Wanga Mulaudzi, Marco Toliman Lucchini, Diego Altamirano, Aastha S. Parikh, Roberto Soria, Sera Markoff, G. R. Sivakoff, Nathalie Degenaar, Rudy Wijnands, Stephane Corbel, Maria Cristina Baglio, D. M. Russell, D. Maitra, Chiara Ceccobello, Thomas D. Russell, Simone Migliari, Michael P. Rupen, Rob Fender, Karri I. I. Koljonen, J. van den Eijnden, Felicia Krauß, Sebastian Heinz, Craig L. Sarazin, James Miller-Jones, Richard M. Plotkin, Alexandra J. Tetarenko, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Unité Scientifique de la Station de Nançay (USN), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), University of Amsterdam, East Asian Observatory, Curtin University, University of Alberta, University of Cape Town, New York University Abu Dhabi, University of Southampton, Chalmers University of Technology, Université Paris-Diderot, University of Oxford, University of Wisconsin-Madison, Metsähovi Radio Observatory, Wheaton College Massachusetts, European Space Astronomy Centre, University of Nevada, Reno, National Research Council of Canada, University of Virginia, University of Chinese Academy of Sciences, Aalto-yliopisto, Aalto University, High Energy Astrophys. & Astropart. Phys (API, FNWI), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Observatoire des Sciences de l'Univers en région Centre (OSUC), and Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)
We present results from six epochs of quasi-simultaneous radio, (sub-)millimetre, infrared, optical, and X-ray observations of the black hole X-ray binary MAXI~J1535$-$571. These observations show that as the source transitioned through the hard-intermediate X-ray state towards the soft intermediate X-ray state, the jet underwent dramatic and rapid changes. We observed the frequency of the jet spectral break, which corresponds to the most compact region in the jet where particle acceleration begins (higher frequencies indicate closer to the black hole), evolve from the IR band into the radio band (decreasing by $\approx$3 orders of magnitude) in less than a day. During one observational epoch, we found evidence of the jet spectral break evolving in frequency through the radio band. Estimating the magnetic field and size of the particle acceleration region shows that the rapid fading of the high-energy jet emission was not consistent with radiative cooling; instead the particle acceleration region seems to be moving away from the black hole on approximately dynamical timescales. This result suggests that the compact jet quenching is not caused by local changes to the particle acceleration, rather we are observing the acceleration region of the jet travelling away from the black hole with the jet flow. Spectral analysis of the X-ray emission show a gradual softening in the few days before the dramatic jet changes, followed by a more rapid softening $\sim$1--2\,days after the onset of the jet quenching., 17 pages, 6 figures, data provided in the appendices. Accepted for publication in MNRAS