1. Gold(I)‐Catalyzed Desymmetrization of Homopropargylic Alcohols via Cycloisomerization: Enantioselective Synthesis of Cyclopentenes Featuring a Quaternary Chiral Center.
- Author
-
Kohnke, Philip and Zhang, Liming
- Subjects
- *
CHIRAL centers , *STEREOCHEMISTRY , *ASYMMETRIC synthesis , *DENSITY functional theory , *CYCLOISOMERIZATION , *GOLD catalysts - Abstract
Cyclopentene rings possessing a chiral quaternary center are important structural motifs found in various natural products. In this work, we disclose expedient and efficient access to this class of synthetically valuable structures via highly enantioselective desymmetrization of prochiral propargylic alcohols. The efficient chirality induction in this asymmetric gold catalysis is achieved via two‐point bindings between a gold catalyst featuring a bifunctional phosphine ligand and the substrate homopropargylic alcohol moiety—an H‐bonding interaction between the substrate HO group and a ligand phosphine oxide moiety and the gold‐alkyne complexation. The propargylic alcohol substrates can be prepared readily via propargylation of enoate and ketone precursors. In addition to monocyclic cyclopentenes, spirocyclic and bicyclic ones are formed with additional neighboring chiral centers of flexible stereochemistry in addition to the quaternary center. This work represents rare gold‐catalyzed highly enantioselective cycloisomerization of 1,5‐enynes. Density functional theory (DFT) calculations support the chirality induction model and suggest that the rate acceleration enabled by the bifunctional ligand can be attributed to a facilitated protodeauration step at the end of the catalysis. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF