1. Minimum Plane Bichromatic Spanning Trees
- Author
-
Akitaya, Hugo A., Biniaz, Ahmad, Demaine, Erik D., Kleist, Linda, Stock, Frederick, and Tóth, Csaba D.
- Subjects
Computer Science - Computational Geometry - Abstract
For a set of red and blue points in the plane, a minimum bichromatic spanning tree (MinBST) is a shortest spanning tree of the points such that every edge has a red and a blue endpoint. A MinBST can be computed in $O(n\log n)$ time where $n$ is the number of points. In contrast to the standard Euclidean MST, which is always plane (noncrossing), a MinBST may have edges that cross each other. However, we prove that a MinBST is quasi-plane, that is, it does not contain three pairwise crossing edges, and we determine the maximum number of crossings. Moreover, we study the problem of finding a minimum plane bichromatic spanning tree (MinPBST) which is a shortest bichromatic spanning tree with pairwise noncrossing edges. This problem is known to be NP-hard. The previous best approximation algorithm, due to Borgelt et al. (2009), has a ratio of $O(\sqrt{n})$. It is also known that the optimum solution can be computed in polynomial time in some special cases, for instance, when the points are in convex position, collinear, semi-collinear, or when one color class has constant size. We present an $O(\log n)$-factor approximation algorithm for the general case., Comment: ISAAC 2024
- Published
- 2024