loss of mid-summer ice will completely change many water column properties and benthic light conditions, resulting in a markedly different ecosystem regime.
- Published
- 2021
- Full Text
- View/download PDF
15. Seasonal Regime Shift in the Viral Communities of a Permafrost Thaw Lake.
- Author
-
Girard C, Langlois V, Vigneron A, Vincent WF, and Culley AI
- Subjects
- Arctic Regions, Bacteriophages genetics, Canada, Genome, Viral, Lakes virology, Metagenomics, Permafrost virology, Seasons, Viruses genetics
- Abstract
Permafrost thaw lakes including thermokarst lakes and ponds are ubiquitous features of Subarctic and Arctic landscapes and are hotspots of microbial activity. Input of terrestrial organic matter into the planktonic microbial loop of these lakes may greatly amplify global greenhouse gas emissions. This microbial loop, dominated in the summer by aerobic microorganisms including phototrophs, is radically different in the winter, when metabolic processes shift to the anaerobic degradation of organic matter. Little is known about the viruses that infect these microbes, despite evidence that viruses can control microbial populations and influence biogeochemical cycling in other systems. Here, we present the results of a metagenomics-based study of viruses in the larger than 0.22 µm fraction across two seasons (summer and winter) in a permafrost thaw lake in Subarctic Canada. We uncovered 351 viral populations (vOTUs) in the surface waters of this lake, with diversity significantly greater during the summer. We also identified and characterized several phage genomes and prophages, which were mostly present in the summer. Finally, we compared the viral community of this waterbody to other habitats and found unexpected similarities with distant bog lakes in North America.
- Published
- 2020
- Full Text
- View/download PDF
16. Extreme Viral Partitioning in a Marine-Derived High Arctic Lake.
- Author
-
Labbé M, Girard C, Vincent WF, and Culley AI
- Subjects
- Arctic Regions, Canada, Phylogeny, RNA, Ribosomal, 16S genetics, Salinity, Seasons, Water Microbiology, Lakes virology, Seawater virology, Virome genetics, Viruses genetics
- Abstract
High-latitude, perennially stratified (meromictic) lakes are likely to be especially vulnerable to climate warming because of the importance of ice in maintaining their water column structure and associated distribution of microbial communities. This study aimed to characterize viral abundance, diversity, and distribution in a meromictic lake of marine origin on the far northern coast of Ellesmere Island, in the Canadian High Arctic. We collected triplicate samples for double-stranded DNA (dsDNA) viromics from five depths that encompassed the major features of the lake, as determined by limnological profiling of the water column. Viral abundance and virus-to-prokaryote ratios were highest at greater depths, while bacterial and cyanobacterial counts were greatest in the surface waters. The viral communities from each zone of the lake defined by salinity, temperature, and dissolved oxygen concentrations were markedly distinct, suggesting that there was little exchange of viral types among lake strata. Ten viral assembled genomes were obtained from our libraries, and these also segregated with depth. This well-defined structure of viral communities was consistent with that of potential hosts. Viruses from the monimolimnion, a deep layer of ancient Arctic Ocean seawater, were more diverse and relatively abundant, with few similarities to available viral sequences. The Lake A viral communities also differed from published records from the Arctic Ocean and meromictic Ace Lake in Antarctica. This first characterization of viral diversity from this sentinel environment underscores the microbial richness and complexity of an ecosystem type that is increasingly exposed to major perturbations in the fast-changing Arctic. IMPORTANCE The Arctic is warming at an accelerating pace, and the rise in temperature has increasing impacts on the Arctic biome. Lakes are integrators of their surroundings and thus excellent sentinels of environmental change. Despite their importance in the regulation of key microbial processes, viruses remain largely uncharacterized in Arctic lacustrine environments. We sampled a highly stratified meromictic lake near the northern limit of the Canadian High Arctic, a region in rapid transition due to climate change. We found that the different layers of the lake harbored viral communities that were strikingly dissimilar and highly divergent from known viruses. Viruses were more abundant in the deepest part of the lake containing ancient Arctic Ocean seawater that was trapped during glacial retreat and were genomically unlike any viruses previously described. This research demonstrates the complexity and novelty of viral communities in an environment that is vulnerable to ongoing perturbation., (Copyright © 2020 Labbé et al.)
- Published
- 2020
- Full Text
- View/download PDF
17. Annual Protist Community Dynamics in a Freshwater Ecosystem Undergoing Contrasted Climatic Conditions: The Saint-Charles River (Canada).
- Author
-
Cruaud P, Vigneron A, Fradette MS, Dorea CC, Culley AI, Rodriguez MJ, and Charette SJ
- Abstract
Protists are key stone components of aquatic ecosystems, sustaining primary productivity and aquatic food webs. However, their diversity, ecology and structuring factors shaping their temporal distribution remain strongly misunderstood in freshwaters. Using high-throughput sequencing on water samples collected over 16 different months (including two summer and two winter periods), combined with geochemical measurements and climate monitoring, we comprehensively determined the pico- and nanoeukaryotic community composition and dynamics in a Canadian river undergoing prolonged ice-cover winters. Our analysis revealed a large protist diversity in this fluctuating ecosystem and clear seasonal patterns demonstrating a direct and/or indirect selective role of abiotic factors, such as water temperature or nitrogen concentrations, in structuring the eukaryotic microbial community. Nonetheless, our results also revealed that primary productivity, predatory as well as parasitism lifestyles, inferred from fine phylogenetic placements, remained potentially present over the annual cycle, despite the large seasonal fluctuations and the remodeling of the community composition under ice. In addition, potential interplays with the bacterial community composition were identified supporting a possible contribution of the bacterial community to the temporal dynamics of the protist community structure. Our results illustrate the complexity of the eukaryotic microbial community and provide a substantive and useful dataset to better understand the global freshwater ecosystem functioning., (Copyright © 2019 Cruaud, Vigneron, Fradette, Dorea, Culley, Rodriguez and Charette.)
- Published
- 2019
- Full Text
- View/download PDF
18. Marine DNA Viral Macro- and Microdiversity from Pole to Pole.
- Author
-
Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, Ardyna M, Arkhipova K, Carmichael M, Cruaud C, Dimier C, Domínguez-Huerta G, Ferland J, Kandels S, Liu Y, Marec C, Pesant S, Picheral M, Pisarev S, Poulain J, Tremblay JÉ, Vik D, Babin M, Bowler C, Culley AI, de Vargas C, Dutilh BE, Iudicone D, Karp-Boss L, Roux S, Sunagawa S, Wincker P, and Sullivan MB
- Subjects
- Aquatic Organisms genetics, Biodiversity, DNA Viruses genetics, DNA, Viral genetics, Metagenome, Water Microbiology
- Abstract
Microbes drive most ecosystems and are modulated by viruses that impact their lifespan, gene flow, and metabolic outputs. However, ecosystem-level impacts of viral community diversity remain difficult to assess due to classification issues and few reference genomes. Here, we establish an ∼12-fold expanded global ocean DNA virome dataset of 195,728 viral populations, now including the Arctic Ocean, and validate that these populations form discrete genotypic clusters. Meta-community analyses revealed five ecological zones throughout the global ocean, including two distinct Arctic regions. Across the zones, local and global patterns and drivers in viral community diversity were established for both macrodiversity (inter-population diversity) and microdiversity (intra-population genetic variation). These patterns sometimes, but not always, paralleled those from macro-organisms and revealed temperate and tropical surface waters and the Arctic as biodiversity hotspots and mechanistic hypotheses to explain them. Such further understanding of ocean viruses is critical for broader inclusion in ecosystem models., (Copyright © 2019 Elsevier Inc. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
19. Multiple Strategies for Light-Harvesting, Photoprotection, and Carbon Flow in High Latitude Microbial Mats.
- Author
-
Vigneron A, Cruaud P, Mohit V, Martineau MJ, Culley AI, Lovejoy C, and Vincent WF
- Abstract
Microbial mats are ubiquitous in polar freshwater ecosystems and sustain high concentrations of biomass despite the extreme seasonal variations in light and temperature. Here we aimed to resolve genomic adaptations for light-harvesting, bright-light protection, and carbon flow in mats that undergo seasonal freeze-up. To bracket a range of communities in shallow water habitats, we sampled cyanobacterial mats in the thawed littoral zone of two lakes situated at the northern and southern limits of the Canadian Arctic permafrost zone. We applied a multiphasic approach using pigment profiles from high performance liquid chromatography, Illumina MiSeq sequencing of the 16S and 18S rRNA genes, and metagenomic analysis. The mats shared a taxonomic and functional core microbiome, dominated by oxygenic cyanobacteria with light-harvesting and photoprotective pigments, bacteria with bacteriochlorophyll, and bacteria with light-driven Type I rhodopsins. Organisms able to use light for energy related processes represented up to 85% of the total microbial community, with 15-30% attributable to cyanobacteria and 55-70% attributable to other bacteria. The proportion of genes involved in anaplerotic CO
2 fixation was greater than for genes associated with oxygenic photosynthesis. Diverse heterotrophic bacteria, eukaryotes (including metazoans and fungi) and viruses co-occurred in both communities. The results indicate a broad range of strategies for capturing sunlight and CO2 , and for the subsequent flow of energy and carbon in these complex, light-driven microbial ecosystems.- Published
- 2018
- Full Text
- View/download PDF
20. Microbial connectivity and sorting in a High Arctic watershed.
- Author
-
Comte J, Culley AI, Lovejoy C, and Vincent WF
- Subjects
- Arctic Regions, Canada, Climate, High-Throughput Nucleotide Sequencing, Lakes microbiology, Permafrost microbiology, Sequence Analysis, DNA, Archaea classification, Bacteria classification, Eukaryota classification, Microbiota, Snow microbiology
- Abstract
Aquatic ecosystems in the High Arctic are facing unprecedented changes as a result of global warming effects on the cryosphere. Snow pack is a central feature of northern landscapes, but the snow microbiome and its microbial connectivity to adjacent and downstream habitats have been little explored. To evaluate these aspects, we sampled along a hydrologic continuum at Ward Hunt Lake (latitude 83°N) in the Canadian High Arctic, from snow banks, water tracks in the permafrost catchment, the upper and lower strata of the lake, and the lake outlet and its coastal marine mixing zone. The microbial communities were analyzed by high-throughput sequencing of 16 and 18S rRNA to determine the composition of potentially active Bacteria, Archaea and microbial Eukarya. Each habitat had distinct microbial assemblages, with highest species richness in the subsurface water tracks that connected the melting snow to the lake. However, up to 30% of phylotypes were shared along the hydrologic continuum, showing that many taxa originating from the snow can remain in the active fraction of downstream microbiomes. The results imply that changes in snowfall associated with climate warming will affect microbial community structure throughout all spatially connected habitats within snow-fed polar ecosystems.
- Published
- 2018
- Full Text
- View/download PDF
21. Next-generation sequencing (NGS) in the microbiological world: How to make the most of your money.
- Author
-
Vincent AT, Derome N, Boyle B, Culley AI, and Charette SJ
- Subjects
- DNA, Bacterial genetics, Gene Library, DNA, Bacterial analysis, Genomics methods, High-Throughput Nucleotide Sequencing methods, Sequence Analysis, DNA methods
- Abstract
The Sanger sequencing method produces relatively long DNA sequences of unmatched quality and has been considered for long time as the gold standard for sequencing DNA. Many improvements of the Sanger method that culminated with fluorescent dyes coupled with automated capillary electrophoresis enabled the sequencing of the first genomes. Nevertheless, using this technology to sequence whole genomes was costly, laborious and time consuming even for genomes that are relatively small in size. A major technological advance was the introduction of next-generation sequencing (NGS) pioneered by 454 Life Sciences in the early part of the 21th century. NGS allowed scientists to sequence thousands to millions of DNA molecules in a single machine run. Since then, new NGS technologies have emerged and existing NGS platforms have been improved, enabling the production of genome sequences at an unprecedented rate as well as broadening the spectrum of NGS applications. The current affordability of generating genomic information, especially with microbial samples, has resulted in a false sense of simplicity that belies the fact that many researchers still consider these technologies a black box. In this review, our objective is to identify and discuss four steps that we consider crucial to the success of any NGS-related project. These steps are: (1) the definition of the research objectives beyond sequencing and appropriate experimental planning, (2) library preparation, (3) sequencing and (4) data analysis. The goal of this review is to give an overview of the process, from sample to analysis, and discuss how to optimize your resources to achieve the most from your NGS-based research. Regardless of the evolution and improvement of the sequencing technologies, these four steps will remain relevant., (Copyright © 2016 Elsevier B.V. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
22. RNA viruses as major contributors to Antarctic virioplankton.
- Author
-
Miranda JA, Culley AI, Schvarcz CR, and Steward GF
- Subjects
- Antarctic Regions, Diatoms virology, Genome, Viral, Metagenomics, Phylogeny, RNA Viruses classification, RNA Viruses genetics, Seawater virology, Phytoplankton virology, RNA Viruses isolation & purification
- Abstract
Early work on marine algal viruses focused exclusively on those having DNA genomes, but recent studies suggest that RNA viruses, especially those with positive-sense, single-stranded RNA (+ssRNA) genomes, are abundant in tropical and temperate coastal seawater. To test whether this was also true of polar waters, we estimated the relative abundances of RNA and DNA viruses using a mass ratio approach and conducted shotgun metagenomics on purified viral samples collected from a coastal site near Palmer Station, Antarctica on six occasions throughout a summer phytoplankton bloom (November-March). Our data suggest that RNA viruses contributed up to 65% of the total virioplankton (8-65%), and that, as observed previously in warmer waters, the majority of RNA viruses in these Antarctic RNA virus metagenomes had +ssRNA genomes most closely related to viruses in the order Picornavirales. Assembly of the metagenomic reads resulted in five novel, nearly complete genomes, three of which had features similar to diatom-infecting viruses. Our data are consistent with the hypothesis that RNA viruses influence diatom bloom dynamics in Antarctic waters., (© 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.)
- Published
- 2016
- Full Text
- View/download PDF
23. Diversity of antibiotic-resistance genes in Canadian isolates of Aeromonas salmonicida subsp. salmonicida: dominance of pSN254b and discovery of pAsa8.
- Author
-
Trudel MV, Vincent AT, Attéré SA, Labbé M, Derome N, Culley AI, and Charette SJ
- Subjects
- Animals, Canada, Fish Diseases genetics, Genetic Testing, Gram-Negative Bacterial Infections diagnosis, Gram-Negative Bacterial Infections genetics, Aeromonas salmonicida physiology, Anti-Bacterial Agents therapeutic use, Drug Resistance genetics, Fish Diseases drug therapy, Fishes immunology, Genomic Islands genetics, Gram-Negative Bacterial Infections drug therapy, Integrons genetics, Plasmids genetics
- Abstract
The bacterium Aeromonas salmonicida subsp. salmonicida is a common pathogen in fish farms worldwide. Since the antibiotic resistance of this bacterial species is on the increase, it is important to have a broader view on this issue. In the present study, we tested the presence of known plasmids conferring multi-drug resistance as well as antibiotic resistance genes by a PCR approach in 100 Canadian A. salmonicida subsp. salmonicida isolates. Our study highlighted the dominance of the conjugative pSN254b plasmid, which confers multi-drug resistance. We also identified a new multi-drug plasmid named pAsa8, which has been characterized by a combination of sequencing technologies (Illumina and Oxford nanopore). This new plasmid harbors a complex class 1 integron similar to the one of the Salmonella genomic island 1 (SGI1) found in Salmonella enterica and Proteus mirabilis. Consequently, in addition to providing an update on the A. salmonicida subsp. salmonicida isolates that are resistant to antibiotics, our data suggest that this bacterium is potentially an important reservoir of drug resistance genes and should consequently be monitored more extensively. In addition, we describe a screening method that has the potential to become a diagnostic tool that is complementary to other methods currently in use.
- Published
- 2016
- Full Text
- View/download PDF
24. Variables influencing extraction of nucleic acids from microbial plankton (viruses, bacteria, and protists) collected on nanoporous aluminum oxide filters.
- Author
-
Mueller JA, Culley AI, and Steward GF
- Subjects
- Aluminum Oxide, Filtration methods, Microbiological Techniques methods, Nucleic Acids isolation & purification, Plankton isolation & purification, Water Microbiology
- Abstract
Anodic aluminum oxide (AAO) filters have high porosity and can be manufactured with a pore size that is small enough to quantitatively capture viruses. These properties make the filters potentially useful for harvesting total microbial communities from water samples for molecular analyses, but their performance for nucleic acid extraction has not been systematically or quantitatively evaluated. In this study, we characterized the flux of water through commercially produced nanoporous (0.02 μm) AAO filters (Anotop; Whatman) and used isolates (a virus, a bacterium, and a protist) and natural seawater samples to test variables that we expected would influence the efficiency with which nucleic acids are recovered from the filters. Extraction chemistry had a significant effect on DNA yield, and back flushing the filters during extraction was found to improve yields of high-molecular-weight DNA. Using the back-flush protocol, the mass of DNA recovered from microorganisms collected on AAO filters was ≥ 100% of that extracted from pellets of cells and viruses and 94% ± 9% of that obtained by direct extraction of a liquid bacterial culture. The latter is a minimum estimate of the relative recovery of microbial DNA, since liquid cultures include dissolved nucleic acids that are retained inefficiently by the filter. In conclusion, we demonstrate that nucleic acids can be extracted from microorganisms on AAO filters with an efficiency similar to that achievable by direct extraction of microbes in suspension or in pellets. These filters are therefore a convenient means by which to harvest total microbial communities from multiple aqueous samples in parallel for subsequent molecular analyses., (Copyright © 2014, American Society for Microbiology. All Rights Reserved.)
- Published
- 2014
- Full Text
- View/download PDF
25. The characterization of RNA viruses in tropical seawater using targeted PCR and metagenomics.
- Author
-
Culley AI, Mueller JA, Belcaid M, Wood-Charlson EM, Poisson G, and Steward GF
- Subjects
- Ecosystem, Genetic Variation, Genome, Viral, Metagenomics, Molecular Sequence Data, Phylogeny, Polymerase Chain Reaction, RNA Viruses genetics, Tropical Climate, RNA Viruses classification, RNA Viruses isolation & purification, Seawater virology
- Abstract
Unlabelled: Viruses have a profound influence on the ecology and evolution of plankton, but our understanding of the composition of the aquatic viral communities is still rudimentary. This is especially true of those viruses having RNA genomes. The limited data that have been published suggest that the RNA virioplankton is dominated by viruses with positive-sense, single-stranded (+ss) genomes that have features in common with those of eukaryote-infecting viruses in the order Picornavirales (picornavirads). In this study, we investigated the diversity of the RNA virus assemblages in tropical coastal seawater samples using targeted PCR and metagenomics. Amplification of RNA-dependent RNA polymerase (RdRp) genes from fractions of a buoyant density gradient suggested that the distribution of two major subclades of the marine picornavirads was largely congruent with the distribution of total virus-like RNA, a finding consistent with their proposed dominance. Analyses of the RdRp sequences in the library revealed the presence of many diverse phylotypes, most of which were related only distantly to those of cultivated viruses. Phylogenetic analysis suggests that there were hundreds of unique picornavirad-like phylotypes in one 35-liter sample that differed from one another by at least as much as the differences among currently recognized species. Assembly of the sequences in the metagenome resulted in the reconstruction of six essentially complete viral genomes that had features similar to viruses in the families Bacillarna-, Dicistro-, and Marnaviridae. Comparison of the tropical seawater metagenomes with those from other habitats suggests that +ssRNA viruses are generally the most common types of RNA viruses in aquatic environments, but biases in library preparation remain a possible explanation for this observation., Importance: Marine plankton account for much of the photosynthesis and respiration on our planet, and they influence the cycling of carbon and the distribution of nutrients on a global scale. Despite the fundamental importance of viruses to plankton ecology and evolution, most of the viruses in the sea, and the identities of their hosts, are unknown. This report is one of very few that delves into the genetic diversity within RNA-containing viruses in the ocean. The data expand the known range of viral diversity and shed new light on the physical properties and genetic composition of RNA viruses in the ocean., (Copyright © 2014 Culley et al.)
- Published
- 2014
- Full Text
- View/download PDF
26. Insight into the unknown marine virus majority.
- Author
-
Culley AI
- Subjects
- Bacteriophages isolation & purification, Genome, Viral, Marine Biology, Water Microbiology
- Published
- 2013
- Full Text
- View/download PDF
27. Assembly of a marine viral metagenome after physical fractionation.
- Author
-
Brum JR, Culley AI, and Steward GF
- Subjects
- Base Composition, Centrifugation, Density Gradient, Computational Biology, Gene Order, Genome, Viral, Open Reading Frames, Phylogeny, Sequence Analysis, DNA, Viruses classification, Viruses isolation & purification, Viruses ultrastructure, Metagenome, Seawater virology, Viruses genetics
- Abstract
Metagenomic analyses of marine viruses generate an overview of viral genes present in a sample, but the percentage of the resulting sequence fragments that can be reassembled is low and the phenotype of the virus from which a given sequence derives is usually unknown. In this study, we employed physical fractionation to characterize the morphological and genomic traits of a subset of uncultivated viruses from a natural marine assemblage. Viruses from Kāne'ohe Bay, Hawai'i were fractionated by equilibrium buoyant density centrifugation in a cesium chloride (CsCl) gradient, and one fraction from the CsCl gradient was then further fractionated by strong anion-exchange chromatography. One of the fractions resulting from this two-dimensional separation appeared to be dominated by only a few virus types based on genome sizes and morphology. Sequences generated from a shotgun clone library of the viruses in this fraction were assembled into significantly more numerous contigs than have been generated with previous metagenomic investigations of whole DNA viral assemblages with comparable sequencing effort. Analysis of the longer contigs (up to 6.5 kb) assembled from our metagenome allowed us to assess gene arrangement in this subset of marine viruses. Our results demonstrate the potential for physical fractionation to facilitate sequence assembly from viral metagenomes and permit linking of morphological and genomic data for uncultivated viruses.
- Published
- 2013
- Full Text
- View/download PDF
28. Are we missing half of the viruses in the ocean?
- Author
-
Steward GF, Culley AI, Mueller JA, Wood-Charlson EM, Belcaid M, and Poisson G
- Subjects
- Eukaryota virology, Genome, Viral genetics, RNA Viruses genetics, Seawater microbiology, Virion genetics, RNA Viruses physiology, Seawater virology, Virus Physiological Phenomena
- Abstract
Viruses are abundant in the ocean and a major driving force in plankton ecology and evolution. It has been assumed that most of the viruses in seawater contain DNA and infect bacteria, but RNA-containing viruses in the ocean, which almost exclusively infect eukaryotes, have never been quantified. We compared the total mass of RNA and DNA in the viral fraction harvested from seawater and using data on the mass of nucleic acid per RNA- or DNA-containing virion, estimated the abundances of each. Our data suggest that the abundance of RNA viruses rivaled or exceeded that of DNA viruses in samples of coastal seawater. The dominant RNA viruses in the samples were marine picorna-like viruses, which have small genomes and are at or below the detection limit of common fluorescence-based counting methods. If our results are typical, this means that counts of viruses and the rate measurements that depend on them, such as viral production, are significantly underestimated by current practices. As these RNA viruses infect eukaryotes, our data imply that protists contribute more to marine viral dynamics than one might expect based on their relatively low abundance. This conclusion is a departure from the prevailing view of viruses in the ocean, but is consistent with earlier theoretical predictions.
- Published
- 2013
- Full Text
- View/download PDF
29. Complete genome sequence of bacteriophage VvAW1, which infects Vibrio vulnificus.
- Author
-
Nigro OD, Culley AI, and Steward GF
- Abstract
Investigating the bacteriophages of vibrios has led to significant insights into the evolution and pathogenicity of their host strains. This report presents the first complete genome sequence of a bacteriophage that infects the deadly human pathogen Vibrio vulnificus. The phage was isolated from the surface waters of the Ala Wai Canal, which is part of an urban watershed in eastern Honolulu, Hawaii, USA. The phage particle is icosahedral, with a diameter of 35-40 nm, and a small non-contractile tail. The genome was sequenced in its entirety, rendering a 38 kb sequence located on a single, linear, circularly permuted chromosome. Here, we present the annotation and genomic features of the bacteriophage, VvAW1.
- Published
- 2012
- Full Text
- View/download PDF
30. Virophages to viromes: a report from the frontier of viral oceanography.
- Author
-
Culley AI
- Subjects
- Bacteriophages classification, Bacteriophages genetics, Genome, Viral, Oceanography, Viruses classification, Viruses genetics, Bacteriophages isolation & purification, Ecosystem, Seawater virology, Viruses isolation & purification
- Abstract
The investigation of marine viruses has advanced our understanding of ecology, evolution, microbiology, oceanography and virology. Significant findings discussed in this review include the discovery of giant viruses that have genome sizes and metabolic capabilities that distort the line between virus and cell, viruses that participate in photosynthesis and apoptosis, the detection of communities of viruses of all genomic compositions and the preeminence of viruses in the evolution of marine microbes. Although we have made great progress, we have yet to synthesize the rich archive of viral genomic data with oceanographic processes. The development of cutting edge methods such as single virus genomics now provide a toolset to better integrate viruses into the ecology of the ocean., (Copyright © 2011 Elsevier B.V. All rights reserved.)
- Published
- 2011
- Full Text
- View/download PDF
31. Detection of inteins among diverse DNA polymerase genes of uncultivated members of the Phycodnaviridae.
- Author
-
Culley AI, Asuncion BF, and Steward GF
- Subjects
- Amino Acid Sequence, Cluster Analysis, DNA, Viral chemistry, DNA, Viral genetics, Hawaii, Molecular Sequence Data, Phycodnaviridae isolation & purification, Phylogeny, Polymerase Chain Reaction methods, Sequence Alignment, Sequence Analysis, DNA, Sequence Homology, DNA-Directed DNA Polymerase genetics, Inteins, Phycodnaviridae genetics, Seawater virology, Viral Proteins genetics
- Abstract
Viruses in the family Phycodnaviridae infect autotrophic protists in aquatic environments. Application of a PCR assay targeting the DNA polymerase of viruses in this family has revealed that phycodnaviruses are quite diverse and appear to be widespread, but a limited number of environments have been examined so far. In this study, we examined the sequence diversity among viral DNA pol genes amplified by PCR from subtropical coastal waters of O'ahu, Hawai'i. A total of 18 novel prasinovirus-like sequences were detected along with two other divergent sequences that differ at the genus-level relative to other sequences in the family. Of the 20 new sequence types reported here, three were serendipitously found to contain protein introns, or inteins. Sequence analysis of the inteins suggested that all three have self-splicing domains and are apparently capable of removing themselves from the translated polymerase protein. Two of the three also appear to be 'active', meaning they encode all the motifs necessary for a complete dodecapeptide homing endonuclease, and are therefore capable of horizontal transfer. A subsequent PCR survey of our samples with intein-specific primers suggested that intein-containing phycodnaviruses are common in this environment. A search for similar sequences in metagenomic data sets from other oceans indicated that viral inteins are also widespread, but how these genetic parasites might be influencing the ecology and evolution of phycodnaviruses remains unclear.
- Published
- 2009
- Full Text
- View/download PDF
32. RNA viruses in the sea.
- Author
-
Lang AS, Rise ML, Culley AI, and Steward GF
- Subjects
- Animals, Ecosystem, Genetic Variation, Plankton virology, Marine Biology, RNA Viruses classification, RNA Viruses genetics, RNA Viruses isolation & purification, Seawater virology
- Abstract
Viruses are ubiquitous in the sea and appear to outnumber all other forms of marine life by at least an order of magnitude. Through selective infection, viruses influence nutrient cycling, community structure, and evolution in the ocean. Over the past 20 years we have learned a great deal about the diversity and ecology of the viruses that constitute the marine virioplankton, but until recently the emphasis has been on DNA viruses. Along with expanding knowledge about RNA viruses that infect important marine animals, recent isolations of RNA viruses that infect single-celled eukaryotes and molecular analyses of the RNA virioplankton have revealed that marine RNA viruses are novel, widespread, and genetically diverse. Discoveries in marine RNA virology are broadening our understanding of the biology, ecology, and evolution of viruses, and the epidemiology of viral diseases, but there is still much that we need to learn about the ecology and diversity of RNA viruses before we can fully appreciate their contributions to the dynamics of marine ecosystems. As a step toward making sense of how RNA viruses contribute to the extraordinary viral diversity in the sea, we summarize in this review what is currently known about RNA viruses that infect marine organisms.
- Published
- 2009
- Full Text
- View/download PDF
33. New genera of RNA viruses in subtropical seawater, inferred from polymerase gene sequences.
- Author
-
Culley AI and Steward GF
- Subjects
- Ecosystem, Genome, Viral, Phylogeny, RNA, Viral classification, RNA, Viral isolation & purification, Reverse Transcriptase Polymerase Chain Reaction, Genetic Variation, RNA Viruses genetics, RNA, Viral genetics, RNA-Dependent RNA Polymerase genetics, Seawater virology
- Abstract
Viruses are an integral component of the marine food web, contributing to the disease and mortality of essentially every type of marine life, yet the diversity of viruses in the sea, especially those with RNA genomes, remains very poorly characterized. Isolates of RNA-containing viruses that infect marine plankton are still rare, and the only cultivation-independent surveys of RNA viral diversity reported so far were conducted for temperate coastal waters of British Columbia. Here, we report on our improvements to a previously used protocol to investigate the diversity of marine picorna-like viruses and our results from applying this protocol in subtropical waters. The original protocol was simplified by using direct filtration, rather than tangential flow filtration, to harvest viruses from seawater, and new degenerate primers were designed to amplify a fragment of the RNA-dependent RNA polymerase gene by reverse transcription-PCR from RNA extracted from the filters. Whereas the original protocol was unsuccessful in a preliminary test, the new protocol resulted in amplification of picorna-like virus sequences in every sample of subtropical and temperate coastal seawater assayed. These polymerase sequences formed a diverse, but monophyletic cluster along with other sequences amplified previously from seawater and sequences from isolates infecting marine protists. Phylogenetic analysis suggested that our sequences represent at least five new genera and 24 new species of RNA viruses. These results contribute to our understanding of RNA virus diversity and suggest that picorna-like viruses are a source of mortality for a wide variety of marine protists.
- Published
- 2007
- Full Text
- View/download PDF
34. The complete genomes of three viruses assembled from shotgun libraries of marine RNA virus communities.
- Author
-
Culley AI, Lang AS, and Suttle CA
- Subjects
- Animals, Bayes Theorem, British Columbia, Genomic Library, Marine Biology, Molecular Sequence Data, Tombusviridae classification, Genome, Viral, Phylogeny, RNA Viruses classification, RNA Viruses genetics, Tombusviridae genetics
- Abstract
Background: RNA viruses have been isolated that infect marine organisms ranging from bacteria to whales, but little is known about the composition and population structure of the in situ marine RNA virus community. In a recent study, the majority of three genomes of previously unknown positive-sense single-stranded (ss) RNA viruses were assembled from reverse-transcribed whole-genome shotgun libraries. The present contribution comparatively analyzes these genomes with respect to representative viruses from established viral taxa., Results: Two of the genomes (JP-A and JP-B), appear to be polycistronic viruses in the proposed order Picornavirales that fall into a well-supported clade of marine picorna-like viruses, the characterized members of which all infect marine protists. A temporal and geographic survey indicates that the JP genomes are persistent and widespread in British Columbia waters. The third genome, SOG, encodes a putative RNA-dependent RNA polymerase (RdRp) that is related to the RdRp of viruses in the family Tombusviridae, but the remaining SOG sequence has no significant similarity to any sequences in the NCBI database., Conclusion: The complete genomes of these viruses permitted analyses that resulted in a more comprehensive comparison of these pathogens with established taxa. For example, in concordance with phylogenies based on the RdRp, our results support a close homology between JP-A and JP-B and RsRNAV. In contrast, although classification of the SOG genome based on the RdRp places SOG within the Tombusviridae, SOG lacks a capsid and movement protein conserved within this family and SOG is thus likely more distantly related to the Tombusivridae than the RdRp phylogeney indicates.
- Published
- 2007
- Full Text
- View/download PDF
35. Metagenomic analysis of coastal RNA virus communities.
- Author
-
Culley AI, Lang AS, and Suttle CA
- Subjects
- Animals, Arthropods virology, Contig Mapping, DNA, Complementary, Genomic Library, Genotype, Molecular Sequence Data, Pacific Ocean, Phylogeny, Picornaviridae classification, Picornaviridae genetics, Plants virology, RNA, Viral classification, RNA, Viral isolation & purification, Reverse Transcriptase Polymerase Chain Reaction, Sequence Analysis, DNA, Synteny, Tombusviridae classification, Tombusviridae genetics, Ecosystem, Genetic Variation, Genome, Viral, Genomics, RNA Viruses genetics, RNA, Viral genetics, Seawater virology
- Abstract
RNA viruses infect marine organisms from bacteria to whales, but RNA virus communities in the sea remain essentially unknown. Reverse-transcribed whole-genome shotgun sequencing was used to characterize the diversity of uncultivated marine RNA virus assemblages. A diverse assemblage of RNA viruses, including a broad group of marine picorna-like viruses, and distant relatives of viruses infecting arthropods and higher plants were found. Communities were dominated by distinct genotypes with small genome sizes, and we completely assembled the genomes of several hitherto undiscovered viruses. Our results show that the oceans are a reservoir of previously unknown RNA viruses.
- Published
- 2006
- Full Text
- View/download PDF
36. Genome sequence and characterization of a virus (HaRNAV) related to picorna-like viruses that infects the marine toxic bloom-forming alga Heterosigma akashiwo.
- Author
-
Lang AS, Culley AI, and Suttle CA
- Subjects
- Amino Acid Sequence, Base Sequence, Molecular Sequence Data, Phylogeny, Picornaviridae genetics, RNA Viruses genetics, Sequence Alignment, Viral Proteins chemistry, Viral Proteins genetics, Viral Proteins metabolism, Eukaryota virology, Genome, Viral, Picornaviridae classification, Seawater microbiology, Sequence Analysis, DNA
- Abstract
Heterosigma akashiwo (Rhaphidophyceae) is a unicellular, flagellated, bloom-forming, toxic alga of ecological and economic importance. Here, we report the results of sequencing and analyzing the genome of an 8.6-kb single-stranded RNA virus (HaRNAV-SOG263) that infects H. akashiwo. Our results show that HaRNAV is related to picorna-like viruses, but does not belong within any currently defined virus family. This is based on the genome organization and sequence comparisons of putative RNA-dependent RNA polymerase (RdRp), helicase, and capsid protein sequences. The genome sequence predicts a single open reading frame (orf) encoding a polyprotein that contains conserved picorna-like protein domains, with putative nonstructural protein domains present in the N-terminus and the structural proteins in the C-terminus of the polyprotein. We have analyzed and compared the virus structural proteins from infectious and noninfectious particles. In this way, we identified structural protein cleavage sites as well as protein processing events that are presumably important for maturation of virus particles. The combination of genome structure and sequence relationships to other viruses suggests that HaRNAV is the first member of a proposed new virus family (Marnaviridae), related to picorna-like viruses.
- Published
- 2004
- Full Text
- View/download PDF
37. High diversity of unknown picorna-like viruses in the sea.
- Author
-
Culley AI, Lang AS, and Suttle CA
- Subjects
- DNA Primers, Eukaryota virology, Molecular Sequence Data, Oceans and Seas, Phylogeny, Phytoplankton virology, Picornaviridae classification, Reverse Transcriptase Polymerase Chain Reaction, Sequence Analysis, DNA, Ecosystem, Environment, Picornaviridae genetics, Picornaviridae isolation & purification
- Abstract
Picorna-like viruses are a loosely defined group of positive-sense single-stranded RNA viruses that are major pathogens of animals, plants and insects. They include viruses that are of enormous economic and public-health concern and are responsible for animal diseases (such as poliomyelitis), plant diseases (such as sharka) and insect diseases (such as sacbrood). Viruses from the six divergent families (the Picornaviridae, Caliciviridae, Comoviridae, Sequiviridae, Dicistroviridae and Potyviridae) that comprise the picorna-like virus superfamily have the following features in common: a genome with a protein attached to the 5' end and no overlapping open reading frames, all the RNAs are translated into a polyprotein before processing, and a conserved RNA-dependent RNA polymerase (RdRp) protein. Analyses of RdRp sequences from these viruses produce phylogenies that are congruent with established picorna-like virus family assignments; hence, this gene is an excellent molecular marker for examining the diversity of picorna-like viruses in nature. Here we report, on the basis of analysis of RdRp sequences amplified from marine virus communities, that a diverse array of picorna-like viruses exists in the ocean. All of the sequences amplified were divergent from known picorna-like viruses, and fell within four monophyletic groups that probably belong to at least two new families. Moreover, we show that an isolate belonging to one of these groups is a lytic pathogen of Heterosigma akashiwo, a toxic-bloom-forming alga responsible for severe economic losses to the finfish aquaculture industry, suggesting that picorna-like viruses are important pathogens of marine phytoplankton.
- Published
- 2003
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.