1. NVLM: Open Frontier-Class Multimodal LLMs
- Author
-
Dai, Wenliang, Lee, Nayeon, Wang, Boxin, Yang, Zhuolin, Liu, Zihan, Barker, Jon, Rintamaki, Tuomas, Shoeybi, Mohammad, Catanzaro, Bryan, and Ping, Wei
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Machine Learning ,Computer Science - Multimedia - Abstract
We introduce NVLM 1.0, a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks, rivaling the leading proprietary models (e.g., GPT-4o) and open-access models (e.g., Llama 3-V 405B and InternVL 2). Remarkably, NVLM 1.0 shows improved text-only performance over its LLM backbone after multimodal training. In terms of model design, we perform a comprehensive comparison between decoder-only multimodal LLMs (e.g., LLaVA) and cross-attention-based models (e.g., Flamingo). Based on the strengths and weaknesses of both approaches, we propose a novel architecture that enhances both training efficiency and multimodal reasoning capabilities. Furthermore, we introduce a 1-D tile-tagging design for tile-based dynamic high-resolution images, which significantly boosts performance on multimodal reasoning and OCR-related tasks. Regarding training data, we meticulously curate and provide detailed information on our multimodal pretraining and supervised fine-tuning datasets. Our findings indicate that dataset quality and task diversity are more important than scale, even during the pretraining phase, across all architectures. Notably, we develop production-grade multimodality for the NVLM-1.0 models, enabling them to excel in vision-language tasks while maintaining and even improving text-only performance compared to their LLM backbones. To achieve this, we craft and integrate a high-quality text-only dataset into multimodal training, alongside a substantial amount of multimodal math and reasoning data, leading to enhanced math and coding capabilities across modalities. To advance research in the field, we release the model weights at https://huggingface.co/nvidia/NVLM-D-72B and will open-source the training code for the community soon., Comment: Fixed the typos. For more information, please visit our project page at: https://research.nvidia.com/labs/adlr/NVLM-1
- Published
- 2024