Li, Dana, Pehrson, Lea Marie, Bonnevie, Rasmus, Fraccaro, Marco, Thrane, Jakob, Tøttrup, Lea, Lauridsen, Carsten Ammitzbøl, Butt Balaganeshan, Sedrah, Jankovic, Jelena, Andersen, Tobias Thostrup, Mayar, Alyas, Hansen, Kristoffer Lindskov, Carlsen, Jonathan Frederik, Darkner, Sune, Nielsen, Michael Bachmann, Li, Dana, Pehrson, Lea Marie, Bonnevie, Rasmus, Fraccaro, Marco, Thrane, Jakob, Tøttrup, Lea, Lauridsen, Carsten Ammitzbøl, Butt Balaganeshan, Sedrah, Jankovic, Jelena, Andersen, Tobias Thostrup, Mayar, Alyas, Hansen, Kristoffer Lindskov, Carlsen, Jonathan Frederik, Darkner, Sune, and Nielsen, Michael Bachmann
A chest X-ray report is a communicative tool and can be used as data for developing artificial intelligence-based decision support systems. For both, consistent understanding and labeling is important. Our aim was to investigate how readers would comprehend and annotate 200 chest X-ray reports. Reports written between 1 January 2015 and 11 March 2022 were selected based on search words. Annotators included three board-certified radiologists, two trained radiologists (physicians), two radiographers (radiological technicians), a non-radiological physician, and a medical student. Consensus labels by two or more of the experienced radiologists were considered "gold standard". Matthew's correlation coefficient (MCC) was calculated to assess annotation performance, and descriptive statistics were used to assess agreement between individual annotators and labels. The intermediate radiologist had the best correlation to "gold standard" (MCC 0.77). This was followed by the novice radiologist and medical student (MCC 0.71 for both), the novice radiographer (MCC 0.65), non-radiological physician (MCC 0.64), and experienced radiographer (MCC 0.57). Our findings showed that for developing an artificial intelligence-based support system, if trained radiologists are not available, annotations from non-radiological annotators with basic and general knowledge may be more aligned with radiologists compared to annotations from sub-specialized medical staff, if their sub-specialization is outside of diagnostic radiology.