91 results on '"Damien Tromeur-Dervout"'
Search Results
2. IFOSMONDI Co-simulation Algorithm with Jacobian-Free Methods in PETSc.
- Author
-
Yohan éguillon, Bruno Lacabanne, and Damien Tromeur-Dervout
- Published
- 2022
- Full Text
- View/download PDF
3. IFOSMONDI: A Generic Co-simulation Approach Combining Iterative Methods for Coupling Constraints and Polynomial Interpolation for Interfaces Smoothness.
- Author
-
Yohan éguillon, Bruno Lacabanne, and Damien Tromeur-Dervout
- Published
- 2019
- Full Text
- View/download PDF
4. Co-simulation domain decomposition algorithm for hybrid EMT-Dynamic Phasor modeling.
- Author
-
Héléna Shourick, Damien Tromeur-Dervout, and Laurent Chédot
- Published
- 2022
- Full Text
- View/download PDF
5. Accelerating the convergence of Dynamic Iteration method with Restricted Additive Schwarz splitting for the solution of RLC circuits.
- Author
-
Héléna Shourick, Damien Tromeur-Dervout, and Laurent Chedot
- Published
- 2022
6. MISSILES: an Efficient Resolution of the Co-simulation Coupling Constraint on Nearly Linear Differential Systems through a Global Linear Formulation.
- Author
-
Yohan éguillon, Bruno Lacabanne, and Damien Tromeur-Dervout
- Published
- 2022
- Full Text
- View/download PDF
7. COSTARICA estimator for rollback-less systems handling in iterative co-simulation algorithms.
- Author
-
Yohan éguillon, Bruno Lacabanne, and Damien Tromeur-Dervout
- Published
- 2022
- Full Text
- View/download PDF
8. MISSILES: An efficient resolution of the co-simulation coupling constraint on nearly linear differential systems through a global linear formulation.
- Author
-
Yohan éguillon, Bruno Lacabanne, and Damien Tromeur-Dervout
- Published
- 2023
- Full Text
- View/download PDF
9. ARAS: Fully algebraic Two-level domain decomposition precondition technique with approximation on course interfaces Fully
- Author
-
Dufaud, Thomas and Damien, Tromeur-Dervout
- Subjects
Mathematics - Numerical Analysis - Abstract
This paper focuses on the development of a two-level preconditioner based on a fully algebraical enhancement of a Schwarz domain decomposition method. We consider the purely divergence of a Restricted Additive Scwharz iterative process leading to the preconditioner developped by X.-C. Cai and M. Sarkis in SIAM Journal of Scientific Computing, Vol. 21 no. 2, 1999. The convergence of vectorial sequence of traces of this process on the artificial interface can be accelerated by an Aitken acceleration technique as proposed in the work of M. Garbey and D. Tromeur-Dervout, in International Journal for Numerical Methods in Fluids, Vol. 40, no. 12,2002. We propose a formulation of the Aitken-Schwarz technique as a preconditioning technique called Aitken-RAS 1 . The Aitken acceleration is performed in a reduced space to save computing or permit fully algebraic computation of the accelerated solution without knowledge of the underlying equations. A convergence study of the Aitken-RAS preconditioner is proposed also application on industrial problem., Comment: 33 pages
- Published
- 2013
10. Use of the Sinusoidal Predictor Method within a Fully Separated Modeler/Solver Framework for Fast and Flexible EMT Simulations.
- Author
-
Pierre-Marie Gibert, Romain Losseau, Adrien Guironnet, Patrick Panciatici, Damien Tromeur-Dervout, and Jocelyne Erhel
- Published
- 2018
- Full Text
- View/download PDF
11. Evaluation of HVDC cable impedance and admittance matrices by finite element method.
- Author
-
Amjad Mouhaidali, Olivier Chadebec, Sebastien Silvant, Damien Tromeur-Dervout, and Jean-Michel Guichon
- Published
- 2018
- Full Text
- View/download PDF
12. Speedup of EMT simulations by using an integration scheme enriched with a predictive Fourier coefficients estimator.
- Author
-
Pierre-Marie Gibert, Patrick Panciatici, Romain Losseau, Adrien Guironnet, Damien Tromeur-Dervout, and Jocelyne Erhel
- Published
- 2018
- Full Text
- View/download PDF
13. F3ORNITS: A Flexible Variable Step Size Non-Iterative Co-simulation Method handling Subsystems with Hybrid Advanced Capabilities.
- Author
-
Yohan éguillon, Bruno Lacabanne, and Damien Tromeur-Dervout
- Published
- 2021
14. IFOSMONDI Co-simulation Algorithm with Jacobian-Free Methods in PETSc.
- Author
-
Yohan éguillon, Bruno Lacabanne, and Damien Tromeur-Dervout
- Published
- 2021
15. Aitken-Schwarz heterogeneous Domain Decomposition for EMT-TS Simulation.
- Author
-
Héléna Schourick, Damien Tromeur-Dervout, and Laurent Chedot
- Published
- 2021
16. ARAS2 Preconditioning Technique for CFD Industrial Cases.
- Author
-
Thomas Dufaud and Damien Tromeur-Dervout
- Published
- 2013
- Full Text
- View/download PDF
17. On-the-fly Singular Value Decomposition for Aitken's Acceleration of the Schwarz Domain Decomposition Method.
- Author
-
Laurent Berenguer, Thomas Dufaud, Toan Pham, and Damien Tromeur-Dervout
- Published
- 2011
- Full Text
- View/download PDF
18. Aitken-Schwarz and Schur complement methods for time domain decomposition.
- Author
-
Patrice Linel and Damien Tromeur-Dervout
- Published
- 2009
- Full Text
- View/download PDF
19. Reprint of Efficient parallel implementation of the fully algebraic multiplicative Aitken-RAS preconditioning technique.
- Author
-
Thomas Dufaud and Damien Tromeur-Dervout
- Published
- 2013
- Full Text
- View/download PDF
20. Efficient parallel implementation of the fully algebraic multiplicative Aitken-RAS preconditioning technique.
- Author
-
Thomas Dufaud and Damien Tromeur-Dervout
- Published
- 2012
- Full Text
- View/download PDF
21. Coupling of a Combustion Code with an Incompressible Navier-Stokes Code on MIMD Architecture.
- Author
-
Guy Edjlali, Marc Garbey, and Damien Tromeur-Dervout
- Published
- 1997
- Full Text
- View/download PDF
22. POD acceleration of fully implicit solver for unsteady nonlinear flows and its application on grid architecture.
- Author
-
Damien Tromeur-Dervout and Yuri V. Vassilevski
- Published
- 2007
- Full Text
- View/download PDF
23. Choice of initial guess in iterative solution of series of systems arising in fluid flow simulations.
- Author
-
Damien Tromeur-Dervout and Yuri V. Vassilevski
- Published
- 2006
- Full Text
- View/download PDF
24. Efficient metacomputing of elliptic linear and non-linear problems.
- Author
-
Nicolas Barberou, Marc Garbey, Matthias Hess, Michael M. Resch, Tuomo Rossi, Jari Toivanen, and Damien Tromeur-Dervout
- Published
- 2003
- Full Text
- View/download PDF
25. Interoperability parallel programs approach to simulate 3D frontal polymerization processes.
- Author
-
Guy Edjlali, Marc Garbey, and Damien Tromeur-Dervout
- Published
- 1999
- Full Text
- View/download PDF
26. Parallel matrix algorithms and applications.
- Author
-
Laura Grigori, Bernard Philippe, Ahmed H. Sameh, Damien Tromeur-Dervout, and Marián Vajtersic
- Published
- 2008
- Full Text
- View/download PDF
27. Computing Stiff Propagating Combustion Fronts Between Walls on MIMD Architecture.
- Author
-
Marc Garbey and Damien Tromeur-Dervout
- Published
- 1996
- Full Text
- View/download PDF
28. SINUSOIDAL PREDICTOR METHOD WITHIN A FULLY SEPARATED MODELER/SOLVER FRAMEWORK TO SPEED EMT SIMULATIONS SUBJECT TO OSCILLATING FORCING TERM
- Author
-
M Gibert, P., Losseau, R., Guironnet, A., Panciatici, P., Damien Tromeur-Dervout, Jocelyne Erhel, Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), CIFRE no 2015/0885, and Tromeur-Dervout, Damien
- Subjects
Adaptive step size algorithm ,Time-domain simulations ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS] ,Electromagnetic transients ,[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA] ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,[SPI.NRJ] Engineering Sciences [physics]/Electric power - Abstract
With the introduction of renewable energy sources into the power system, transmission system operators need extremely reliable and flexible simulation tools that should also be fast. Sinusoidal predictor method, aims to meet this need by simulating the full-waveform of AC power systems by integrating the arising systems of DAE by trying to free the time step limitation introduced by the frequency of some electrical components. The searched solution is split in a predicted sinusoidal part and a corrector DAE solution part. This paper presents the mathematical convergence of this approach leading to the choice of computing Fourier coefficients by minimizing a function that captures the distance of the desired sinusoidal part of the solution with respect to its oscillating steady state. Using the Dynaωo framework that aims to completely separate the modeling and the solving aspects of power systems, It details latest developments of an add-on in the IDA solver of SUNDIALS and the implementation optimisations. Results on performance speed up of the method computational time using much larger time steps than those used by classical DAE integration methods.
- Published
- 2019
29. Evaluation of HVDC cable impedance and admittance matrices by finite element method
- Author
-
J-M. Guichon, A. Mouhaidali, S. Silvant, Damien Tromeur-Dervout, Olivier Chadebec, SuperGrid Institute SAS, Laboratoire de Génie Electrique de Grenoble (G2ELab), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Modélisation mathématique, calcul scientifique (MMCS), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL)
- Subjects
power cables ,Physics ,Frequency response ,Admittance ,020209 energy ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,[INFO.INFO-CE]Computer Science [cs]/Computational Engineering, Finance, and Science [cs.CE] ,Mathematical analysis ,finite element analysis ,HVDC power transmission ,02 engineering and technology ,submarine cables ,Fault (power engineering) ,time-domain analysis ,Characteristic impedance ,Finite element method ,0202 electrical engineering, electronic engineering, information engineering ,Harmonic ,frequency response ,Time domain ,Electrical impedance - Abstract
International audience; In this work, a 2D Finite Element Method (FEM) is used to calculate the frequency dependent impedance and admittance matrices of underground and submarine cables. A harmonic magnetodynamic formulation is used to calculate the series impedances, and for the calculation of the parallel admittance an electrodynamic formulation is applied. The frequency response of the cable was obtained by coupling the FEM method with an external electric circuits. This technique allows the physical representation of the nonlinear behavior of the frequency dependence of the cable parameters. The numerical results are compared with those obtained from commonly used analytical formulations and other methods available in the literature. Different surrounding environment cases are treated, and their effect is shown in frequency. Time domain simulations under fault circumstances point out the necessity of an accurate cable model. Current and voltage measurements are the input of protection algorithm and breaking decision depends on these values. Therefore, the use of a precise method is mandatory.
- Published
- 2018
- Full Text
- View/download PDF
30. Use of the Sinusoidal Predictor Method within a Fully Separated Modeler/Solver Framework for Fast and Flexible EMT Simulations
- Author
-
Adrien Guironnet, Damien Tromeur-Dervout, Pierre-Marie Gibert, Jocelyne Erhel, Patrick Panciatici, Romain Losseau, Modélisation mathématique, calcul scientifique (MMCS), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Réseau de Transport d'Electricité-RTE, Fluid Flow Analysis, Description and Control from Image Sequences (FLUMINANCE), Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-AGROCAMPUS OUEST-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), RTE grant, Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Réseau de Transport d'Electricité [Paris] (RTE), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-AGROCAMPUS OUEST, Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Inria Rennes – Bretagne Atlantique, Institut Camille Jordan (ICJ), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Inria Rennes – Bretagne Atlantique, ANR-11-LABX-0020,LEBESGUE,Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation(2011), and Erhel, Jocelyne
- Subjects
Computer science ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA] ,Solver ,ComputingMilieux_MISCELLANEOUS ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,[SPI.NRJ] Engineering Sciences [physics]/Electric power ,Computational science - Abstract
International audience
- Published
- 2018
- Full Text
- View/download PDF
31. Approximating the trace of iterative solutions at the interfaces with Nonuniform Fourier transform and singular value decomposition for cost-effectively accelerating the convergence of Schwarz domain decomposition
- Author
-
Damien Tromeur-Dervout, Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematical optimization ,Trace (linear algebra) ,Iterative method ,Computer science ,Basis function ,010103 numerical & computational mathematics ,01 natural sciences ,Discrete Fourier transform ,non uniform Fourier transform ,symbols.namesake ,Aitken Acceleration of the convergence ,Singular value decomposition ,QA1-939 ,Applied mathematics ,0101 mathematics ,T57-57.97 ,Applied mathematics. Quantitative methods ,Domain decomposition methods ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,Schwarz Domain decomposition ,010101 applied mathematics ,Singular value ,Fourier transform ,symbols ,[INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Mathematics - Abstract
This paper deals with the representation of the trace of iterative Schwarz solutions at the interfaces of domain decomposition to approximate adaptively the interface error operator. This allows to build a cost-effectively accelerating of the convergence of the iterative method by extending to the vectorial case the Aitken’s accelerating convergence technique. The first representation is based on the building of a nonuniform discrete Fourier transform defined on a non-regular grid. We show how to construct a Fourier basis of dimension N+1 on this grid by building numerically a sesquilinear form, its exact accuracy to represent trigonometric polynomials of degree N / 2, and its spectral approximation property that depends on the continuity of the function to approximate. The decay of Fourier-like modes of the approximation of the trace of the iterative solution at the interfaces provides an estimate to adaptively select the modes involved in the acceleration. The drawback of this approach is to be dependent on the continuity of the trace of the iterated solution at the interfaces. The second representation, purely algebraic, uses a singular value decomposition of the trace of the iterative solution at the interfaces to provide a set of orthogonal singular vectors of which the associated singular values provide an estimate to adapt the acceleration. The resulting Aitken-Schwarz methodology is then applied to large scale computing on 3D linear Darcy flow where the permeability follows a log normal random distribution. Cet acte traite de la représentation des solutions itérées aux interfaces de la méthode de décomposition de domaine de type Schwarz afin d’approximer de manière adaptative son opérateur d’erreur aux interfaces des sous domaines. Ceci permet de construire de manière économique l’accélération de la convergence de la méthode itérative en étendant la technique d’accélération de la convergence de Aitken au cas vectoriel. La première représentation est fondée sur la construction d’une transformée de Fourier discrète non uniforme définie sur un maillage non régulier. Nous montrons comment construire une base de Fourier de dimension N+1 sur ce maillage à partir de la construction numérique d’une forme sesquilinéaire, son exactitude pour les polynômes trigonométriques de degré N/2, et numériquement sa capacité d’approximation spectrale dépendante de la continuité de la fonction à approximer. La décroissance des modes de Fourier de la trace de la solution itérée aux interfaces nous fournis une estimation pour sélectionner de manière adaptive les modes intervenant dans l’accélération. Le défaut de cette approche est d’être dépendant de la continuité de la solution itérée aux interfaces. La deuxième représentation, purement algébrique, utilise une décomposition en valeurs singulières des solutions itérées aux interfaces pour fournir un ensemble de vecteurs singuliers orthogonaux dont les valeurs singulières associées fournissent une estimation pour adapter l’accélération. La méthode Aitken-Schwarz résultante est ensuite appliquée au calcul à grande échelle pour résoudre un écoulement 3D en milieu poreux modélisé par l’équation de Darcy linéaire où la perméabilité suit une distribution aléatoire log-normale.
- Published
- 2013
- Full Text
- View/download PDF
32. Aitken’s acceleration of the Schwarz process using singular value decomposition for heterogeneous 3D groundwater flow problems
- Author
-
Thomas Dufaud, Laurent Berenguer, Damien Tromeur-Dervout, Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and ANR-07-CIS7-0004,MICAS,Modelling and Intensive Computation for Aquifer Simulations(2007)
- Subjects
Darcy's law ,General Computer Science ,Discretization ,Groundwater flow ,Mathematical analysis ,Singular value decomposition ,General Engineering ,Aitken's delta-squared process ,Domain decomposition methods ,010103 numerical & computational mathematics ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,01 natural sciences ,Darcy–Weisbach equation ,010101 applied mathematics ,Schwarz domain decomposition ,Permeability (earth sciences) ,Aitken's acceleration of convergence ,[INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,0101 mathematics ,Schwarz alternating method ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Mathematics - Abstract
International audience; This paper is devoted to the acceleration by Aitken's technique of the convergence of the Schwarz domain decomposition method applied to large scale 3D problems with non-separable linear operators. These operators come from the discretization of groundwater flow problems modeled by the linear Darcy equation, where the permeability field is highly heterogeneous and randomly generated. To be computationally efficient, a low-rank approximation of the Aitken's formula is computed from the singular value decomposition of successive iterated solutions on subdomains interfaces. Numerical results explore the efficiency of the solver with respect to the random distribution parameters, and specific implementations of the acceleration are compared for large scale 3D problems. These results confirm the numerical behavior of the methodology obtained on 2D Darcy problems (Tromeur-Dervout D. Meshfree adaptive Aitken-Schwarz domain decomposition with application to Darcy flow. Comput Sci Eng Technol 2009;21:217-50).
- Published
- 2013
- Full Text
- View/download PDF
33. Analysis of the time-Schwarz DDM on the heat PDE
- Author
-
P. Linel, Damien Tromeur-Dervout, Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Aitken's acceleration of the convergence ,General Computer Science ,Parabolic equations ,010103 numerical & computational mathematics ,01 natural sciences ,symbols.namesake ,Time domain ,0101 mathematics ,Schwarz alternating method ,Mathematics ,Heat equation ,Mathematical analysis ,Linear system ,General Engineering ,Domain decomposition methods ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,010101 applied mathematics ,Schwarz domain decomposition ,Fourier transform ,Rate of convergence ,Schur complement ,symbols ,Boundary values problem ,Decomposition method (constraint satisfaction) ,[INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,Time domain decomposition ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
International audience; We developed a parallel time domain decomposition method to solve systems of ODEs based on the Aitken-Schwarz domain decomposition method only in time (Linel P, Tromeur-Dervout D. Aitken-Schwarz and schur complement methods for time domain decomposition. In: Parallel computing: from multicores and GPU's to Petascale. Advances in parallel computing, vol. 19; 2010. p. 75-82). The method transforms the initial time value problem into a time boundary values problem. This paper details the proof of the pure linear convergence of this DDM in case of linear system of ODEs and provides an optimized MPI parallel implementation when a regular size splitting of the time interval is performed. Then an extension of the method to the linear heat partial derivative equation is provided with a special care on boundary conditions to impose. A Fourier convergence analysis of this Schwarz DDM in time for this problem allows to limit the acceleration by Aitken's technique to Fourier low modes only.
- Published
- 2013
- Full Text
- View/download PDF
34. Acceleration of Convergence for Domain Decomposition Methods
- Author
-
Damien Tromeur-Dervout, Laurent Berenguer, and Thomas Dufaud
- Subjects
Rate of convergence ,Numerical analysis ,Additive Schwarz method ,Mathematical analysis ,Singular value decomposition ,Aitken's delta-squared process ,Domain decomposition methods ,General Medicine ,Schwarz alternating method ,System of linear equations ,Mathematics - Abstract
The Schwarz domain decomposition method [1] is a very attractive numerical method for parallel computing as it needs only to update the boundary conditions on the artificial interfaces generated by domain decomposition. Thus only local communications between the neighbouring sub-domains are required. Nevertheless, the main drawback of this method is its slow rate of convergence which depends of the partial differential problem, the geometry of the sub-domains, and the size of the overlap when overlap is present. The idea of using Aitken acceleration [2] on the classical additive Schwarz DD method was introduced in [3]. These authors have called the corresponding method the Aitken-Schwarz (AS) method. This review paper is on the Aitken's acceleration of the convergence technique applied to the Schwarz domain decomposition method. It gives the two salient features of the methodology: first the pure linear convergence of the Schwarz domain decomposition method when it applies to a linear system of equations. Second, the building of an approximation space in order to represent the Schwarz iterate solution at the artificial interfaces generated by the domain decomposition. Some properties such as the decrease in absolute value of the solution's coefficients in the approximation space are searched in order to approximate the error operator and to apply the acceleration on a reduced space for saving computing.In [4] the author extends the methodology with an Aitken acceleration based on the singular value decomposition of the solution at the artificial boundary. Then this method becomes totally mesh non dependant, on some a priori criterion based on the singular values decreasing and gives a tool to select the singular vectors involved in the Aitken operator approximation. This allows three-dimensional computation on the linear Darcy equation to be achieved where the permeability field follows a random log normal distribution law [5].
- Published
- 2013
- Full Text
- View/download PDF
35. Preconditioning of the Reduced System Associated with the Restricted Additive Schwarz Method
- Author
-
Francois Pacull, Damien Tromeur-Dervout, Modélisation mathématique, calcul scientifique (MMCS), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Preconditioner ,Linear system ,[INFO.INFO-CE]Computer Science [cs]/Computational Engineering, Finance, and Science [cs.CE] ,MathematicsofComputing_NUMERICALANALYSIS ,Domain decomposition methods ,010103 numerical & computational mathematics ,Krylov subspace ,01 natural sciences ,Generalized minimal residual method ,Computer Science::Numerical Analysis ,010101 applied mathematics ,Operator (computer programming) ,Additive Schwarz method ,Schur complement ,Applied mathematics ,0101 mathematics ,[INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Mathematics - Abstract
International audience; It is of interest to solve large scale sparse linear systems on distributed computers, using Krylov subspace methods along with domain decomposition methods. If accurate subdomain solutions are used, the restricted additive Schwarz preconditioner allows a reduction to the interface via the Schur complement, which leads to an unpreconditioned reduced operator for the interface unknowns. Our purpose is to form a preconditioner for this interface operator by approximating it as a low-rank correction of the identity matrix. To this end, we use a sequence of orthogonal vectors and their image under the interface operator, which are both available after some iterations of the generalized minimal residual method.
- Published
- 2016
- Full Text
- View/download PDF
36. Dual Schur Method in Time for Nonlinear ODE
- Author
-
Damien Tromeur-Dervout, P. Linel, University of Rochester Department of Biostatistics and Computational Biology, University of Rochester [USA], Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Modélisation mathématique, calcul scientifique (MMCS), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL)
- Subjects
010102 general mathematics ,[INFO.INFO-CE]Computer Science [cs]/Computational Engineering, Finance, and Science [cs.CE] ,Ode ,Domain decomposition methods ,010103 numerical & computational mathematics ,Function (mathematics) ,01 natural sciences ,Combinatorics ,Schur decomposition ,Schur complement method ,Schur complement ,Initial value problem ,0101 mathematics ,[INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Mathematics ,Nonlinear ode - Abstract
We developed parallel time domain decomposition methods to solve systems of linear ordinary differential equations (ODEs) based on the Aitken-Schwarz [5] or primal Schur complement domain decomposition methods [4]. The methods require the transformation of the initial value problem in time defined on ]0, T] into a time boundary values problem. Let f(t, y(t)) be a function belonging to \(\mathcal{C}^{1}(\mathbb{R}^{+}, \mathbb{R}^{d})\) and consider the Cauchy problem for the first order ODE: $$\displaystyle{ \left \{\begin{array}{@{}l@{\quad }l@{}} \dot{y} = f(t,y(t)),\,t \in ]0,T],\;y(0) =\alpha \in \mathbb{R}^{d}.\quad \end{array} \right. }$$ (1)
- Published
- 2016
- Full Text
- View/download PDF
37. Parallel solution of Mixed Finite Element/Spectral Element systems for convection–diffusion equations on non-matching grids
- Author
-
Isabelle Boursier, Damien Tromeur-Dervout, Yuri V. Vassilevski, Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Agence Nationale pour la Gestion des Déchets Radioactifs (ANDRA), Institute of Numerical Mathematics [Moscou] (INM-RAS), Russian Academy of Sciences [Moscow] (RAS), GdR-CNRS MOMAS, and Région Rhône-Aples through the project 'Développement de méthodologie mathématiques pour le calcul scientifique sur grille'.
- Subjects
Partial differential equation of elliptic type ,Aitken acceleration of convergence ,Parallel computation ,Spectral collocation ,010103 numerical & computational mathematics ,computer.software_genre ,01 natural sciences ,Discrete system ,Multigrid method ,Finite element ,Applied mathematics ,0101 mathematics ,Mathematics ,Numerical Analysis ,Numerical linear algebra ,Partial differential equation ,Applied Mathematics ,Numerical analysis ,Domain decomposition methods ,Mixed finite element method ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,Finite element method ,010101 applied mathematics ,Schwarz domain decomposition ,Computational Mathematics ,Grid computing ,[INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,Algorithm ,computer ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
International audience; A heterogeneous domain decomposition with non-matching grids is developed, extending the Aitken-Schwarz method [M. Garbey, D. Tromeur-Dervout, On some Aitken like acceleration of the Schwarz method, Internat. J. Numer. Methods Fluids 40 (2002) 1493- 1513] which has proved to be efficient on metacomputing architectures. This novel numerical technique for the approximate solution of boundary value problems applies when the solution is assumed to possess many features in several subdomains such as in underground environmental problems with different geological layers. The numerical technique involves methods for the approximation and the solution of arising linear systems, as well as for parallel computing issues. We consider a natural coupling between the mixed finite element and spectral element approximations as well as the efficient solution of the coupled discrete systems on remote parallel computers with different architectures connected via a low speed network.
- Published
- 2010
- Full Text
- View/download PDF
38. An Aitken-like acceleration method applied to missing boundary data reconstruction for the Cauchy–Helmholtz problem
- Author
-
Amel Ben Abda, Riadh Ben Fatma, Damien Tromeur-Dervout, Laboratoire de Modélisation Mathématique et Numérique dans les Sciences de l'Ingénieur [Tunis] (LR-LAMSIN-ENIT), Ecole Nationale d'Ingénieurs de Tunis (ENIT), Université de Tunis El Manar (UTM)-Université de Tunis El Manar (UTM), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Cauchy problem ,Interface (Java) ,Mathematics::Analysis of PDEs ,Cauchy distribution ,Acceleration (differential geometry) ,010103 numerical & computational mathematics ,General Medicine ,Missing data ,Schwarz Domain Decomposition ,01 natural sciences ,010101 applied mathematics ,Helmholtz problem ,35J25, 65B99, 65N55,65Y10 ,Present method ,Boundary data ,Calculus ,Applied mathematics ,0101 mathematics ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Aitken's acceleration of Convergence ,Mathematics - Abstract
International audience; This Note is concerned with the severely ill-posed Cauchy-Helmholtz problem. This Cauchy problem being rephrased through an "interfacial" equation, we resort to an Aitken-Schwarz method for solving this equation. Numerical trials highlight the efficiency of the present method.
- Published
- 2010
- Full Text
- View/download PDF
39. Parallel adaptive time domain decomposition for stiff systems of ODEs/DAEs
- Author
-
Damien Tromeur-Dervout and David Guibert
- Subjects
Mechanical Engineering ,Parallel algorithm ,Ode ,Parareal ,Domain decomposition methods ,Computer Science Applications ,Runge–Kutta methods ,Shooting method ,Mesh generation ,Modeling and Simulation ,General Materials Science ,Time domain ,Algorithm ,Civil and Structural Engineering ,Mathematics - Abstract
Time domain decompositions to solve ODEs/DAEs have been numerically investigated by introducing adaptivity in the definition of the refinement of the time grid, time domain splitting. We show that the parareal method [Lions J-L, Maday Y, Turinici G. Resolution d’EDP par un schema en temps “parareel”, CRAS Ser I Math 2000;332(7):661–8] is a particular case of the multiple shooting method of Deuflhard. Numerical evidences of the limitation of this method to solve very stiff problems are exhibited, leading us to propose an adaptive parallel extrapolation method.
- Published
- 2007
- Full Text
- View/download PDF
40. Review: Parallel Algorithms for Time Domain Decomposition
- Author
-
Damien Tromeur-Dervout, P. Linel, and D. Guibert
- Subjects
Computer science ,Parallel algorithm ,Decomposition (computer science) ,Domain decomposition methods ,Time domain ,Algorithm - Published
- 2015
- Full Text
- View/download PDF
41. Asynchronous partial update of the Restricted Additive Schwarz preconditioner to solve nonlinear CFD problems
- Author
-
Laurent Berenguer, Damien Tromeur-Dervout, Modélisation mathématique, calcul scientifique (MMCS), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Speedup ,General Computer Science ,Preconditioner ,Linear system ,[INFO.INFO-CE]Computer Science [cs]/Computational Engineering, Finance, and Science [cs.CE] ,General Engineering ,MathematicsofComputing_NUMERICALANALYSIS ,Domain decomposition methods ,[INFO.INFO-NA]Computer Science [cs]/Numerical Analysis [cs.NA] ,Computer Science::Numerical Analysis ,Asynchronous computations ,Mathematics::Numerical Analysis ,symbols.namesake ,Matrix (mathematics) ,Nonlinear system ,Robustness (computer science) ,Jacobian matrix and determinant ,symbols ,Restricted Additive Schwarz ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,Newton–Krylov Preconditioners ,Algorithm ,Mathematics - Abstract
International audience; This paper presents a method that speeds up the solution of unsteady nonlinear problems. When a Newton–Krylov method is used, the most time-consuming part of the numerical simulation is the solution of the successive linear systems. Generally, there are only slight changes between two consecutive Jacobian matrices. Thus, in order to save computations, it is possible to use the same preconditioning matrix for a few successive linear systems, but the convergence of the Krylov method is slowed down. In the case of a preconditioner based on domain decomposition, one can update only the parts of the preconditioner associated to certain subdomains, keeping the other ones constant. In order to achieve an efficient parallel implementation, we propose to add processes dedicated to the asynchronous update of some parts of the preconditioner. Numerical results are provided for a reaction–diffusion problem and for a model problem based on the lid-driven cavity. They show that this addition of processes can speed up the computation and improve the robustness.
- Published
- 2015
- Full Text
- View/download PDF
42. Efficient metacomputing of elliptic linear and non-linear problems
- Author
-
Damien Tromeur-Dervout, Nicolas Barberou, Jari Toivanen, Matthias Hess, Marc Garbey, Michael Resch, and Tuomo Rossi
- Subjects
Computer simulation ,Computer Networks and Communications ,Computer science ,Distributed computing ,Symmetric multiprocessor system ,Grid ,Supercomputer ,Theoretical Computer Science ,Metacomputing ,Nonlinear system ,Artificial Intelligence ,Hardware and Architecture ,Network performance ,Software - Abstract
Metacomputing is a method of using the GRID, which originated in the US and quickly was also picked up by European and Japanese researchers where a number of challenging projects were aiming at the exploitation of such distributed resources. Especially the GLOBUS project (The globus project: a status report, Proceedings IPPS/SPDP'98 Heterogeneous Computing Workshop, 1998, pp. 4-18) has contributed to the success of metacomputing substantially. However, high latency and low bandwidth have made people doubt the feasibility of this concept for big simulation codes. In this paper we present new numerical methods that help to exploit such configurations and overcome the problems of low network performance. To proof the feasibility of our approach we show results of simulations in an innovative GRID environment of supercomputers.
- Published
- 2003
- Full Text
- View/download PDF
43. On some Aitken-like acceleration of the Schwarz method
- Author
-
Damien Tromeur-Dervout and Marc Garbey
- Subjects
Mathematical optimization ,Iterative method ,Applied Mathematics ,Mechanical Engineering ,Computational Mechanics ,Memory bandwidth ,Domain decomposition methods ,Parallel computing ,Solver ,Computer Science Applications ,Nonlinear system ,Multigrid method ,Mechanics of Materials ,Central processing unit ,Schwarz alternating method ,Mathematics - Abstract
We present a family of domain decomposition based on Aitken-like acceleration of the Schwarz method seen as an iterative procedure with a linear rate of convergence. We first present the so-called Aitken-Schwarz procedure for linear differential operators. The solver can be a direct solver when applied to the Helmholtz problem with five-point finite difference scheme on regular grids. We then introduce the Steffensen-Schwarz variant which is an iterative domain decomposition solver that can be applied to linear and nonlinear problems. These solvers have reasonable numerical efficiency compared to classical fast solvers for the Poisson problem or multigrids for more general linear and nonlinear elliptic problems. However, the salient feature of our method is that our algorithm has high tolerance to slow network in the context of distributed parallel computing and is attractive, generally speaking, to use with computer architecture for which performance is limited by the memory bandwidth rather than the flop performance of the CPU. This is nowadays the case for most parallel. computer using the RISC processor architecture
- Published
- 2002
- Full Text
- View/download PDF
44. Parallel Algorithms with Local Fourier Basis
- Author
-
Marc Garbey and Damien Tromeur-Dervout
- Subjects
Numerical Analysis ,Physics and Astronomy (miscellaneous) ,Applied Mathematics ,Mathematical analysis ,Basis function ,A priori estimate ,Domain decomposition methods ,Computer Science Applications ,Split-step method ,Computational Mathematics ,Superposition principle ,symbols.namesake ,Modeling and Simulation ,Helmholtz free energy ,symbols ,Boundary value problem ,Relaxation (approximation) ,Mathematics - Abstract
We present a nonoverlapping domain decomposition method with local Fourier basis applied to a model problem in liquid flames. The introduction of domain decomposition techniques in this paper is for numerical and parallel efficiency purposes when one requires a large number of grid points to catch complex structures. We obtain then a high-order accurate domain decomposition method that allows us to generalize our previous work on the use of local Fourier basis to solve combustion problems with nonperiodic boundary conditions (M. Garbey and D. Tromeur-Dervout, J. Comput. Phys. 145 , 316 (1998)). Local Fourier basis methodology fully uses the superposition principle to split the searched solution in a numerically computed part and an analytically computed part. Our present methodology generalizes the Israeli et al. (1993, J. Sci. Comput. 8, 135) method, which applies domain decomposition with local Fourier basis to the Helmholtz's problem. In the present work, several new difficulties occur. First, the problem is unsteady and nonlinear, which makes the periodic extension delicate to construct in terms of stability and accuracy. Second, we use a streamfunction biharmonic formulation of the incompressible Navier–Stokes equation in two space dimensions: The application of domain decomposition with local Fourier basis to a fourth-order operator is more difficult to achieve than for a second-order operator. A systematic investigation of the influence of the method's parameters on the accuracy is done. A detail parallel MIMD implementation is given. We give an a priori estimate that allows the relaxation of the communication between processors for the interface problem treatment. Results on nonquasi-planar complex frontal polymerization illustrate the capability of the method.
- Published
- 2001
- Full Text
- View/download PDF
45. Interoperability parallel programs approach to simulate 3D frontal polymerization processes
- Author
-
G. Edjlali, Marc Garbey, and Damien Tromeur-Dervout
- Subjects
Computer Networks and Communications ,Computer science ,Computation ,Interoperability ,Domain decomposition methods ,Parallel computing ,Data structure ,External Data Representation ,Computer Graphics and Computer-Aided Design ,Theoretical Computer Science ,Computational science ,Artificial Intelligence ,Hardware and Architecture ,Boussinesq approximation (water waves) ,Spectral method ,Software - Abstract
The main object of this paper is to demonstrate the feasibility of coupling parallel codes in the framework of large scale scientific computing. The second aim is to provide a numerical tool to solve 3D frontal polymerization in liquid problems where the multiple physical scales require intensive computation on MIMD architecture. We extend our 2D modelization [14] of such phenomena by coupling a 3D reaction diffusion system well known in solid combustion [22] with the 3D Navier–Stokes equations written in Boussinesq approximation. We develop two separate parallel codes for each physical model, each code running on its own topological network of processors with its own data structures. The non-blocking communications, manage the interaction terms of the two physical models on each code, are performed through a Portable Inter Program Communication Library ( PIPCL ). This communication library computes array-based communication schedules creating a one-to-one implicit mapping between each data representation. The data distribution of each code is hidden to the others, allowing an easy parallel program inter-operability on heterogeneous computers.
- Published
- 1999
- Full Text
- View/download PDF
46. Massively parallel computation of stiff propagating combustion fronts
- Author
-
Damien Tromeur-Dervout and Marc Garbey
- Subjects
Physics ,Mathematical optimization ,General Chemical Engineering ,Computation ,Numerical analysis ,General Physics and Astronomy ,Energy Engineering and Power Technology ,Domain decomposition methods ,General Chemistry ,Mechanics ,Vorticity ,Combustion ,Physics::Fluid Dynamics ,Nonlinear system ,Fuel Technology ,Modeling and Simulation ,Stream function ,Boussinesq approximation (water waves) - Abstract
Gas combustion, solid combustion as well as frontal polymerization are characterized by stiff fronts that propagate with nonlinear dynamics. The multiple-scale phenomena under consideration lead to very intense computations that require parallel computing in order to reduce the elapsed time of the computation. We develop a methodology to build on the MIMD architecture a parallel numerical method based on the property of the solution, i.e. a stiff quasi-planar two-dimensional combustion front. We illustrate our methodology using two models of the combustion process. The first is a thermo-diffusive model of a two-step chemical reaction exhibiting two transition layers. The second is a thermo-diffusive model of a one-step chemical reaction coupled with a hydrodynamical model using the stream function - vorticity formulation of the Navier - Stokes equations written in the Boussinesq approximation. This methodology makes use of efficient domain decomposition methods, combined with asymptotic analytical qualita...
- Published
- 1997
- Full Text
- View/download PDF
47. Developments on the Broyden procedure to solve nonlinear problems arising in CFD
- Author
-
Damien Tromeur-Dervout, Laurent Berenguer, Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and ANR-12-MONU-0012,H2MNO4,Hydrogéologie Hétérogène avec un Modèle Numérique Original, Optimisé et Orienté Objets(2012)
- Subjects
Mathematical optimization ,General Computer Science ,MathematicsofComputing_NUMERICALANALYSIS ,010103 numerical & computational mathematics ,01 natural sciences ,symbols.namesake ,ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION ,Applied mathematics ,Time-pipelining ,0101 mathematics ,Schwarz alternating method ,Newton's method ,Mathematics ,Physics::Computational Physics ,Partial differential equation ,Preconditioner ,General Engineering ,Domain decomposition methods ,Solver ,Broyden's method ,Computer Science::Numerical Analysis ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,010101 applied mathematics ,Nonlinear system ,Quasi-Newton methods ,symbols ,Restricted Additive Schwarz ,[INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
International audience; This paper is devoted to the solution of nonlinear time-dependant partial differential equations arising in CFD using Broyden's method in the parallel computing framework. We first use Broyden's method in the context of the domain decomposition: we propose to update the Restricted Additive Schwarz preconditioner from one Newton iteration to another when a Newton-Krylov method is used. We also investigate a time-pipelining method where Broyden's method is used as a solver of the nonlinear problem of each time step.
- Published
- 2013
- Full Text
- View/download PDF
48. Low-Rank Update of the Restricted Additive Schwarz Preconditioner for Nonlinear Systems
- Author
-
Laurent Berenguer, Damien Tromeur-Dervout, Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Modélisation mathématique, calcul scientifique (MMCS), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Erhel, J., Gander, M.J., Halpern, L., Pichot, G., Sassi, T., Widlund, O., ANR-12-MONU-0012,H2MNO4,Hydrogéologie Hétérogène avec un Modèle Numérique Original, Optimisé et Orienté Objets(2012), Tromeur-Dervout, Damien, Modèles Numériques - Hydrogéologie Hétérogène avec un Modèle Numérique Original, Optimisé et Orienté Objets - - H2MNO42012 - ANR-12-MONU-0012 - MN - VALID, and Erhel, J., Gander, M.J., Halpern, L., Pichot, G., Sassi, T., Widlund, O.
- Subjects
Rank (linear algebra) ,Discretization ,010103 numerical & computational mathematics ,01 natural sciences ,Preconditioners ,Mathematics::Numerical Analysis ,symbols.namesake ,Additive Schwarz method ,[INFO.INFO-DC] Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,Applied mathematics ,0101 mathematics ,Schwarz alternating method ,Newton's method ,ComputingMilieux_MISCELLANEOUS ,Quasi-Newton Methods ,Mathematics ,Preconditioner ,Krylov subspace ,[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA] ,Computer Science::Numerical Analysis ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,010101 applied mathematics ,Jacobian matrix and determinant ,Computer Science::Mathematical Software ,symbols ,Restricted Additive Schwarz ,[INFO.INFO-MO] Computer Science [cs]/Modeling and Simulation ,[INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
This paper is devoted to the parallel preconditioning of linear systems arising from the discretization of nonlinear time-dependent partial differential equations using implicit methods. During the Newton iterations, the Restricted Additive Schwarz (RAS) preconditioner of the Jacobian matrix can be used to accelerate the convergence of Krylov subspace methods. We propose to extend the secant preconditioner method to update RAS preconditioner from one Newton’s iteration to another. Then, we show that updating the RAS preconditioner can be more efficient than freezing it. Results on numerical efficiency are given.
- Published
- 2012
49. Parallelization of a multigrid solver via a domain decomposition method
- Author
-
Francois-Xavier Roux and Damien Tromeur-Dervout
- Published
- 1994
- Full Text
- View/download PDF
50. Une méthode de décomposition de domaine pour résoudre l'équation de Darcy 3D dans les milieux poreux fortement hétérogènes
- Author
-
Laurent Berenguer, Thomas Dufaud, Damien Tromeur-Dervout, Association Française de Mécanique, and Service irevues, irevues
- Subjects
[PHYS.MECA]Physics [physics]/Mechanics [physics] ,[PHYS.MECA] Physics [physics]/Mechanics [physics] - Abstract
Colloque avec actes et comité de lecture. Internationale.; International audience; Nous présentons une méthode parallèle pour résoudre l'équation de Darcy 3D où le champ de perméabilité varie aléatoirement suivant une distribution log normale et avec de fortes amplitudes dans des domaines discrétisés de 10^8 à 10^9 inconnues. Cette technique de décomposition de domaine de type Aitken-Schwarz conduit à un parallélisme à deux niveaux où les problèmes locaux sont résolus par multigrille algébrique parallèle (AGMG de Y. Notay). L'influence sur la construction de l'accélération d' Aitken de l'espace d'approximation pour représenter la solution sur les interfaces sera discuté.
- Published
- 2011
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.