10 results on '"Daccord, N."'
Search Results
2. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development
- Author
-
Daccord, N., Celton, J.M., Linsmith, G., Becker, C., Choisne, N., Schijlen, E., van de Geest, H., Bianco, L., Micheletti, D., Velasco, R., Di Pierro, E.A., Gouzy, J., Jasper, D., Rees, G., Guérif, P., Muranty, H., Durel, C.E., Laurens, F., Lespinasse, Y., Gaillard, S., Aubourg, S., Quesneville, H., Weigel, D., van de Weg, E., Troggio, M., and Bucher, E.
- Subjects
Settore BIO/11 - BIOLOGIA MOLECOLARE ,fungi - Published
- 2017
3. A high-quality sequence ofRosa chinensisto elucidate genome structure and ornamental traits
- Author
-
Hibrand Saint-Oyant, L., primary, Ruttink, T., additional, Hamama, L., additional, Kirov, I., additional, Lakwani, D., additional, Zhou, N.-N., additional, Bourke, P.M., additional, Daccord, N., additional, Leus, L., additional, Schulz, D., additional, Van de Geest, H., additional, Hesselink, T., additional, Van Laere, K., additional, Balzergue, S., additional, Thouroude, T., additional, Chastellier, A., additional, Jeauffre, J., additional, Voisine, L., additional, Gaillard, S., additional, Borm, T.J.A., additional, Arens, P., additional, Voorrips, R.E., additional, Maliepaard, C., additional, Neu, E., additional, Linde, M., additional, Le Paslier, M.C., additional, Bérard, A., additional, Bounon, R., additional, Clotault, J., additional, Choisne, N., additional, Quesneville, H., additional, Kawamura, K., additional, Aubourg, S., additional, Sakr, S., additional, Smulders, M.J.M., additional, Schijlen, E., additional, Bucher, E., additional, Debener, T., additional, De Riek, J., additional, and Foucher, F., additional
- Published
- 2018
- Full Text
- View/download PDF
4. A high-quality genome sequence of Rosa chinensisto elucidate ornamental traits
- Author
-
Hibrand Saint-Oyant, L., Ruttink, T., Hamama, L., Kirov, I., Lakhwani, D., Zhou, N. N., Bourke, P. M., Daccord, N., Leus, L., Schulz, D., Van de Geest, H., Hesselink, T., Van Laere, K., Debray, K., Balzergue, S., Thouroude, T., Chastellier, A., Jeauffre, J., Voisine, L., Gaillard, S., Borm, T. J. A., Arens, P., Voorrips, R. E., Maliepaard, C., Neu, E., Linde, M., Le Paslier, M. C., Bérard, A., Bounon, R., Clotault, J., Choisne, N., Quesneville, H., Kawamura, K., Aubourg, S., Sakr, S., Smulders, M. J. M., Schijlen, E., Bucher, E., Debener, T., De Riek, J., and Foucher, F.
- Abstract
Rose is the world’s most important ornamental plant, with economic, cultural and symbolic value. Roses are cultivated worldwide and sold as garden roses, cut flowers and potted plants. Roses are outbred and can have various ploidy levels. Our objectives were to develop a high-quality reference genome sequence for the genus Rosaby sequencing a doubled haploid, combining long and short reads, and anchoring to a high-density genetic map, and to study the genome structure and genetic basis of major ornamental traits. We produced a doubled haploid rose line (‘HapOB’) from Rosa chinensis‘Old Blush’ and generated a rose genome assembly anchored to seven pseudo-chromosomes (512?Mb with N50 of 3.4?Mb and 564 contigs). The length of 512?Mb represents 90.1–96.1% of the estimated haploid genome size of rose. Of the assembly, 95% is contained in only 196 contigs. The anchoring was validated using high-density diploid and tetraploid genetic maps. We delineated hallmark chromosomal features, including the pericentromeric regions, through annotation of transposable element families and positioned centromeric repeats using fluorescent in situ hybridization. The rose genome displays extensive synteny with the Fragaria vescagenome, and we delineated only two major rearrangements. Genetic diversity was analysed using resequencing data of seven diploid and one tetraploid Rosaspecies selected from various sections of the genus. Combining genetic and genomic approaches, we identified potential genetic regulators of key ornamental traits, including prickle density and the number of flower petals. A rose APETALA2/TOEhomologue is proposed to be the major regulator of petal number in rose. This reference sequence is an important resource for studying polyploidization, meiosis and developmental processes, as we demonstrated for flower and prickle development. It will also accelerate breeding through the development of molecular markers linked to traits, the identification of the genes underlying them and the exploitation of synteny across Rosaceae.
- Published
- 2018
- Full Text
- View/download PDF
5. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits
- Author
-
Hibrand Saint-Oyant, L., Ruttink, T., Hamama, L., Kirov, I., Lakhwani, D., Zhou, N.N., Bourke, P.M., Daccord, N., Leus, L., Schulz, D., Van De Geest, H., Hesselink, T., Van Laere, K., Debray, K., Balzergue, S., Thouroude, T., Chastellier, A., Jeauffre, J., Voisine, L., Gaillard, S., Borm, T.J.A., Arens, P., Voorrips, R.E., Maliepaard, C., Neu, E., Linde, M., Le Paslier, M.C., Bérard, A., Bounon, R., Clotault, J., Choisne, N., Quesneville, H., Kawamura, K., Aubourg, S., Sakr, S., Smulders, M.J.M., Schijlen, E., Bucher, E., Debener, T., De Riek, J., and Foucher, F.
- Subjects
Genome structure ,Dewey Decimal Classification::500 | Naturwissenschaften::580 | Pflanzen (Botanik) ,fungi ,food and beverages ,Rosa chinensis ,15. Life on land ,Rosa ,Konferenzschrift - Abstract
Rose is the world’s most important ornamental plant, with economic, cultural and symbolic value. Roses are cultivated worldwide and sold as garden roses, cut flowers and potted plants. Roses are outbred and can have various ploidy levels. Our objectives were to develop a high-quality reference genome sequence for the genus Rosa by sequencing a doubled haploid, combining long and short reads, and anchoring to a high-density genetic map, and to study the genome structure and genetic basis of major ornamental traits. We produced a doubled haploid rose line (‘HapOB’) from Rosa chinensis ‘Old Blush’ and generated a rose genome assembly anchored to seven pseudo-chromosomes (512 Mb with N50 of 3.4 Mb and 564 contigs). The length of 512 Mb represents 90.1–96.1% of the estimated haploid genome size of rose. Of the assembly, 95% is contained in only 196 contigs. The anchoring was validated using high-density diploid and tetraploid genetic maps. We delineated hallmark chromosomal features, including the pericentromeric regions, through annotation of transposable element families and positioned centromeric repeats using fluorescent in situ hybridization. The rose genome displays extensive synteny with the Fragaria vesca genome, and we delineated only two major rearrangements. Genetic diversity was analysed using resequencing data of seven diploid and one tetraploid Rosa species selected from various sections of the genus. Combining genetic and genomic approaches, we identified potential genetic regulators of key ornamental traits, including prickle density and the number of flower petals. A rose APETALA2/TOE homologue is proposed to be the major regulator of petal number in rose. This reference sequence is an important resource for studying polyploidization, meiosis and developmental processes, as we demonstrated for flower and prickle development. It will also accelerate breeding through the development of molecular markers linked to traits, the identification of the genes underlying them and the exploitation of synteny across Rosaceae.
6. Divergent DNA Methylation Signatures of Juvenile Seedlings, Grafts and Adult Apple Trees.
- Author
-
Perrin A, Daccord N, Roquis D, Celton JM, Vergne E, and Bucher E
- Abstract
The vast majority of previous studies on epigenetics in plants have centered on the study of inheritance of DNA methylation patterns in annual plants. In contrast, perennial plants may have the ability to accumulate changes in DNA methylation patterns over numerous years. However, currently little is known about long-lived perennial and clonally reproducing plants that may have evolved different DNA methylation inheritance mechanisms as compared to annual plants. To study the transmission of DNA methylation patterns in a perennial plant, we used apple ( Malus domestica ) as a model plant. First, we investigated the inheritance of DNA methylation patterns during sexual reproduction in apple by comparing DNA methylation patterns of mature trees to juvenile seedlings resulting from selfing. While we did not observe a drastic genome-wide change in DNA methylation levels, we found clear variations in DNA methylation patterns localized in regions enriched for genes involved in photosynthesis. Using transcriptomics, we also observed that genes involved in this pathway were overexpressed in seedlings. To assess how DNA methylation patterns are transmitted during clonal propagation we then compared global DNA methylation of a newly grafted tree to its mature donor tree. We identified significant, albeit weak DNA methylation changes resulting from grafting. Overall, we found that a majority of DNA methylation patterns from the mature donor tree are transmitted to newly grafted plants, however with detectable specific local differences. Both the epigenomic and transcriptomic data indicate that grafted plants are at an intermediate phase between an adult tree and seedling and inherit part of the epigenomic history of their donor tree.
- Published
- 2020
- Full Text
- View/download PDF
7. A transposable element annotation pipeline and expression analysis reveal potentially active elements in the microalga Tisochrysis lutea.
- Author
-
Berthelier J, Casse N, Daccord N, Jamilloux V, Saint-Jean B, and Carrier G
- Subjects
- Genomics, DNA Transposable Elements genetics, Gene Expression Profiling methods, Microalgae genetics, Molecular Sequence Annotation methods
- Abstract
Background: Transposable elements (TEs) are mobile DNA sequences known as drivers of genome evolution. Their impacts have been widely studied in animals, plants and insects, but little is known about them in microalgae. In a previous study, we compared the genetic polymorphisms between strains of the haptophyte microalga Tisochrysis lutea and suggested the involvement of active autonomous TEs in their genome evolution., Results: To identify potentially autonomous TEs, we designed a pipeline named PiRATE (Pipeline to Retrieve and Annotate Transposable Elements, download: https://doi.org/10.17882/51795 ), and conducted an accurate TE annotation on a new genome assembly of T. lutea. PiRATE is composed of detection, classification and annotation steps. Its detection step combines multiple, existing analysis packages representing all major approaches for TE detection and its classification step was optimized for microalgal genomes. The efficiency of the detection and classification steps was evaluated with data on the model species Arabidopsis thaliana. PiRATE detected 81% of the TE families of A. thaliana and correctly classified 75% of them. We applied PiRATE to T. lutea genomic data and established that its genome contains 15.89% Class I and 4.95% Class II TEs. In these, 3.79 and 17.05% correspond to potentially autonomous and non-autonomous TEs, respectively. Annotation data was combined with transcriptomic and proteomic data to identify potentially active autonomous TEs. We identified 17 expressed TE families and, among these, a TIR/Mariner and a TIR/hAT family were able to synthesize their transposase. Both these TE families were among the three highest expressed genes in a previous transcriptomic study and are composed of highly similar copies throughout the genome of T. lutea. This sum of evidence reveals that both these TE families could be capable of transposing or triggering the transposition of potential related MITE elements., Conclusion: This manuscript provides an example of a de novo transposable element annotation of a non-model organism characterized by a fragmented genome assembly and belonging to a poorly studied phylum at genomic level. Integration of multi-omics data enabled the discovery of potential mobile TEs and opens the way for new discoveries on the role of these repeated elements in genomic evolution of microalgae.
- Published
- 2018
- Full Text
- View/download PDF
8. Genome-Wide Association Mapping of Flowering and Ripening Periods in Apple.
- Author
-
Urrestarazu J, Muranty H, Denancé C, Leforestier D, Ravon E, Guyader A, Guisnel R, Feugey L, Aubourg S, Celton JM, Daccord N, Dondini L, Gregori R, Lateur M, Houben P, Ordidge M, Paprstein F, Sedlak J, Nybom H, Garkava-Gustavsson L, Troggio M, Bianco L, Velasco R, Poncet C, Théron A, Moriya S, Bink MCAM, Laurens F, Tartarini S, and Durel CE
- Abstract
Deciphering the genetic control of flowering and ripening periods in apple is essential for breeding cultivars adapted to their growing environments. We implemented a large Genome-Wide Association Study (GWAS) at the European level using an association panel of 1,168 different apple genotypes distributed over six locations and phenotyped for these phenological traits. The panel was genotyped at a high-density of SNPs using the Axiom®Apple 480 K SNP array. We ran GWAS with a multi-locus mixed model (MLMM), which handles the putatively confounding effect of significant SNPs elsewhere on the genome. Genomic regions were further investigated to reveal candidate genes responsible for the phenotypic variation. At the whole population level, GWAS retained two SNPs as cofactors on chromosome 9 for flowering period, and six for ripening period (four on chromosome 3, one on chromosome 10 and one on chromosome 16) which, together accounted for 8.9 and 17.2% of the phenotypic variance, respectively. For both traits, SNPs in weak linkage disequilibrium were detected nearby, thus suggesting the existence of allelic heterogeneity. The geographic origins and relationships of apple cultivars accounted for large parts of the phenotypic variation. Variation in genotypic frequency of the SNPs associated with the two traits was connected to the geographic origin of the genotypes (grouped as North+East, West and South Europe), and indicated differential selection in different growing environments. Genes encoding transcription factors containing either NAC or MADS domains were identified as major candidates within the small confidence intervals computed for the associated genomic regions. A strong microsynteny between apple and peach was revealed in all the four confidence interval regions. This study shows how association genetics can unravel the genetic control of important horticultural traits in apple, as well as reduce the confidence intervals of the associated regions identified by linkage mapping approaches. Our findings can be used for the improvement of apple through marker-assisted breeding strategies that take advantage of the accumulating additive effects of the identified SNPs.
- Published
- 2017
- Full Text
- View/download PDF
9. Inhibition of RNA polymerase II allows controlled mobilisation of retrotransposons for plant breeding.
- Author
-
Thieme M, Lanciano S, Balzergue S, Daccord N, Mirouze M, and Bucher E
- Subjects
- Arabidopsis genetics, DNA Methylation, DNA, Plant metabolism, Gene Expression Regulation, Plant, Oryza genetics, RNA Polymerase II metabolism, Plant Breeding, RNA Polymerase II antagonists & inhibitors, Retroelements
- Abstract
Background: Retrotransposons play a central role in plant evolution and could be a powerful endogenous source of genetic and epigenetic variability for crop breeding. To ensure genome integrity several silencing mechanisms have evolved to repress retrotransposon mobility. Even though retrotransposons fully depend on transcriptional activity of the host RNA polymerase II (Pol II) for their mobility, it was so far unclear whether Pol II is directly involved in repressing their activity., Results: Here we show that plants defective in Pol II activity lose DNA methylation at repeat sequences and produce more extrachromosomal retrotransposon DNA upon stress in Arabidopsis and rice. We demonstrate that combined inhibition of both DNA methylation and Pol II activity leads to a strong stress-dependent mobilization of the heat responsive ONSEN retrotransposon in Arabidopsis seedlings. The progenies of these treated plants contain up to 75 new ONSEN insertions in their genome which are stably inherited over three generations of selfing. Repeated application of heat stress in progeny plants containing increased numbers of ONSEN copies does not result in increased activation of this transposon compared to control lines. Progenies with additional ONSEN copies show a broad panel of environment-dependent phenotypic diversity., Conclusions: We demonstrate that Pol II acts at the root of transposon silencing. This is important because it suggests that Pol II can regulate the speed of plant evolution by fine-tuning the amplitude of transposon mobility. Our findings show that it is now possible to study induced transposon bursts in plants and unlock their use to induce epigenetic and genetic diversity for crop breeding.
- Published
- 2017
- Full Text
- View/download PDF
10. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development.
- Author
-
Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, Schijlen E, van de Geest H, Bianco L, Micheletti D, Velasco R, Di Pierro EA, Gouzy J, Rees DJG, Guérif P, Muranty H, Durel CE, Laurens F, Lespinasse Y, Gaillard S, Aubourg S, Quesneville H, Weigel D, van de Weg E, Troggio M, and Bucher E
- Subjects
- Chromosomes, Plant genetics, DNA Transposable Elements, DNA, Plant chemistry, Fruit growth & development, Genes, Plant, Genotype, Linkage Disequilibrium, Malus growth & development, Molecular Sequence Annotation, Sequence Analysis, DNA, Synteny, DNA Methylation, DNA, Plant genetics, Genome, Plant, Malus genetics
- Abstract
Using the latest sequencing and optical mapping technologies, we have produced a high-quality de novo assembly of the apple (Malus domestica Borkh.) genome. Repeat sequences, which represented over half of the assembly, provided an unprecedented opportunity to investigate the uncharacterized regions of a tree genome; we identified a new hyper-repetitive retrotransposon sequence that was over-represented in heterochromatic regions and estimated that a major burst of different transposable elements (TEs) occurred 21 million years ago. Notably, the timing of this TE burst coincided with the uplift of the Tian Shan mountains, which is thought to be the center of the location where the apple originated, suggesting that TEs and associated processes may have contributed to the diversification of the apple ancestor and possibly to its divergence from pear. Finally, genome-wide DNA methylation data suggest that epigenetic marks may contribute to agronomically relevant aspects, such as apple fruit development.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.