Sarah Picaud, Chiara Marabelli, Andrea Mattevi, Sara Marchese, Giuseppe Ciossani, Biagina Marrocco, Guy Schoehn, Sriram Subramaniam, Panagis Filippakopoulos, Sagar Chittori, Daniela Rhodes, Federico Forneris, Simona Pilotto, Department of Biology and Biotechnology, University of Pavia, Genetics Branch [Bethesda, MD, USA] (Center for Cancer Research), National Cancer Institute [Bethesda] (NCI-NIH), National Institutes of Health [Bethesda] (NIH)-National Institutes of Health [Bethesda] (NIH), Structural Genomics Consortium, University of Oxford [Oxford], Institut de biologie structurale (IBS - UMR 5075 ), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institute of Structural Biology, The University of British Columbia, Platefome de Microscopie électronique IBS/ISBG, ANR-10-INBS-0005,FRISBI,Infrastructure Française pour la Biologie Structurale Intégrée(2010), ANR-10-LABX-0004,CeMEB,Mediterranean Center for Environment and Biodiversity(2010), Università degli Studi di Pavia = University of Pavia (UNIPV), University of Oxford, Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Nanyang Technological University [Singapour], School of Biological Sciences, Lee Kong Chian School of Medicine (LKCMedicine), and NTU Institute of Structural Biology
Summary: LSD1 and LSD2 are homologous histone demethylases with opposite biological outcomes related to chromatin silencing and transcription elongation, respectively. Unlike LSD1, LSD2 nucleosome-demethylase activity relies on a specific linker peptide from the multidomain protein NPAC. We used single-particle cryoelectron microscopy (cryo-EM), in combination with kinetic and mutational analysis, to analyze the mechanisms underlying the function of the human LSD2/NPAC-linker/nucleosome complex. Weak interactions between LSD2 and DNA enable multiple binding modes for the association of the demethylase to the nucleosome. The demethylase thereby captures mono- and dimethyl Lys4 of the H3 tail to afford histone demethylation. Our studies also establish that the dehydrogenase domain of NPAC serves as a catalytically inert oligomerization module. While LSD1/CoREST forms a nucleosome docking platform at silenced gene promoters, LSD2/NPAC is a multifunctional enzyme complex with flexible linkers, tailored for rapid chromatin modification, in conjunction with the advance of the RNA polymerase on actively transcribed genes. : Through biophysical, biochemical, and structural studies, including cryo-EM, Marabelli et al. describe how NPAC promotes LSD2 productive interaction with the nucleosome in a rapid and flexible manner. Their findings provide a molecular mechanism for LSD2 activity in the context of H3K4me2 demethylation during Pol II transcriptional elongation. Keywords: histone demethylation, cryoelectron microscopy, chromatin reader, flavoenzyme, epigenetics, evolution of protein function, molecular recognition