1. Channel-facilitated transport under resetting dynamics
- Author
-
Pal, Suvam, Boyer, Denis, Dagdug, Leonardo, and Pal, Arnab
- Subjects
Condensed Matter - Statistical Mechanics ,Physics - Chemical Physics - Abstract
The transport of particles through channels holds immense significance in physics, chemistry, and biological sciences. For instance, the motion of solutes through biological channels is facilitated by specialized proteins that create water-filled channels and valuable insights can be obtained by studying the transition paths of particles through a channel and gathering statistics on their lifetimes within the channel or their exit probabilities. In a similar vein, we consider a one-dimensional model of channel-facilitated transport where a diffusive particle is subject to attractive interactions with the walls within a limited region of the channel. We study the statistics of conditional and unconditional escape times, in the presence of resetting--an intermittent dynamics that brings the particle back to its initial coordinate randomly. We determine analytically the physical conditions under which such resetting mechanism can become beneficial for faster escape of the particles from the channel thus enhancing the transport. Our theory has been verified with the aid of Brownian dynamics simulations for various interaction strengths and extent. The overall results presented herein highlight the scope of resetting-based strategies to be universally promising for complex transport processes of single or long molecules through biological membranes., Comment: 20 pages, 9 sets of figures
- Published
- 2024