26 results on '"Degenstein, D.A."'
Search Results
2. Two-dimensional analytic weighting functions for limb scattering
- Author
-
Zawada, D.J., Bourassa, A.E., and Degenstein, D.A.
- Published
- 2017
- Full Text
- View/download PDF
3. The sensitivity to polarization in stratospheric aerosol retrievals from limb scattered sunlight measurements
- Author
-
Elash, B.J., Bourassa, A.E., Rieger, L.A., Dueck, S.R., Zawada, D.J., and Degenstein, D.A.
- Published
- 2017
- Full Text
- View/download PDF
4. SASKTRAN: A spherical geometry radiative transfer code for efficient estimation of limb scattered sunlight
- Author
-
Bourassa, A.E., Degenstein, D.A., and Llewellyn, E.J.
- Published
- 2008
- Full Text
- View/download PDF
5. A spectral model of the FeO orange bands with a comparison between a laboratory spectrum and a night airglow spectrum observed by OSIRIS on Odin
- Author
-
Gattinger, R.L., Evans, W.F.J., Degenstein, D.A., and Llewellyn, E.J.
- Subjects
Spectra (Spectroscopy) -- Research ,Mesosphere -- Research -- Environmental aspects ,Iron oxides -- Properties -- Research ,Airglow -- Research ,Physics - Abstract
Emissions from the FeO orange bands have been observed in the laboratory for many decades. The transition has been identified as D([sup.5][Δ.sub.i])-X([sup.5][Δ.sub.i]) where the subscript identifies the five U spin components. While the ground-state molecular constants are well-known, information on the upper state is less precise, and this is primarily due to significant energy level perturbations. Using the available constants, a preliminary spectral simulation model of the orange bands has been developed with a wavelength accuracy of approximately 1/3 nm. Using data from the OSIRIS spectrograph on board the Odin spacecraft, these FeO orange bands have been identified as a component of the night airglow spectrum emanating from the upper mesosphere. The spectral simulation model is combined with the OSIRIS observations to determine the vibrational development of the FeO emissions in the airglow. The model is also applied to published laboratory observations of the orange bands, conducted at much higher pressure than for the airglow, to test for different vibrational development. PACS Nos: 33.20.Kf, 34.50.Ez, 92.60.H-, 92.60.hb, 92.60.hc, 92.60.hw, 95.30.Ft, 95.30.Fg, 95.30.Kr Pendant des decennies, nous avons observe en laboratoire les bandes dans l'orange du FeO. La transition a este; identifiee comme etant D([sup.5][Δ.sub.i])-X([sup.5][Δ.sub.i]), ou l'indice inferieur identifie la composante Ω du spin. Alors que les constantes moleculaires du fondamental sont bien connues, celles de l'etat superieur le sont moins, largement a cause des perturbations entre les niveaux. Utilisant les constantes disponibles, nous avons developpe; un modele preliminaire simulant ces bandes avec une precision sur la longueur d'onde de 1/3 nm. A l'aide des donnees du spectrographe OSIRIS a bord du satellite Odin, nous avons identifie ces bandes dans l'orange comme une composante de la lueur atmospherique nocturne emanant de la mesosphere superieure. Le modele de simulation spectrale est combine avec les observations d'OSIRIS pour obtenir le developpement vibrationnel des emissions de FeO dans la lueur. Nous utilisons aussi le modele en conjonction avec des mesures publiees, obtenues en laboratoire a une pression beaucoup plus eleveee que dans la mesosphere, afin de verifier differents developpements vibrationnels. [Traduit par la Redaction], 1. Introduction The study of the terrestrial night airglow dates back more than a century to the first measurement of the wavelength of the mysterious 'green line' by Angstrom [1], [...]
- Published
- 2011
- Full Text
- View/download PDF
6. Temperatures in the upper mesosphere and lower thermosphere from OSIRIS observations of [O.sub.2] A-band emission spectra
- Author
-
Sheese, P.E., Llewellyn, E.J., Gattinger, R.L., Bourassa, A.E., Degenstein, D.A., Lloyd, N.D., and McDade, I.C.
- Subjects
Spectra (Spectroscopy) -- Research ,Mesosphere -- Observations -- Research ,Atmospheric temperature -- Research ,Physics - Abstract
Temperatures in the mesosphere--lower thermosphere region (MLT) have been derived from the Optical Spectrograph and InfraRed Imaging System (OSIRIS) observations of [O.sub.2] A-band ([b.sup.1][∑.sup.+.sub.g]-[X.sup.3] [∑.sup.-.sub.g])O-O emission spectra. The observed OSIRIS spectra are inverted pixel by pixel, producing inverted volume emission rate spectra at altitudes between 90 and 110 km, which are compared to modelled temperature dependent [O.sub.2] A-band spectra. The estimated accuracy of the retrieved temperatures is approximately ± 2 K near 90 km and up to ± 6 K at higher altitudes. The developed temperature retrieval technique is presented, and some initial retrieval results are briefly discussed. Nous obtenons les temperatures dans la mesosphere-region de basse thermosphere (la basse atmosphere) a partir des observations, par le spectrographe optique et le systeme d'imagerie infrarouge (OSIRIS), des spectres d'emission ([b.sup.1][[suma].sup.+.sub.g][X.sup.3][[suma].sup.-.sub.g])O-O de la bande A de [O.sub.2]. Les spectres observeis par OSIRIS sont inverses pixel par pixel, produisant des spectres de taux d'emission en volume inverse; a des altitudes entre 90 et 110 km, qui sont alors compare;sa des spectres modelises dependant en temperature de la bande A de [O.sub.2]. Les precisions estimeees des temperatures obtenues est approximativement ±2 K pres de 90 km, jusqu'a ±6 K aux altitudes plus elevees. Nous presentons la technique pour obtenir les temperatures et nous discutons quelques resultats preliminaires. [Traduit par la Redaction], 1. Introduction A detailed understanding of the physics and chemistry of the mesosphere--lower thermosphere (MLT) region of the Earth's atmosphere requires an accurate knowledge of the temperature profile in the [...]
- Published
- 2010
- Full Text
- View/download PDF
7. Quantitative spectroscopy of the aurora. VI. The auroral spectrum from 275 to 815 nm observed by the OSIRIS spectrograph on board the Odin spacecraft
- Author
-
Gattinger, R.L., Jones, A. Vallance, Degenstein, D.A., and Llewellyn, E.J.
- Subjects
Spectrograph -- Usage -- Equipment and supplies -- Research -- Optical properties -- Methods ,Meteorological optics -- Research -- Equipment and supplies -- Optical properties -- Methods ,Auroras -- Optical properties -- Observations -- Equipment and supplies -- Research -- Methods ,Artificial satellites -- Usage -- Equipment and supplies -- Optical properties -- Research -- Methods ,Spectrum analysis -- Methods -- Equipment and supplies -- Optical properties -- Research - Abstract
Terrestrial auroral spectra over the 275 to 815 nm wavelength range have been recorded by the OSIRIS imaging spectrograph on board the Odin spacecraft. The spectra are from the dark polar region and are averaged over limb tangent altitudes from 100 to 105 km. All wavelengths are exposed simultaneously, thus avoiding the effect of temporal intensity variations inherently present in spectrally scanning systems. Particular care has been taken to quantify the relative spectral sensitivity over the entire wavelength range, and there is an estimated 5% precision in the measurements. To maintain accurate on-orbit spectral calibrations, an atmospheric radiation model with multiple Rayleigh scatter is employed to regularly update the OSIRIS spectral response throughout the mission. A calibrated auroral spectrum is presented, together with matching synthetic spectra for many of the observed features, for potential use as a reference spectrum in general atmospheric research. The relative intensities of the brighter auroral band systems and atomic lines are reviewed. Finally, the observed spectrum is made freely available in digital format in long term archives. PACS Nos: 32.70.Fw, 33.20.Kf, 33.20.Lg, 92.60.hw, 94.05.Hk Nous avons enregistre le spectre auroral terrestre entre 275 et 815 nm a l'aide du spectrographe a imagerie OSIRIS a bord du satellite ODIN. Les spectres sont pour la zone polaire sombre et sont moyennes sur differentes altitudes du limbe entre 100 et 105 km. Toutes les longueurs d'onde sont enregistrees simultaneement, eevitant ainsi les erreurs de variation temporelle d'intensite, pratiquement inherentes dans les systemes a balayage spectral. Nous nous sommes appliques particulierement a quantifier la sensibilite relative spectrale sur l'ensemble du domaine de longueur d'onde et nous atteignons une precision estimeeea 5%. Pour maintenir une calibration spectrale precise en orbite, nous utilisons un modele de radiation atmospheerique avec plusieurs diffuseurs de Rayleigh, afin de mettre a jour regulierement la reponse spectrale d'OSIRIS pendant toute la mission. Nous presentons un spectre auroral calibre;, accompagnee des spectres synthetiques d'appariement pour plusieurs des caracteristiques observeees, qui pourra servir de reference spectrale en recherche atmospherique en general. Nous passons en revue les intensites relatives les plus brillantes des systemes de bandes aurorales et des lignes atomiques. Finalement, nous rendons disponibles les spectres obtenus, sans frais et sous format digital. [Traduit par la Redaction], 1. Introduction The terrestrial auroral spectrum has been studied quantitatively for more than a century. Early ground-based studies include the first measurement of the wavelength of the mysterious 'green line' [...]
- Published
- 2010
- Full Text
- View/download PDF
8. Observation of the 557.7 nm to 297.2 nm brightness ratio in the auroral spectrum with OSIRIS on Odin
- Author
-
Gattinger, R.L., Lloyd, N.D., Bourassa, A.E., Degenstein, D.A., McDade, I.C., and Llewellyn, E.J.
- Subjects
Infrared imaging -- Usage -- Analysis ,Radiation ,Spectrum analysis -- Usage ,Physics ,Usage ,Analysis - Abstract
The two optically forbidden lines of atomic oxygen, O(¹S-¹D) at 557.7 nm and O([1.sup.S] - ³P) at 297.2 nm, serve as important diagnostics in atmospheric, planetary, and cometary studies. Originating from the same upper state, the emission brightness ratio, B(557.7)B(297.2), must necessarily be constant. The reported emission ratio of these two lines from both theoretical and experimental investigations varies by approximately a factor of two. These two emissions are observed simultaneously in aurora] spectra by the OSIRIS spectrograph on the Odin spacecraft, offering another opportunity to perform the ratio measurement. Because of the considerable wavelength separation between these two atomic lines, precise instrumental relative response calibrations can be problematic. To maintain accurate on-orbit spectral calibrations, an atmospheric radiation model with multiple Rayleigh scatter is employed to constantly track instrumental response. An example of a calibrated single bright aurora] spectrum over the full OSIRIS wavelength range of 275 to 815 nm, limb tangent altitude 105 km, is presented. Using a number of individual auroral spectra, the observed 01557.7 nm brightness is plotted versus the observed 01297.2 nm brightness to both verify the required linear relationship and to experimentally determine the brightness ratio. Spectral contamination by other auroral emission features is removed. From the linear fit, the observed B(557.7)B(297.2) ratio is 9.3 ± 0.5. By comparison, a ratio of 9.8 ± 1 was recently reported, determined by combining results from a number of observational databases separated in time and in wavelength coverage. PACS Nos: 32.30-r, 32.70.Fw, 92.60.hc, 92.60.hw Les deux lignes optiques de l'atome d'oxygene, O(¹S - ¹D) a 557,7 nm et O(¹S - ³P) a 297,2 nm sont d'importants outils de diagnostique dans les etudes sur l'atmosphere, les planetes et les cometes. Provenant du meme etat superieur, le rapport d'emission B(557,7) / B(297,2) doit necessairement etre constant. Il y a un facteur de pres de deux entre les valeurs experimentale et theorique du rapport d'emission de ces deux lignes. Elles sont obseevves simultanement par le spectrographe OSIRIS a bord du satellite Odin, ce qui offre une autre possibilite de mesurer ce rapport. A cause de la grande difference en longueur d'onde entre ces deux lignes atomiques, une calibration instrumentale precise sera problematique. Dans le but de maintenir une calibration precise en orbite, nous utilisons un modele de radiation atmospherique avec diffusion Rayleigh multiple, afm de faire un suivi constant de la reponse instrumentale. Nous presentons un exemple d'un spectre auroral calibre sur l'ensemble du domaine spectral d'OSIRIS, de 275 nm a 815 nm, pris dans le limbe tangent a 105 km d'altitude. Utilisant un certain nombre de spectres d'aurore individuels, nous comparons les graphes d'observation de la brillance d'OI 557,5 et de OI 297,2, pour verifier la linearite et determiner experimental ement le rapport de brillance. Nous eliminons la contamination spectrale provenant d'autres emission aurorales. A partir d'un ajustement numerique lineaire, nous avons determine la valeur du rapport B(557,7) / B(297,2) = 9,3 ± 0,5. Pour fin de comparaison, on a recemment rapporte un rapport de 9,8 ± 1, obtenu en combinant des bases de donnees experimentales separees dans le temps et portant sur diverses longueurs d'onde. [Traduit par la Redaction], 1. Introduction The ratio between the O(¹S-¹D) and O(¹S - ³P) transitions has been the subject of numerous investigations. Some of the early theoretical calculations were conducted by Condon [1] [...]
- Published
- 2009
- Full Text
- View/download PDF
9. Observation of the chemiluminescent NO + O → N[O.sub.2] + hv reaction in the upper mesospheric dark polar regions by OSIRIS on Odin
- Author
-
Gattinger, R.L., Evans, W.F.J., McDade, I.C., Degenstein, D.A., and Llewellyn, E.J.
- Subjects
Chemiluminescence -- Research ,Infrared equipment -- Usage ,Physics ,Usage ,Research - Abstract
The visible and near infrared continuum spectrum produced by the NO + O → N[O.sub.2] + hv chemiluminescent reaction has been detected in the upper mesospheric dark polar regions by OSIRIS on the Odin spacecraft. Averaged observed N[O.sub.2] emission spectral shapes are obtained by spectrally resolving the NO + O continuum from the blended strong upper mesospheric OH vibration-rotation airglow bands. The observed continuum spectral shape when compared with laboratory measurements is shifted to lower wavelengths by approximately 20 nm in the steeply sloped 400 to 500 nm region. The observed laboratory continuum spectral shape for upper mesospheric ambient pressure is presented for reference over the 400 to 800 nm region. An example of an N[O.sub.2] continuum volume emission-rate altitude profile derived from a single OSIRIS limb scan is also included. Limb radiantes up to 3 x [10.sup.9] photons [cm.sup.-2] [nm.sup.-1] [s.sup.-1] are observed at the peak of the N[O.sub.2] continuum corresponding to total volume emission rates of approximately 2 x [10.sup.4] photons [cm.sup.-3] [s.sup.-1]. Data extracted from numerous single-volume emission-rate altitude profiles obtained over approximately a 24 h period are assembled into a Southern Hemisphere polar map of the 90 km N[O.sub.2] continuum emission. The map illustrates the considerable spatial brightness variation typically observed in the dark Antarctic polar region throughout the OSIRIS mission dataset. After further analysis these measurements will assist in quantifying the role of thermospheric formed N[O.sub.x] in the catalytic removal of ozone in the upper stratosphere. PACS Nos: 33.20.-t, 34.90.+q, 92.60.H-, 92.60.hc, 92.60.hw L'appareil OSIRIS a bord du satellite Odin a detecte le spectre continu dans le visible et (infrarouge proche produit par la reaction chimioluminescente NO + O → N[O.sub.2] + hv dans la mesosphere superieure des regions polaires sombres. Les moyennes journalieres du spectre d'emission de N[O.sub.2]sont obtenues par resolution spectrale du continu NO + O a partir du melange des fortes bandes de rotation-vibration du OH dans la lueur de haute atmosphere de la mesosphere superieure. La forme spectrale du continu est alors comparee a des mesures en laboratoire et nous observons un deplacement d'environ 20 nm dans la region de forte pente entre 400 et 800 nm. Nous presentons la forme spectral du continu observe en laboratoire comme reference pour le domaine de 400 a 800 nm. Nous incluons egalement un exemple du profile en altitude du taux d'emission en volume du continuum de N[O.sub.2] obtenu d'un simple balayage en elevation par OSIRIS. Nous observons des radiantes de limbe jusqu'a 3 x [10.sup.9] photons [cm.sup.-2] [nm.sup.-1] [s.sup.-1] au maximum du continuum du N[O.sub.2] , correspondant a des taux d'emission totale en volume de 2 x [10.sup.4] photons [cm.sup.-3] [s.sup.-1]. Les donnees obtenues d'un grand nombre de balayages simples sur une periode de 24 h sont rassemblees dans une carte du taux d'emission en volume du continuum de N[O.sub.2] dans la region du pole sud a 90 km d'altitude. La carte illustre les variations spatiales considerables de brillance typiquement observees dans la partie sombre du pole sud, sur toute la banque de donnees de OSIRIS. Apres une analyse plus poussee, ces mesures nous aiderons a quantifier le role du N[O.sub.x] dans (appauvrissement de l'ozone de haute atmosphere. [Traduit par la Redaction], 1. Introduction The importance of nitrogen oxides, N[O.sub.x] = NO + N[O.sub.2], in the catalytic destruction of ozone in the stratosphere is summarized by Funke et al. [1] and supported [...]
- Published
- 2009
- Full Text
- View/download PDF
10. OH [A.sup.2][Σ.sup.+]-[X.sup.2]Π band ratios observed in the mesosphere by OSIRIS
- Author
-
Gattinger, R.L., Degenstein, D.A., Llewellyn, E.J., and Stevens, M.H.
- Subjects
Rayleigh scattering -- Research -- Methods -- Usage -- Chemical properties ,Atmospheric ozone -- Chemical properties -- Methods -- Research -- Usage ,Infrared imaging -- Methods -- Chemical properties -- Usage -- Research ,Mesosphere -- Research -- Usage -- Chemical properties -- Methods ,Hydroxides -- Properties -- Usage ,Optical spectrometers -- Usage ,Physics ,Usage ,Chemical properties ,Research ,Properties ,Methods - Abstract
In this study, we present spectra of the mesospheric OH [A.sup.2][Σ.sup.+]-[X.sup.2]Π band system, including the 0-0, 1-1, and 1-0 bands, as observed by OSIRIS (Optical Spectrograph and Infrared Imaging System). Spectral components due to Rayleigh-scattered sunlight, lower thermospheric dayglow emission features, and baffle scatter have been removed to isolate the OH emission signature. The observed spectra are compared with model spectra assembled using rotational emission rate factors for solar resonance fluorescence (g-factors) plus prompt emission of the OH [A.sup.2][Σ.sup.+]-[X.sup.2]Π band system from solar Lyman-α photodissociation of water. The observed band ratios are in good agreement with the model values. The altitude variation of the 0-0 band, relative to the 1-1 band, is in agreement with model predictions based on vibrational energy transfer from OH [A.sup.2][Σ.sup.+]v'= 1 to OH [A.sup.2][Σ.sup.+] v' = 0. This detailed understanding of the OH [A.sup.2][Σ.sup.+]-[X.sup.2]Π system is critical for the successful application of OH observations to the determination of mesospheric OH densities and water vapor concentrations. PACS Nos.: 33.20.Lg, 33.20.Tp, 33.70.Fd, 92.60.hc, 92.60.hw Nous presentons ici les resultats d'une etude du systeme de bande [A.sup.2][Σ.sup.+]-[X.sup.2]Π de l'OH mesospherique, incluant les bandes 0-0, 1-1 et 1-0, tels que mesures par OSIRIS (syteme de spectroscopie optique et d'imagerie infra-rouge embarque sur Odin). Nous avons elimine les composants spectraux dus a la diffusion Rayleigh de la lumiere solaire, a la luminescence dans la basse thermosphere et a la diffusion de deflexion, afin de mieux isoler la signature des emissions OH. Les spectres observes sont compares a des spectres composes en utilisant les taux d'emission pour la fluorescence resonante solaire (facteurs g) et l'emission spontanee du systeme de bande OH [A.sup.2][Σ.sup.+]v' = 1 a OH [A.sup.2][Σ.sup.+]v'= 0. La connaissance detaillee du systeme OH [A.sup.2][Σ.sup.+]-[X.sup.2]Π est critique dans l'utilisation des observations OH pour determiner les densites OH et les concentrations de vapeur d'eau mesospheriques. [Traduit par la Redaction], 1. Introduction Since the hydroxyl molecule (OH) has a major impact on ozone ([O.sub.3]) chemistry in the mesosphere, see, for example, ref. 1, it is important to have reliable and [...]
- Published
- 2008
11. The retrieval of vertical profiles of the ozone number density using Chappuis band absorption information and a multiplicative algebraic reconstruction technique (1)
- Author
-
Roth, C.Z., Degenstein, D.A., Bourassa, A.E., and Llewellyn, E.J.
- Subjects
Atmospheric ozone -- Properties -- Models -- Usage ,Absorption -- Models -- Usage ,Algorithms -- Usage -- Models ,Physics ,Algorithm ,Usage ,Models ,Properties - Abstract
Abstract: A new algorithm, SaskMART, is presented that uses observations of limb-scattered sunlight and a radiative transfer model to determine the ozone number-density profile up to 35 km altitude. In [...]
- Published
- 2007
12. The impact of sea-glint upon limb radiance (1)
- Author
-
Degenstein, D.A., Bourassa, A.E., Llewellyn, E.J., and Lloyd, N.D.
- Subjects
Arabian Sea -- Models ,Spectrograph -- Usage -- Equipment and supplies -- Models -- 2002 AD ,Radiative transfer -- Models -- Equipment and supplies -- 2002 AD ,Ocean -- Properties -- Models -- Equipment and supplies -- 2002 AD ,Artificial satellites, European -- Equipment and supplies -- Models -- 2002 AD ,Meteorological satellites -- Equipment and supplies -- Usage -- Models -- 2002 AD ,Physics ,Usage ,Models ,Properties ,Equipment and supplies - Abstract
Abstract: A simple radiative transfer model is developed to calculate the contribution of sea-glint to limb radiance. It is shown that the absolute sea-glint signal peaks between 70. and 80. [...]
- Published
- 2007
13. OSIRIS observations of OH [A.sup.2][∑.sup.+]-[X.sup.2]Π 308 nm solar resonance fluorescence at sunrise in the upper mesosphere (1)
- Author
-
Gattinger, R.L., Boone, C.D., Walker, K.A., Degenstein, D.A., Lloyd, N.D., Bernath, P.F., and Llewellyn, E.J.
- Subjects
Infrared imaging -- Observations ,Photochemistry -- Observations ,Physics ,Observations - Abstract
Abstract: Since the OH molecule plays a critical role as a catalyst in atmospheric photochemistry, an accurate measurement of the OH density profile covering a broad range of latitudes and [...]
- Published
- 2007
14. Correlation of PMC relative brightness and altitudes observed by Odin/OSIRIS in the Northern Hemisphere in 2002–2003
- Author
-
Petelina, S.V., Degenstein, D.A., Llewellyn, E.J., and Lloyd, N.D.
- Published
- 2006
- Full Text
- View/download PDF
15. Odin/OSIRIS limb observations of polar mesospheric clouds in 2001–2003
- Author
-
Petelina, S.V., Llewellyn, E.J., Degenstein, D.A., and Lloyd, N.D.
- Published
- 2006
- Full Text
- View/download PDF
16. Climatology of the subvisual cirrus clouds as seen by OSIRIS on Odin
- Author
-
Bourassa, A.E., Degenstein, D.A., and Llewellyn, E.J.
- Published
- 2005
- Full Text
- View/download PDF
17. Effect of volcanic aerosol on stratospheric NO2 and N2O5 from 2002-2014 as measured by Odin-OSIRIS and Envisat-MIPAS
- Author
-
Adams, C., Bourassa, A.E., McLinden, C.A., Sioris, C.E., Von Clarmann, T., Funke, Bernd, Rieger, L.A., Degenstein, D.A., Natural Sciences and Engineering Research Council of Canada, Canadian Space Agency, Swedish National Space Board, Centre National D'Etudes Spatiales (France), Finnish Funding Agency for Innovation, and Ministerio de Economía, Industria y Competitividad (España)
- Abstract
Following the large volcanic eruptions of Pinatubo in 1991 and El Chichón in 1982, decreases in stratospheric NO2 associated with enhanced aerosol were observed. The Optical Spectrograph and Infrared Imaging Spectrometer (OSIRIS) measured the widespread enhancements of stratospheric aerosol following seven volcanic eruptions between 2002 and 2014, although the magnitudes of these eruptions were all much smaller than the Pinatubo and El Chichón eruptions. In order to isolate and quantify the relationship between volcanic aerosol and NO2, NO2 anomalies were calculated using measurements from OSIRIS and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). In the tropics, variability due to the quasi-biennial oscillation was subtracted from the time series. OSIRIS profile measurements indicate that the strongest anticorrelations between NO2 and volcanic aerosol extinction were for the 5km layer starting ∼ 3km above the climatological mean tropopause at the given latitude. OSIRIS stratospheric NO2 partial columns in this layer were found to be smaller than background NO2 levels during these aerosol enhancements by up to ∼ 60% with typical Pearson correlation coefficients of R ∼ -0. 7. MIPAS also observed decreases in NO2 partial columns during periods affected by volcanic aerosol, with percent differences of up to ∼ 25% relative to background levels. An even stronger anticorrelation was observed between OSIRIS aerosol optical depth and MIPAS N2O5 partial columns, with R ∼ -0. 9, although no link with MIPAS HNO3 was observed. The variation in OSIRIS NO2 with increasing aerosol was found to be consistent with simulations from a photochemical box model within the estimated model uncertainty.© Author(s) 2017. ., This work was supported by the Natural Sciences and Engineering Research Council (Canada) and the Canadian Space Agency. Odin is a Swedish-led satellite project funded jointly by Sweden (SNSB), Canada (CSA), France (CNES), and Finland (Tekes). Bernd Funke was supported by the Spanish MINECO under grant ESP2014-54362-P.
- Published
- 2017
18. Effect of volcanic aerosol on stratospheric NO2 and N2O5 from 2002-2014 as measured by Odin-OSIRIS and Envisat-MIPAS
- Author
-
Natural Sciences and Engineering Research Council of Canada, Canadian Space Agency, Swedish National Space Board, Centre National D'Etudes Spatiales (France), Finnish Funding Agency for Innovation, Ministerio de Economía, Industria y Competitividad (España), Adams, C., Bourassa, A.E., McLinden, C.A., Sioris, C.E., Von Clarmann, T., Funke, Bernd, Rieger, L.A., Degenstein, D.A., Natural Sciences and Engineering Research Council of Canada, Canadian Space Agency, Swedish National Space Board, Centre National D'Etudes Spatiales (France), Finnish Funding Agency for Innovation, Ministerio de Economía, Industria y Competitividad (España), Adams, C., Bourassa, A.E., McLinden, C.A., Sioris, C.E., Von Clarmann, T., Funke, Bernd, Rieger, L.A., and Degenstein, D.A.
- Abstract
Following the large volcanic eruptions of Pinatubo in 1991 and El Chichón in 1982, decreases in stratospheric NO2 associated with enhanced aerosol were observed. The Optical Spectrograph and Infrared Imaging Spectrometer (OSIRIS) measured the widespread enhancements of stratospheric aerosol following seven volcanic eruptions between 2002 and 2014, although the magnitudes of these eruptions were all much smaller than the Pinatubo and El Chichón eruptions. In order to isolate and quantify the relationship between volcanic aerosol and NO2, NO2 anomalies were calculated using measurements from OSIRIS and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). In the tropics, variability due to the quasi-biennial oscillation was subtracted from the time series. OSIRIS profile measurements indicate that the strongest anticorrelations between NO2 and volcanic aerosol extinction were for the 5km layer starting ∼ 3km above the climatological mean tropopause at the given latitude. OSIRIS stratospheric NO2 partial columns in this layer were found to be smaller than background NO2 levels during these aerosol enhancements by up to ∼ 60% with typical Pearson correlation coefficients of R ∼ -0. 7. MIPAS also observed decreases in NO2 partial columns during periods affected by volcanic aerosol, with percent differences of up to ∼ 25% relative to background levels. An even stronger anticorrelation was observed between OSIRIS aerosol optical depth and MIPAS N2O5 partial columns, with R ∼ -0. 9, although no link with MIPAS HNO3 was observed. The variation in OSIRIS NO2 with increasing aerosol was found to be consistent with simulations from a photochemical box model within the estimated model uncertainty.© Author(s) 2017. .
- Published
- 2017
19. Validation of ACE-FTS version 3.5 NOy species profiles using correlative satellite measurements
- Author
-
National Aeronautics and Space Administration (US), Swedish National Space Board, Centre National D'Etudes Spatiales (France), European Space Agency, Canadian Space Agency, German Centre for Air and Space Travel, University of Bremen, Sheese, P.E., Walker, K.A., Boone, C.D., McLinden, C.A., Bernath, P.E., Bourassa, A.E., Burrows, J.P., Degenstein, D.A., Funke, Bernd, Fussen, D., Manney, G.L., Thomas McElroy, C., Murtagh, D., Randall, C.E., Raspollini, P., Rozanov, A., Russell, J.M., Suzuki, M., Shiotani, M., Urban, J., Von Clarmann, T., Zawodny, J.M., National Aeronautics and Space Administration (US), Swedish National Space Board, Centre National D'Etudes Spatiales (France), European Space Agency, Canadian Space Agency, German Centre for Air and Space Travel, University of Bremen, Sheese, P.E., Walker, K.A., Boone, C.D., McLinden, C.A., Bernath, P.E., Bourassa, A.E., Burrows, J.P., Degenstein, D.A., Funke, Bernd, Fussen, D., Manney, G.L., Thomas McElroy, C., Murtagh, D., Randall, C.E., Raspollini, P., Rozanov, A., Russell, J.M., Suzuki, M., Shiotani, M., Urban, J., Von Clarmann, T., and Zawodny, J.M.
- Abstract
The ACE-FTS (Atmospheric Chemistry Experiment-Fourier Transform Spectrometer) instrument on the Canadian SCISAT satellite, which has been in operation for over 12 years, has the capability of deriving stratospheric profiles of many of the NO (N+NO+NO+NO+2×NO+HNO+HNO+ClONO+BrONO) species. Version 2.2 of ACE-FTS NO, NO, HNO, NO, and ClONO has previously been validated, and this study compares the most recent version (v3.5) of these five ACE-FTS products to spatially and temporally coincident measurements from other satellite instruments-GOMOS, HALOE, MAESTRO, MIPAS, MLS, OSIRIS, POAM III, SAGE III, SCIAMACHY, SMILES, and SMR. For each ACE-FTS measurement, a photochemical box model was used to simulate the diurnal variations of the NOy species and the ACE-FTS measurements were scaled to the local times of the coincident measurements. The comparisons for all five species show good agreement with correlative satellite measurements. For NO in the altitude range of 25-50 km, ACE-FTS typically agrees with correlative data to within .10 %. Instrumentaveraged mean relative differences are approximately.10% at 30-40 km for NO, within-7% at 8-30 km for HNO, better than.7% at 21-34 km for local morning NO, and better than.8% at 21-34 km for ClONO. Where possible, the variations in the mean differences due to changes in the comparison local time and latitude are also discussed.©2016 Author(s).
- Published
- 2016
20. Comparison of ozone profiles measured by the Odin satellite instruments and ground-based, airborne, satellite experiments and model computations
- Author
-
Jégou, F., Noë, J. de la, Drouin, A., Ricaud, P., Urban, Joanna, Schneider, N., Leflochmoën, E., Dupuy, E., Amraoui, L. El, Planchais, Y., Murtagh, D. P., Lautie, N., Eriksson, P., Jiménez, C., Brohede, S., Stegman, J., Llewellyn, E. J., Petelina, S., Degenstein, D.A., Gattinger, R. L., Lloyd, N. D., Haley, C. S., Savigny, C. von, Mcdade, I., Goutail, Florence, Bazureau, Ariane, Godin-Beekmann, Sophie, Pommereau, Jean-Pierre, Camy-Peyret, Claude, Payan, Sébastien, Gesek, P., Moreau, G., Renard, Jean-Baptiste, Robert, Cédric, Catoire, Valéry, Huret, Nathalie, Strong, K., Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'aérologie (LAERO), Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Department of Radio and Space Science [Göteborg], Chalmers University of Technology [Göteborg], Department of Meteorology [Stockholm] (MISU), Stockholm University, Institute of Space and Atmospheric Studies [Saskatoon] (ISAS), Department of Physics and Engineering Physics [Saskatoon], University of Saskatchewan [Saskatoon] (U of S)-University of Saskatchewan [Saskatoon] (U of S), University of Saskatchewan [Saskatoon] (U of S), Centre for Research in Earth and Space Science [Toronto] (CRESS), York University [Toronto], Department of Earth and Space Science and Engineering [York University - Toronto] (ESSE), Service d'aéronomie (SA), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Moleculaire pour l'Atmosphere et l'Astrophysique (LPMAA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique et chimie de l'environnement (LPCE), Université d'Orléans (UO)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut Gustave Roussy (IGR), Department of Physics [Toronto], University of Toronto, Laboratoire d'aérologie (LA), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), and Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere - Abstract
The Odin satellite carries two instruments measuring ozone spectra from which strato- spheric ozone profiles are retrieved. Onboard Odin, the Sub-Millimeter Radiometer (SMR) measures an ozone spectral line at 501.4 GHz. Forward model and inversion codes using the Optimal Estimation Method permit the retrieval of vertical profiles in the altitude range 20-65 km. The UV-visible spectrograph of the OSIRIS instru- ment measures ozone absorption limb spectra in the ranges 300-340 and 400-700 nm. A code based on the technique described by Flittner et al. (2000) and McPeters et al. (2000) provides vertical profiles from 20 to 60 km. This work presents a comparison of Odin ozone profiles with those obtained by ground-based measurements from primary or complementary stations of the Network for the Detection of Stratospheric Change (NDSC) such as lidars, microwave radiometers and ozonesondes. Some additional comparisons are also performed with ozone profiles obtained by balloon flights, air- craft experiments, other satellite measurements and model computations. These largesets of comparisons is also used to confirm the soundness of the Odin ozone measure- ments.
- Published
- 2004
21. The OSIRIS instrument on the Odin spacecraft.
- Author
-
Llewellyn, E.J., Lloyd, N.D., Degenstein, D.A., Gattinger, R.L., Petelina, S.V., Bourassa, A.E., Wiensz, J.T., Ivanov, E.V., McDade, I.C., Solheim, B.H., McConnell, J.C., Haley, C.S., von Savigny, C., Sioris, C.E., McLinden, C.A., Griffioen, E., Kaminski, J., Evans, W.F.J., Puckrin, E., and Strong, K.
- Subjects
OSIRIS (Electronic computer system) ,SPECTROGRAPHS ,IMAGING systems ,SPACE vehicle electronics ,SPACE vehicle control systems ,TOMOGRAPHY - Abstract
Copyright of Canadian Journal of Physics is the property of Canadian Science Publishing and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
- Published
- 2004
- Full Text
- View/download PDF
22. Mesospheric ozone: Determination from orbit with the OSIRIS instrument on Odin.
- Author
-
Khabibrakhmanov, I.K., Degenstein, D.A., and Llewellyn, E.J.
- Subjects
- *
INFRARED imaging , *ARTIFICIAL satellites , *AIRGLOW , *PHOTOCHEMISTRY - Abstract
The analysis of the data from the optical spectrograph and infrared imager system (OSIRIS) that will fly on the Odin satellite requires special attention as many of the measurements will be made in regions of the atmosphere that are relatively close to terminator. Under these conditions the photochemical processes in the upper atmosphere that are responsible for much of the oxygen infrared atmospheric band airglow emission are nonstationary. It is this latter aspect that complicates the retrieval of the mesospheric ozone profile from the OSIRIS observations. However, a tomographic analysis technique that has been developed specifically for the Odin project allows accurate recovery of local volume emission rates in the orbit plane. It is shown that the tomographic analysis technique can be combined with nonstationary atmospheric photochemistry models to recover the mesospheric ozone profile near the terminator. [ABSTRACT FROM AUTHOR]
- Published
- 2002
- Full Text
- View/download PDF
23. Ground-based Ring-effect measurements with the OSIRIS development model.
- Author
-
Sioris, C.E., Evans, W.F.J., Gattinger, R.L., McDade, I.C., Degenstein, D.A., and Llewellyn, E.J.
- Subjects
ULTRAVIOLET spectrometry ,INFRARED imaging ,FRAUNHOFER lines ,SOLAR spectra ,RAMAN effect - Abstract
The Ring effect is measured using the UV-visible spectrometer (∼1 nm spectral resolution) of OSIRIS, the optical spectrograph and infrared imaging system. The observed filling in of Ca(II) H and K (∼395 nm), the two largest Fraunhofer lines in the solar spectrum, are compared with the filling in simulated with a new model that includes rotational Raman scattering (RRS) by N[SUB2] and O[SUB2]. The filling in is (1.06 ± 0:60)% at Ca(II) K and (1.40 ± 0:50)% at Ca(II) H for blue-sky observations at a solar zenith angle of 37°. The measured filling in agrees with the modelled filling in within the uncertainties. [ABSTRACT FROM AUTHOR]
- Published
- 2002
- Full Text
- View/download PDF
24. Drift-corrected trends and periodic variations in MIPAS IMK/IAA ozone measurements
- Author
-
Eckert, E., Clarmann, T.Von, Kiefer, M., Stiller, G.P., Lossow, S., Glatthor, N., Degenstein, D.A., Froidevaux, L., Godin-Beekmann, S., Leblanc, T., McDermid, S., Pastel, M., Steinbrecht, W., Swart, D.P.J., Walker, K.A., and Bernath, P.F.
- Subjects
13. Climate action - Abstract
Drifts, trends and periodic variations were calculated from monthly zonally averaged ozone profiles. The ozone profiles were derived from level-1b data of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) by means of the scientific level-2 processor run by the Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research (IMK). All trend and drift analyses were performed using a multilinear parametric trend model which includes a linear term, several harmonics with period lengths from 3 to 24 months and the quasi-biennial oscillation (QBO). Drifts at 2-sigma significance level were mainly negative for ozone relative to Aura MLS and Odin OSIRIS and negative or near zero for most of the comparisons to lidar measurements. Lidar stations used here include those at Hohenpeissenberg (47.8° N, 11.0° E), Lauder (45.0° S, 169.7° E), Mauna Loa (19.5° N, 155.6° W), Observatoire Haute Provence (43.9° N, 5.7° E) and Table Mountain (34.4° N, 117.7° W). Drifts against the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) were found to be mostly insignificant. The assessed MIPAS ozone trends cover the time period of July 2002 to April 2012 and range from −0.56 ppmv decade−1 to +0.48 ppmv decade−1 (−0.52 ppmv decade−1 to +0.47 ppmv decade−1 when displayed on pressure coordinates) depending on altitude/ pressure and latitude. From the empirical drift analyses we conclude that the real ozone trends might be slightly more positive/less negative than those calculated from the MIPAS data, by conceding the possibility of MIPAS having a very small (approximately within −0.3 ppmv decade−1) negative drift for ozone. This leads to drift-corrected trends of −0.41 ppmv decade−1 to +0.55 ppmv decade−1 (−0.38 ppmv decade−1 to +0.53 ppmv decade−1 when displayed on pressure coordinates) for the time period covered by MIPAS Envisat measurements, with very few negative and large areas of positive trends at mid-latitudes for both hemispheres around and above 30 km (~10 hPa). Negative trends are found in the tropics around 25 and 35 km (~25 and 5 hPa), while an area of positive trends is located right above the tropical tropopause. These findings are in good agreement with the recent literature. Differences of the trends compared with the recent literature could be explained by a possible shift of the subtropical mixing barriers. Results for the altitude–latitude distribution of amplitudes of the quasi-biennial, annual and the semi-annual oscillation are overall in very good agreement with recent findings.
25. Drift-corrected trends and periodic variations in MIPAS IMK/IAA ozone measurements
- Author
-
Eckert, E., Clarmann, T. Von, Kiefer, M., Stiller, G.P., Lossow, S., Glatthor, N., Degenstein, D.A., Froidevaux, L., Godin-Beekmann, S., Leblanc, T., McDermid, S., Pastel, M., Steinbrecht, W., Swart, D.P.J., Walker, K.A., and Bernath, P.F.
- Subjects
13. Climate action - Abstract
Drifts, trends and periodic variations were calculated from monthly zonally averaged ozone profiles. The ozone profiles were derived from level-1b data of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) by means of the scientific level-2 processor run by the Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research (IMK). All trend and drift analyses were performed using a multilinear parametric trend model which includes a linear term, several harmonics with period lengths from 3 to 24 months and the quasi-biennial oscillation (QBO). Drifts at 2-sigma significance level were mainly negative for ozone relative to Aura MLS and Odin OSIRIS and negative or near zero for most of the comparisons to lidar measurements. Lidar stations used here include those at Hohenpeissenberg (47.8° N, 11.0° E), Lauder (45.0° S, 169.7° E), Mauna Loa (19.5° N, 155.6° W), Observatoire Haute Provence (43.9° N, 5.7° E) and Table Mountain (34.4° N, 117.7° W). Drifts against the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) were found to be mostly insignificant. The assessed MIPAS ozone trends cover the time period of July 2002 to April 2012 and range from −0.56 ppmv decade−1 to +0.48 ppmv decade−1 (−0.52 ppmv decade−1 to +0.47 ppmv decade−1 when displayed on pressure coordinates) depending on altitude/pressure and latitude. From the empirical drift analyses we conclude that the real ozone trends might be slightly more positive/less negative than those calculated from the MIPAS data, by conceding the possibility of MIPAS having a very small (approximately within −0.3 ppmv decade−1) negative drift for ozone. This leads to drift-corrected trends of −0.41 ppmv decade−1 to +0.55 ppmv decade−1 (−0.38 ppmv decade−1 to +0.53 ppmv decade−1 when displayed on pressure coordinates) for the time period covered by MIPAS Envisat measurements, with very few negative and large areas of positive trends at mid-latitudes for both hemispheres around and above 30 km (~10 hPa). Negative trends are found in the tropics around 25 and 35 km (~25 and 5 hPa), while an area of positive trends is located right above the tropical tropopause. These findings are in good agreement with the recent literature. Differences of the trends compared with the recent literature could be explained by a possible shift of the subtropical mixing barriers. Results for the altitude–latitude distribution of amplitudes of the quasi-biennial, annual and the semi-annual oscillation are overall in very good agreement with recent findings.
26. Validation of ozone measurements from the atmospheric chemistry experiment (ACE)
- Author
-
Dupuy, E., Walker, K.A., Kar, J., Boone, C.D., McElroy, C.T., Bernath, P.F., Drummond, J.R., Skelton, R., McLeod, S.D., Hughes, R.C., Nowlan, C.R., Dufour, D.G., Zou, J., Nichitiu, F., Strong, K., Baron, P., Bevilacqua, R.M., Blumenstock, T., Bodeker, G.E., Borsdorff, T., Bourassa, A.E., Bovensmann, H., Boyd, I.S., Bracher, A., Brogniez, C., Burrows, J.P., Catoire, V., Ceccherini, S., Chabrillat, S., Christensen, T., Coffey, M.T., Cortesi, U., Davies, J., De Clercq, C., Degenstein, D.A., De Maziere, M., Demoulin, P., Dodion, J., Firanski, B., Fischer, H., Forbes, G., Froidevaux, L., Fussen, D., Gerard, P., Godin-Beekman, S., Goutail, F., Granville, J., Griffith, D., Haley, C.S., Hannigan, J.W., Höpfner, M., Jin, J.J., Jones, A., Jones, N.B., Jucks, K., Kagawa, A., Kasai, Y., Kerzenmacher, T.E., Kleinböhl, A., Klekociuk, A.R., Kramer, I., Küllmann, H., Kuttippurath, J., Kyrölä, E., Lambert, J.C., Livesey, N.J., Llewellyn, E.J., Lloyd, N.D., Mahieu, E., Manney, G.L., Marshall, B.T., McConnell, J.C., McCormick, M.P., McDermid, I.S., McHugh, M., McLinden, C.A., Mellqvist, J., Mizutani, K., Murayama, Y., Murtagh, D.P., Oelhaf, H., Parrish, A., Petelina, S.V., Piccolo, C., Pommereau, J.P., Randall, C.E., Robert, C., Roth, C., Schneider, M., Senten, C., Steck, T., Strandberg, A., Strawbridge, K.B., Sussmann, R., Swart, D.P.J., Tarasick, D.W., Taylor, J.R., Tetard, C., Thomason, L.W., Thompson, A.M., Tully, M.B., Urban, J., Vanhellemont, F., Vigouroux, C., Clarmann, T.Von, Von Der Gathen, P., Savigny, C., Waters, J.W., Witte, J.C., Wolff, M., and Zawodny, J.M.
- Subjects
13. Climate action - Abstract
This paper presents extensive {bias determination} analyses of ozone observations from the Atmospheric Chemistry Experiment (ACE) satellite instruments: the ACE Fourier Transform Spectrometer (ACE-FTS) and the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (ACE-MAESTRO) instrument. Here we compare the latest ozone data products from ACE-FTS and ACE-MAESTRO with coincident observations from nearly 20 satellite-borne, airborne, balloon-borne and ground-based instruments, by analysing volume mixing ratio profiles and partial column densities. The ACE-FTS version 2.2 Ozone Update product reports more ozone than most correlative measurements from the upper troposphere to the lower mesosphere. At altitude levels from 16 to 44 km, the average values of the mean relative differences are nearly all within +1 to +8%. At higher altitudes (45–60 km), the ACE-FTS ozone amounts are significantly larger than those of the comparison instruments, with mean relative differences of up to +40% (about +20% on average). For the ACE-MAESTRO version 1.2 ozone data product, mean relative differences are within ±10% (average values within ±6%) between 18 and 40 km for both the sunrise and sunset measurements. At higher altitudes (~35–55 km), systematic biases of opposite sign are found between the ACE-MAESTRO sunrise and sunset observations. While ozone amounts derived from the ACE-MAESTRO sunrise occultation data are often smaller than the coincident observations (with mean relative differences down to −10%), the sunset occultation profiles for ACE-MAESTRO show results that are qualitatively similar to ACE-FTS, indicating a large positive bias (mean relative differences within +10 to +30%) in the 45–55 km altitude range. In contrast, there is no significant systematic difference in bias found for the ACE-FTS sunrise and sunset measurements.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.