1. Anisotropy-free arrayed waveguide gratings on X-cut thin film lithium niobate platform of in-plane anisotropy
- Author
-
Junjie Yi, Changjian Guo, Ziliang Ruan, Gengxin Chen, Haiqiang Wei, Liwang Lu, Shengqi Gong, Xiaofu Pan, Xiaowan Shen, Xiaowei Guan, Daoxin Dai, Kangping Zhong, and Liu Liu
- Subjects
Applied optics. Photonics ,TA1501-1820 ,Optics. Light ,QC350-467 - Abstract
Abstract Arrayed waveguide grating is a versatile and scalable integrated light dispersion device, which has been widely adopted in various applications, including, optical communications and optical sensing. Recently, thin-film lithium niobate emerges as a promising photonic integration platform, due to its ability of shrinking largely the size of typical lithium niobate based optical devices. This would also enable multifunctional photonic integrated chips on a single lithium niobate substrate. However, due to the intrinsic anisotropy of the material, to build an arrayed waveguide grating on X-cut thin-film lithium niobate has never been successful. Here, a universal strategy to design anisotropy-free dispersive components on a uniaxial in-plane anisotropic photonic integration platform is introduced for the first time. This leads to the first implementation of arrayed waveguide gratings on X-cut thin-film lithium niobate with various configurations and high-performances. The best insertion loss of 2.4 dB and crosstalk of −24.1 dB is obtained for the fabricated arrayed waveguide grating devices. Applications of such arrayed waveguide gratings as a wavelength router and in a wavelength-division multiplexed optical transmission system are also demonstrated.
- Published
- 2024
- Full Text
- View/download PDF