16 results on '"Davoudkhani, Mohsen"'
Search Results
2. Integrating microbial abundance time series with fermentation dynamics of the rumen microbiomeviamathematical modelling
- Author
-
Davoudkhani, Mohsen, primary, Rubino, Francesco, additional, Creevey, Christopher J., additional, Ahvenjärvi, Seppo, additional, Bayat, Ali R., additional, Tapio, Ilma, additional, Belanche, Alejandro, additional, and Muñoz-Tamayo, Rafael, additional
- Published
- 2023
- Full Text
- View/download PDF
3. Integrating microbial abundance time series with fermentation dynamics of the rumen microbiome via mathematical modelling.
- Author
-
Davoudkhani, Mohsen, Rubino, Francesco, Creevey, Christopher J., Ahvenjärvi, Seppo, Bayat, Ali R., Tapio, Ilma, Belanche, Alejandro, and Muñoz-Tamayo, Rafael
- Subjects
- *
RUMEN fermentation , *STANDARD deviations , *MATHEMATICAL models , *FERMENTATION , *MOLE fraction , *MICROBIAL metabolism - Abstract
The rumen represents a dynamic microbial ecosystem where fermentation metabolites and microbial concentrations change over time in response to dietary changes. The integration of microbial genomic knowledge and dynamic modelling can enhance our system-level understanding of rumen ecosystem's function. However, such an integration between dynamic models and rumen microbiota data is lacking. The objective of this work was to integrate rumen microbiota time series determined by 16S rRNA gene amplicon sequencing into a dynamic modelling framework to link microbial data to the dynamics of the volatile fatty acids (VFA) production during fermentation. For that, we used the theory of state observers to develop a model that estimates the dynamics of VFA from the data of microbial functional proxies associated with the specific production of each VFA. We determined the microbial proxies using CowPi to infer the functional potential of the rumen microbiota and extrapolate their functional modules from KEGG (Kyoto Encyclopedia of Genes and Genomes). The approach was challenged using data from an in vitro RUSITEC experiment and from an in vivo experiment with four cows. The model performance was evaluated by the coefficient of variation of the root mean square error (CRMSE). For the in vitro case study, the mean CVRMSE were 9.8% for acetate, 14% for butyrate and 14.5% for propionate. For the in vivo case study, the mean CVRMSE were 16.4% for acetate, 15.8% for butyrate and 19.8% for propionate. The mean CVRMSE for the VFA molar fractions were 3.1% for acetate, 3.8% for butyrate and 8.9% for propionate. Ours results show the promising application of state observers integrated with microbiota time series data for predicting rumen microbial metabolism. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
4. 365 Towards the Integration of Microbial Genomic Information Into Mechanistic Models of the Rumen Microbiome: A Theoretical Study
- Author
-
Davoudkhani, Mohsen, primary, Rubino, Francesco, additional, Creevey, Christopher J, additional, and Muñoz-Tamayo, Rafael, additional
- Published
- 2022
- Full Text
- View/download PDF
5. An economic and environmental optimization model for pig-fattening units using a carbon tax
- Author
-
Davoudkhani, Mohsen, Mahé, Fabrice, Dourmad, Jean-Yves, Gohin, Alexandre, Darrigrand, Eric, Garcia-Launay, Florence, Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Elevage [Rennes] (PEGASE), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Structures et Marché Agricoles, Ressources et Territoires (SMART-LERECO), EAAP, Bernard, Emilie, AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
- Subjects
[SDV.SA]Life Sciences [q-bio]/Agricultural sciences ,[SDV.SA] Life Sciences [q-bio]/Agricultural sciences ,[INFO.INFO-MO] Computer Science [cs]/Modeling and Simulation ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation - Abstract
International audience; Economic and environmental sustainability is a major concern for pig production systems (PPS). Previous studies showed that formulating low-impact diets using a carbon tax could decrease the climate change (CC) impact of pigfattening units. However, they did not consider the effect of interactions between feed formulas, feeding and shipping strategies (FFSS) on the environmental impacts of pig production. Consequently, the objective of this study was to investigate effects of a carbon tax on economically optimized FFSS and the resulting economic and environmental performances. We used a bi-level optimization model in which the upper level represents a bioeconomic model that simulates the growth of a batch of pigs and optimizes both the amino acid contents in growing and finishing feeds, the level of feed supply, and the shipping strategy. The lower level represents a linear least-cost feed formulation. The model’s behaviour was investigated in four contexts of recent feed and pork prices (low price: L and high price: H; feed: F and pork: P) at different carbon tax level. Optimized FFSS were highly sensitive to both the economic context and the carbon tax level. Without carbon tax, CC impact was lower in LF-LP than in the other economic contexts. With HF, the optimal amino acid contents and feed supply decreased as tax level increased. With LF, the optimal amino acid contents in the finishing diet increased as tax level increased, to improve feed conversion ratio. With increasing tax level, peas and cereal by-products were replaced with cereals and oil meals in pig diets. The highest potential of CC mitigation was obtained with HF-LP context, whereas LF-LP context had the lowest potential of CC mitigation because it resulted in low CC impact, even without application of a carbon tax. Optimizing both levels (FFSS) while applying a carbon tax decreased CC by up to 43% and saved up to 26% of income compared to FFSS optimized without carbon tax. This model provides a valuable tool to investigate the adaptation potential of PPS to the application of a carbon tax.
- Published
- 2021
6. Economic optimization of feeding and shipping strategies in pig-fattening units with an individual-based model
- Author
-
Davoudkhani, Mohsen, Mahé, Fabrice, Dourmad, Jean-Yves, Gohin, Alexandre, Darrigrand, Eric, Garcia-Launay, Florence, Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Elevage [Rennes] (PEGASE), AGROCAMPUS OUEST-Institut National de la Recherche Agronomique (INRA), Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-AGROCAMPUS OUEST-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Structures et Marché Agricoles, Ressources et Territoires (SMART), Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST, Davoudkhani, Mohsen, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Structures et Marché Agricoles, Ressources et Territoires (SMART-LERECO), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest
- Subjects
[SDV.SA]Life Sciences [q-bio]/Agricultural sciences ,[SDV.SA] Life Sciences [q-bio]/Agricultural sciences ,[SDV]Life Sciences [q-bio] ,animal diseases ,technology, industry, and agriculture ,food and beverages ,[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC] ,[INFO]Computer Science [cs] ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,[INFO] Computer Science [cs] ,health care economics and organizations - Abstract
Economic results of pig farming systems are highly variable and depend on the prices of feed ingredients used toformulate the diets as well as on pig performance and pork price. Thus, feeding strategies in fattening units arecritical factors in the economic outputs of pig production and major levers for improvement. This work aims atimproving the profitability of pig farms by proposing the best compromise between the cost of feeding and theperformance of animals. We rely on an individual-based bioeconomic model, which calculates the average grossmargin per fattened pig and the environmental impacts of the production according to biological traits of each pig,such as feed intake and protein deposition potentials, and the feeding strategy. The objective function maximizesthe average gross margin per pig using an optimization procedure regarding the feeding strategy. The optimizationproblem is solved with an evolutionary algorithm. The behaviour of this process was investigated, in one-phaseand two-phase feeding programs, using two among three feeds A, B, and C, formulated to achieve 110, 90 or 90% of digestible lysine requirements of an average pig at 30, 65 and 120 kg of body weight, respectively. We studied as decision variables the percentage of the two feeds in the blend at each phase and the average live weight of the pen at the end of the first phase. With this optimization strategy, it is possible to optimize simultaneously the feed mixture to be distributed at each phase and the pig weight at feed change. In two-phase feeding program, for the pig population tested, optimal pen average pig weight at diet change was lighter than common practice (50 vs 65 kg), and optimal feed digestible lysine contents amounted 8.5 and 6.3 g/kg in phase 1 and 2, respectively. Further investigations will extend the range of available decision variables and consider multi-objectives optimization to account for environmental impacts.
- Published
- 2019
7. Bi-level optimisation of feeding and shipping strategies in pig-fattening units
- Author
-
Davoudkhani, Mohsen, Dourmad, Jean-Yves, Mahé, Fabrice, Gohin, Alexandre, Darrigand, E., Garcia, Florence, Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Elevage [Rennes] (PEGASE), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut de Recherche Mathématique de Rennes (IRMAR), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Structures et Marché Agricoles, Ressources et Territoires (SMART-LERECO), EAAP, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, and Bernard, Emilie
- Subjects
[SDV.SA.SPA]Life Sciences [q-bio]/Agricultural sciences/Animal production studies ,food and beverages ,[SDV.SA.SPA] Life Sciences [q-bio]/Agricultural sciences/Animal production studies ,health care economics and organizations - Abstract
International audience; Economic results of pig-fattening systems vary greatly and depend in part on prices of pork and feeds, as well as pig growth performance (e.g. slaughter weight, lean percentage). Previous studies revealed that feeding and shipping strategies are critical factors in the economic outputs of pig production. However, they failed to consider both strategies and the variability in pig growth performance simultaneously. Consequently, the objective of this study was to develop a new procedure to improve the profitability of pig farms by estimating the best compromise among feeding costs, pork price, animal performance, and shipping constraints. We considered a bi-level programming problem in which the upper-level represents a bioeconomic model that simulates the growth of each pig according to its biological traits whereas the lower-level represents a linear least-cost feed formulation. Bioeconomic decisions taken at the upper-level are live weight at diet changes, the percentage of mean amino acid requirement to be covered at the start of each phase, and the target weight for slaughter. Maximising the mean gross margin per fattened pig is the objective function at the upper-level. It depends on pork price and feeds cost (the objective function of the lower-level) which results from the proportion of each feed ingredient (the lower-level decision variables) at the lower-level. The optimisation problem at the upper-level is solved using an evolutionary algorithm. We considered three sets of prices: average pork and feed prices, high pork and low feed prices, and low pork and high feed prices. The changes in pork prices had major impacts on shipping decisions while had minor impacts on feeding decisions. Optimising the shipping strategy at the same time modified the optimal feeding strategy. Considering the bi-level optimisation model improved the gross margin by 1.65 €/pig (5.2%) compared to the situation where each model (the bioeconomic model and least-cost feed formulation) was optimised separately, and by 3.59 €/pig (11.2%) compared to the common practice on farms in France.
- Published
- 2020
8. Optimisation économique en élevage porcin : un modèle pour piloter l'atelier d'engraissement
- Author
-
Davoudkhani, Mohsen, Mahé, Fabrice, Dourmad, Jean-Yves, Gohin, Alexandre, Darrigand, E., Garcia-Launay, Florence, Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Elevage [Rennes] (PEGASE), Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Institut de Recherche Mathématique de Rennes (IRMAR), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Centre National de la Recherche Scientifique (CNRS), Université Européenne de Bretagne (UEB), Structures et Marché Agricoles, Ressources et Territoires (SMART-LERECO), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, AGROCAMPUS OUEST-Institut National de la Recherche Agronomique (INRA), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-AGROCAMPUS OUEST-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Structures et Marché Agricoles, Ressources et Territoires (SMART), and ProdInra, Archive Ouverte
- Subjects
[SDV] Life Sciences [q-bio] ,modelling ,modèle bioéconomique ,stratégie ,Algorithme évolutionnaire ,alimentation animale ,[SDV]Life Sciences [q-bio] ,swine ,animal feeding ,strategy ,modèle individu centré ,modélisation ,porc - Abstract
Les résultats économiques des élevages porcins dépendent des prix du porc et des matières premièresalimentaires, ainsi que des performances techniques des ateliers de production. Les coûts d'alimentation, ainsique le poids d'abattage et le taux de muscle des pièces de chaque porc interviennent dans la construction de lamarge brute. Les stratégies alimentaires et de gestion des abattages des porcs à l'engrais sont donc des facteurs clés des résultats économiques. Différents modèles et outils ont été précédemment développés pour prédire les effets des stratégies alimentaires sur les performances techniques et les résultats économiques (lnraPorc, MOGADOR ... ). Ils ont montré qu'il est nécessaire de prédire la trajectoire de croissance de chaque porc pour estimer correctement les résultats de l'atelier. Ils ne permettent cependant pas d'identifier la stratégied'alimentation optimale dans un contexte économique donné. L'objectif de ce travail était de développer un outilcapable de maximiser la rentabilité de l'atelier d'engraissement dans différents contextes économiques, enproposant le meilleur compromis entre coût d'alimentation et niveau de performance des animaux.L'outil associe un modèle bioéconomique de l'atelier d'engraissement et une procédure d'optimisation de lamarge brute moyenne par porc. Le modèle bioéconomique simule la croissance de chaque porc selon sonpotentiel d'ingestion et de croissance et selon la stratégie d'alimentation. Il calcule la marge brute moyenne parporc engraissé et les impacts environnementaux de la production (par Analyse de Cycle de Vie).La procédure d'optimisation maximise la marge brute moyenne par porc en trouvant le poids cible à l'abattage(PVa), la durée maximale d'engraissement (Dmax) et la meilleure stratégie d'alimentation biphase (BP) en termesde composition de la ration (pourcentages de deux aliments A et B formulés pour couvrir respectivement 110% et90% du besoin en lysine digestible du porc moyen à 30 kg et 120 kg de poids vif) et de poids vif moyen auchangement de phase. Cette procédure utilise un algorithme évolutionnaire adapté à la résolution de problèmesnon linéaires et discontinus (CMA-ES, Covariance Matrix Adaptation Evolution Strategy). Après une phase devalidation des conditions d'utilisation de l'outil, différents scénarios ont été explorés. Dans le contexte économique retenu pour les simulations, l'outil permet d'augmenter la marge brute de 1,33€/porc en cherchant la meilleure BP, en comparaison à un scénario de référence (SR) représenta nt les pratiques habituelles. En ajoutant PVa et Dmax aux variables de décision, l'outil propose une solution qui améliore la marge brute de 2,81 €/porc par rapport à SR. L'outil permet de maximiser le résultat économique de l'atelier d'engraissement en cherchant la meilleure séquence alimentaire biphase et la meilleure gestion des abattages. Les futurs travaux viseront à réaliser une optimisation économique et environnementale conjointe de l'atelier d'engraissement.
- Published
- 2019
9. Multiobjective feed formulation for pig: methodological approach and application
- Author
-
Garcia-Launay, Florence, Crolard, Cécile, Teisseire, E., Davoudkhani, Mohsen, Aubin, Joel, Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Elevage [Rennes] (PEGASE), Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Sol Agro et hydrosystème Spatialisation (SAS), AGROCAMPUS OUEST-Institut National de la Recherche Agronomique (INRA), AGROCAMPUS OUEST-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), AGROCAMPUS OUEST, and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de la Recherche Agronomique (INRA)
- Subjects
[SDV]Life Sciences [q-bio] - Abstract
Animal production is responsible for several environmental impacts, to which feed production has usually themajor contribution. However, the traditional least-cost feed formulation (LCF) method minimizes the cost withoutconsideration of its environmental impacts. Multi-objective feed formulation has already been proposed to reduce the environmental impacts of pig feeds. It includes an objective function which is a weighted sum (WS) of the normalised values of feed cost, and four environmental impacts of the feed (climate change, land occupation, phosphorus demand and cumulated energy demand) calculated by Life Cycle Assessment. Normalised values are calculated dividing them by their reference value (REF) obtained with LCF (method Norm1). An additional factor α, ranging from 0 to 1 to explore the space of optimal solutions, is then used to weight the relative influence of feed cost and environmental impacts. The aim of this study was to explore potential improvements of the multi-objective method, with applications to pig feeds. We compared WS method with the ϵ-constraint method, which consists in minimizing a single objective while setting a maximum constraint for another one. In our case, the objective function was the weighted sum of the environmental impacts and the constraint was applied on feed cost. Then, we compared the behaviour of the model with Norm1 and with a new normalization method (Norm2), which subtracts the minimum criterion value to the criterion calculated and divides it by the difference between the REF and the minimum criterion values. WS and ϵ-constraint methods produced some common optimal solutions but only ϵ-constraint method allowed to obtain all the solutions of the Pareto front of the problem. Norm2 allowed defining solutions, which reduce consistently all environmental impacts whereas Norm1 allowed compensations between the impacts, which can potentially lead to increase of some impacts. Multi-objective feed formulation method can be substantially improved by implementing Norm2 to avoid possible compensations between impacts, and by applying the ϵ-constraint method to have access to the whole set of feasible optimal solutions.
- Published
- 2019
10. Validation of Iranian Smell Identification Test for screening of mild cognitive impairment and Alzheimer's disease.
- Author
-
Zendehbad, Azadeh Sadat, Noroozian, Maryam, Shakiba, Alia, Kargar, Alireza, and Davoudkhani, Mohsen
- Abstract
Background: According to the World Alzheimer Report 2019, an estimated 50 million people worldwide are living with dementia. The smell test is a method for early detection of Alzheimer's disease (AD) as an inexpensive, simple, and noninvasive screening tool. This study aimed to evaluate the accuracy of the Iran Smell Identification Test (Iran-SIT) in discriminating patients with AD, with mild cognitive impairment (MCI), and the healthy subjects.Methods: In this study, 42 patients with AD, 33 with MCI, and 32 healthy controls were recruited from the referral Memory Clinic of Tehran University of Medical Sciences. The olfactory function was examined with six odors through Iran-SIT.Results: We found a significant difference among the olfactory function in subjects with normal cognitive status, that of those with MCI and those with AD (p < 0.001). The cutoff point for the diagnosis of AD was (sensitivity and specificity were, respectively, 85.7 and 90.8%), and (Sensitivity and specificity were, respectively, 93.9 and 100%) for MCI.Conclusion: These results suggest that Iran-SIT is a valid biomarker and practical screening tool, with simple, inexpensive, and readily available for use in combination with neuropsychological tools and neuroimaging for early detection of AD. [ABSTRACT FROM AUTHOR]- Published
- 2022
- Full Text
- View/download PDF
11. Validation of Iranian Smell Identification Test for screening of mild cognitive impairment and Alzheimer’s disease
- Author
-
Zendehbad, Azadeh Sadat, primary, Noroozian, Maryam, additional, Shakiba, Alia, additional, Kargar, Alireza, additional, and Davoudkhani, Mohsen, additional
- Published
- 2020
- Full Text
- View/download PDF
12. The Validity and Reliability of a Persian Version of the Brief Community Screening Instrument for Dementia in the Elderly Patients with Dementia in Iran
- Author
-
Davoudkhani, Mohsen, primary, Kormi-Nouri, Reza, additional, Norouzi Javidan, Abbas, additional, Sharifi, Farshad, additional, Younesi, Farnaz, additional, Zendehbad, Azadeh Sadat, additional, and Noroozian, Maryam, additional
- Published
- 2019
- Full Text
- View/download PDF
13. Psychometric Evaluation of the Persian Version of Illustrated Memory Impairment Screen (PIMIS) Test in Elderly Patients with Alzheimer’s Disease in Iran
- Author
-
Davoudkhani, Mohsen, primary, Rajabi, Fateme, additional, Norouzi Javidan, Abbas, additional, Younesi, Farnaz, additional, and Noroozian, Maryam, additional
- Published
- 2019
- Full Text
- View/download PDF
14. The Validity and Reliability of a Persian Version of the Brief Community Screening Instrument for Dementia in the Elderly Patients with Dementia in Iran
- Author
-
Davoudkhani, Mohsen, Kormi-Nouri, Reza, Javidan, Abbas Norouzi, Sharifi, Farshad, Younesi, Farnaz, Zendehbad, Azadeh Sadat, Noroozian, Maryam, Davoudkhani, Mohsen, Kormi-Nouri, Reza, Javidan, Abbas Norouzi, Sharifi, Farshad, Younesi, Farnaz, Zendehbad, Azadeh Sadat, and Noroozian, Maryam
- Abstract
Background: The brief version of community screening instrument for dementia (CSI-D) is a neuropsychological tool, which can be used even by non-specialists in primary care settings following a short training. The CSI-D evaluates the cognitive and functional domains of the subjects and includes an informant interview. However, it should be adapted based on literacy level and sociocultural profile of population in each country. Objectives: The current study examined the validity and reliability of the Persian version of the brief CSI-D in elderly patients of Iran. Methods: The current descriptive, cross sectional study was conducted on people 60 and over from 16 provinces of Iran with seven different ethnicities and various levels of education (0 - 13 to >= 13 years). The participants consisted of subjects with normal cognition, subjective cognitive impairment (SCI), mild cognitive impairment (MCI), and different types of dementia. Cognitive impairment was diagnosed by a neurologist with expertise in dementia. The psychometric properties were assessed by comparing Persian version of brief CSI-D with the gold standard. Area under ROC curve, optimal cutoff point, and sensitivity and specificity were also calculated. Results: Data were collected from 262 participants. Of all the participants, 112 were diagnosed with dementia, 64 with MCI, 32 with SCI, and 53 with normal cognition. The best cutoff point for the test-regardless of gender and level of education-was 8.5 compared with 8 - 9 in the original version of CSI-D and also the cutoff point for patient with dementia was 5.5, while it was 4 in the original version. Conclusions: The Persian version of CSI-D seems to be an accurate and sensitive tool to screen dementia and MCI in primary care setting, especially among low-educated and illiterate people.
- Published
- 2019
- Full Text
- View/download PDF
15. A New Multi-Objective Green Location Routing Problem with Heterogonous Fleet of Vehicles and Fuel Constraint
- Author
-
Rabbani, Masoud, primary, Davoudkhani, Mohsen, additional, and Farrokhi-Asl, Hamed, additional
- Published
- 2017
- Full Text
- View/download PDF
16. Towards the Integration of Microbial Genomic Information Into Mechanistic Models of the Rumen Microbiome: A Theoretical Study.
- Author
-
Davoudkhani, Mohsen, Rubino, Francesco, Creevey, Christopher J., and Muñoz-Tamayo, Rafael
- Subjects
- *
INFORMATION modeling , *TIME series analysis , *FATTY acids , *FUNCTIONAL groups , *AMINO acids - Abstract
The objective of this work was to develop a mathematical framework enabling the integration of microbial genomic information (i.e., 16S rDNA) into mechanistic models of the rumen microbiome. Mechanistic modelling provides promising tools to enhance our system-level understanding of the rumen ecosystem. Existing mechanistic models of rumen fermentation consider an aggregated representation of the rumen microbiota and its metabolic function. However, none of these models integrate microbial genomic knowledge and are thus limited to capitalize on the rich information of microbial genomic sequencing. In this work, we investigated theoretically, how microbial time series of the rumen microbiota determined by 16S rDNA can be integrated into a mechanistic fermentation model of the rumen microbiome. Our study used a previously developed model of in vitro rumen fermentation that represents the microbiota by three microbial functional groups, namely sugar utilisers, amino acid utilisers, and methanogens 1. The model was extended to represent the fermentation under continuous operation (i.e. chemostat). We considered a hypothetical scenario where 16S rumen microbial time series are available. Our rationale is that the microbial species can be categorized into the macroscopic functions of the mechanistic model by using tools such as CowPI 2. In a simulation case study, we used the theory of state observers to integrate the mechanistic model and the microbial data to provide estimations of the dynamics of the volatile fatty acids (VFA) acetate, butyrate, and propionate. The estimated VFA converge towards the real VFA dynamics demonstrating the promising potential of our approach. The next step we are currently working is the validation of our approach using in vitro experimental data. 1 Muñoz-Tamayo, R. et al. Anim. Feed Sci. Technol. 220, 1-21 (2016)2 Wilkinson, T. J. et al. Front. Microbiol. 9, 1095 (2018). [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.