1. Characterization of individual bile acids in vivo utilizing a novel low bile acid mouse model.
- Author
-
Taylor R, Yang Z, Henry Z, Capece G, Meadows V, Otersen K, Basaly V, Bhattacharya A, Mera S, Zhou P, Joseph L, Yang I, Brinker A, Buckley B, Kong B, and Guo GL
- Subjects
- Animals, Male, Mice, Inbred C57BL, Deoxycholic Acid toxicity, Cholestanetriol 26-Monooxygenase genetics, Cholestanetriol 26-Monooxygenase metabolism, Mice, Ursodeoxycholic Acid pharmacology, Signal Transduction drug effects, Cholesterol 7-alpha-Hydroxylase, Receptors, Cytoplasmic and Nuclear metabolism, Receptors, Cytoplasmic and Nuclear genetics, Bile Acids and Salts metabolism, Mice, Knockout, Liver metabolism, Liver drug effects, Fibroblast Growth Factors metabolism, Fibroblast Growth Factors genetics, Cholic Acid metabolism
- Abstract
Bile acids (BAs) are signaling molecules synthesized in the liver initially by CYP7A1 and CYP27A1 in the classical and alternative pathways, respectively. BAs are essential for cholesterol clearance, intestinal absorption of lipids, and endogenous modulators of farnesoid x receptor (FXR). FXR is critical in maintaining BA homeostasis and gut-liver crosstalk. Complex reactions in vivo and the lack of suitable animal models impede our understanding of the functions of individual BAs. In this study, we characterized the in vivo effects of three-day feeding of cholic acid (CA), deoxycholic acid (DCA), or ursodeoxycholic acid (UDCA) at physiological/non-hepatotoxic concentrations in a novel low-BA mouse model (Cyp7a1-/-/Cyp27a1-/-, DKO). Liver injury, BA levels and composition and BA signaling by the FXR-fibroblast growth factor 15 (FGF15) axis were determined. Overall, higher basal inflammation and altered lipid metabolism in DKO mice might be associated with low BAs. CA, DCA, and UDCA feeding activated FXR signals with tissue specificity. Dietary CA and DCA similarly altered tissue BA profiles to be less hydrophobic, while UDCA promoted a more hydrophobic tissue BA pool with the profiles shifted toward non-12α-OH BAs and secondary BAs. However, UDCA did not offer any overt protective effects as expected. These findings allow us to determine the precise effects of individual BAs in vivo on BA-FXR signaling and overall BA homeostasis in liver physiology and pathologies., (© The Author(s) 2024. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF