1. Category boundaries modulate memory in a place-cell-like manner.
- Author
-
Theves, Stephanie, Schäfer, Theo A.J., Reisner, Volker, de Cothi, William, and Barry, Caswell
- Subjects
- *
COGNITIVE maps (Psychology) , *SPATIAL memory , *MEMORY , *CONCEPT learning , *COGNITION , *ENTORHINAL cortex - Abstract
Concepts describe how instances of the same kind are related, enabling the categorization and interpretation of new information. 1,2 How concepts are represented is a longstanding question. Category boundaries have been considered defining features of concept representations, which can guide categorical inference, 3 with fMRI evidence showing category-boundary signals in the hippocampus. 4,5 The underlying neural mechanism remains unclear. The hippocampal-entorhinal system, known for its spatially tuned neurons that form cognitive maps of space, 6,7 may support conceptual knowledge formation, with place cells encoding locations in conceptual space. 4,8,9,10,11 Physical boundaries anchor spatial representations and boundary shifts affect place and grid fields, 12,13,14,15,16 as well as human spatial memory, 17,18,19 along manipulated dimensions. These place cell responses are likely driven by boundary vector cells, which respond to boundaries at specific allocentric distances and directions, 20,21,22,23 the neural correlates of which have been identified in the subiculum and entorhinal cortex 20,24,25. We hypothesize similar patterns of memory adaptations in response to shifting category boundaries. Our findings show that after category boundary shifts, participants' memory for category exemplars distorts along the changed dimension, mirroring place field deformations. We demonstrate that the boundary vector cell model of place cell firing best accounts for these distortions compared with alternative geometric explanations. Our study highlights a role of category boundaries in human cognition and establishes a new complementary link between hippocampal coding properties with respect to boundaries and human concept representation, bridging spatial and conceptual domains. • We tested the influence of category boundary changes on human memory • Memory of specific exemplars was influenced by the geometry of the conceptual space • Category boundaries exert similar effects on memory as spatial boundaries • A BVC population model of place cell activity predicted the observed distortions Theves et al. test whether category boundaries exert similar effects on human memory as environmental boundaries. They observe memory distortions that mimic the effects of environmental boundary changes on hippocampal place fields and spatial memory and explain these with a boundary vector cell model of place cell firing. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF