1. Design of Experiments to Tailor the Potential of BSA-Coated Peptide Nanocomplexes for Temozolomide/p53 Gene Co-Delivery
- Author
-
Inês Afonso, Ana R. Neves, Dalinda Eusébio, Tânia Albuquerque, Eric Vivès, Prisca Boisguérin, Adriana O. Santos, Ângela Sousa, and Diana Costa
- Subjects
BSA-coated nanoparticles ,WRAP-peptides ,design of experiments ,combined therapy ,glioblastoma therapy ,Pharmacy and materia medica ,RS1-441 - Abstract
Background: Gene therapy can be viewed as a promising/valuable therapeutic approach directed to cancer treatment, including glioblastoma. Concretely, the combination of gene therapy with chemotherapy could increase its therapeutic index due to a synergistic effect. In this context, bovine serum albumin (BSA)-coated temozolomide (TMZ)-peptide (WRAP5)/p53 gene-based plasmid DNA complexes were developed to promote payload co-delivery. Methods: Design of experiments (DoE) was employed to unravel the BSA-coated TMZ-WRAP5/p53 nanocomplexes with the highest potential by considering the nitrogen to phosphate groups ratio (N/P), and the BSA concentration as inputs and the size, polydispersity index, surface charge and p53-based plasmid complexation capacity (CC) as DoE outputs. Results: The obtained quadratic models were statistically significant (p-value < 0.05) with an adequate coefficient of determination, and the correspondent optimal points were successfully validated. The optimal complex formulation had N/P of 1.03, a BSA concentration of 0.08%, a size of approximately 182 nm, a zeta potential of +9.8 mV, and a pDNA CC of 96.5%. The optimal nanocomplexes are approximately spherical. A cytotoxicity assay showed that these BSA-coated TMZ-WRAP5/p53 complexes did not elicit toxicity in normal brain cells, and a hemolysis study demonstrated the hemocompatibility of the complexes. The complexes were stable in cell culture medium and fetal bovine serum and assured pDNA protection and release. Moreover, the optimal BSA-coated complexes were able of gene transcription and promoted a significant inhibition of glioblastoma cell viability. Conclusions: The reported findings instigate the development of future research to evaluate their potential utility to TMZ/p53 co-delivery. The DoE tool proved to be a powerful approach to explore and tailor the composition of BSA-coated TMZ-WRAP5/p53 complexes, which are expected to contribute to the progress toward a more efficient therapy against cancer and, more specifically, against glioblastoma.
- Published
- 2024
- Full Text
- View/download PDF