15 results on '"Depaepe T"'
Search Results
2. Ethylene
- Author
-
Depaepe, T., primary and Van Der Straeten, D., additional
- Published
- 2017
- Full Text
- View/download PDF
3. Cytokinins regulate spatially specific ethylene production to control root growth in Arabidopsis.
- Author
-
Yamoune A, Zdarska M, Depaepe T, Rudolfova A, Skalak J, Berendzen KW, Mira-Rodado V, Fitz M, Pekarova B, Nicolas Mala KL, Tarr P, Spackova E, Tomovicova L, Parizkova B, Franczyk A, Kovacova I, Dolgikh V, Zemlyanskaya E, Pernisova M, Novak O, Meyerowitz E, Harter K, Van Der Straeten D, and Hejatko J
- Subjects
- Gene Expression Regulation, Plant, Arabidopsis Proteins genetics, Arabidopsis Proteins metabolism, Ethylenes metabolism, Ethylenes biosynthesis, Arabidopsis genetics, Arabidopsis growth & development, Arabidopsis metabolism, Cytokinins metabolism, Plant Roots growth & development, Plant Roots genetics, Plant Roots metabolism
- Abstract
Two principal growth regulators, cytokinins and ethylene, are known to interact in the regulation of plant growth. However, information about the underlying molecular mechanism and positional specificity of cytokinin/ethylene crosstalk in the control of root growth is scarce. We have identified the spatial specificity of cytokinin-regulated root elongation and root apical meristem (RAM) size, both of which we demonstrate to be dependent on ethylene biosynthesis. Upregulation of the cytokinin biosynthetic gene ISOPENTENYLTRANSFERASE (IPT) in proximal and peripheral tissues leads to both root and RAM shortening. By contrast, IPT activation in distal and inner tissues reduces RAM size while leaving the root length comparable to that of mock-treated controls. We show that cytokinins regulate two steps specific to ethylene biosynthesis: production of the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) by ACC SYNTHASEs (ACSs) and its conversion to ethylene by ACC OXIDASEs (ACOs). We describe cytokinin- and ethylene-specific regulation controlling the activity of ACSs and ACOs that are spatially discrete along both proximo/distal and radial root axes. Using direct ethylene measurements, we identify ACO2, ACO3, and ACO4 as being responsible for ethylene biosynthesis and ethylene-regulated root and RAM shortening in cytokinin-treated Arabidopsis. Direct interaction between ARABIDOPSIS RESPONSE REGULATOR 2 (ARR2), a member of the multistep phosphorelay cascade, and the C-terminal portion of ETHYLENE INSENSITIVE 2 (EIN2-C), a key regulator of canonical ethylene signaling, is involved in the cytokinin-induced, ethylene-mediated control of ACO4. We propose tight cooperation between cytokinin and ethylene signaling in the spatially specific regulation of ethylene biosynthesis as a key aspect of the hormonal control of root growth., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
4. Arinole, a novel auxin-stimulating benzoxazole, affects root growth and promotes adventitious root formation.
- Author
-
Depaepe T, Prinsen E, Hu Y, Sanchez-Munoz R, Denoo B, Buyst D, Darouez H, Werbrouck S, Hayashi KI, Martins J, Winne J, and Van Der Straeten D
- Subjects
- Seedlings growth & development, Seedlings drug effects, Seedlings metabolism, Indoleacetic Acids metabolism, Indoleacetic Acids pharmacology, Plant Roots growth & development, Plant Roots drug effects, Plant Roots metabolism, Benzoxazoles pharmacology, Plant Growth Regulators metabolism, Plant Growth Regulators pharmacology, Arabidopsis growth & development, Arabidopsis drug effects, Arabidopsis metabolism
- Abstract
The triple response phenotype is characteristic for seedlings treated with the phytohormone ethylene or its direct precursor 1-aminocyclopropane-carboxylic acid, and is often employed to find novel chemical tools to probe ethylene responses. We identified a benzoxazole-urea derivative (B2) partially mimicking ethylene effects in a triple response bioassay. A phenotypic analysis demonstrated that B2 and its closest analogue arinole (ARI) induced phenotypic responses reminiscent of seedlings with elevated levels of auxin, including impaired hook development and inhibition of seedling growth. Specifically, ARI reduced longitudinal cell elongation in roots, while promoting cell division. In contrast to other natural or synthetic auxins, ARI mostly acts as an inducer of adventitious root development, with only limited effects on lateral root development. Quantification of free auxins and auxin biosynthetic precursors as well as auxin-related gene expression demonstrated that ARI boosts global auxin levels. In addition, analyses of auxin reporter lines and mutants, together with pharmacological assays with auxin-related inhibitors, confirmed that ARI effects are facilitated by TRYPTOPHAN AMINOTRANSFERASE1 (TAA1)-mediated auxin synthesis. ARI treatment in an array of species, including Arabidopsis, pea, tomato, poplar, and lavender, resulted in adventitious root formation, which is a desirable trait in both agriculture and horticulture., (© The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF
5. A UPLC-MS/MS method for quantification of metabolites in the ethylene biosynthesis pathway and its biological validation in Arabidopsis.
- Author
-
Cao D, Depaepe T, Sanchez-Muñoz R, Janssens H, Lemière F, Willems T, Winne J, Prinsen E, and Van Der Straeten D
- Subjects
- Chromatography, High Pressure Liquid, Biosynthetic Pathways, Stress, Physiological, Reproducibility of Results, Mutation genetics, Liquid Chromatography-Mass Spectrometry, Arabidopsis metabolism, Arabidopsis genetics, Ethylenes metabolism, Ethylenes biosynthesis, Tandem Mass Spectrometry methods, Amino Acids, Cyclic metabolism
- Abstract
The plant hormone ethylene is of vital importance in the regulation of plant development and stress responses. Recent studies revealed that 1-aminocyclopropane-1-carboxylic acid (ACC) plays a role beyond its function as an ethylene precursor. However, the absence of reliable methods to quantify ACC and its conjugates malonyl-ACC (MACC), glutamyl-ACC (GACC), and jasmonyl-ACC (JA-ACC) hinders related research. Combining synthetic and analytical chemistry, we present the first, validated methodology to rapidly extract and quantify ACC and its conjugates using ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). Its relevance was confirmed by application to Arabidopsis mutants with altered ACC metabolism and wild-type plants under stress. Pharmacological and genetic suppression of ACC synthesis resulted in decreased ACC and MACC content, whereas induction led to elevated levels. Salt, wounding, and submergence stress enhanced ACC and MACC production. GACC and JA-ACC were undetectable in vivo; however, GACC was identified in vitro, underscoring the broad applicability of the method. This method provides an efficient tool to study individual functions of ACC and its conjugates, paving the road toward exploration of novel avenues in ACC and ethylene metabolism, and revisiting ethylene literature in view of the recent discovery of an ethylene-independent role of ACC., (© 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation.)
- Published
- 2024
- Full Text
- View/download PDF
6. Phytohormone profiling in an evolutionary framework.
- Author
-
Schmidt V, Skokan R, Depaepe T, Kurtović K, Haluška S, Vosolsobě S, Vaculíková R, Pil A, Dobrev PI, Motyka V, Van Der Straeten D, and Petrášek J
- Subjects
- Viridiplantae metabolism, Viridiplantae genetics, Ethylenes metabolism, Oxylipins metabolism, Salicylic Acid metabolism, Abscisic Acid metabolism, Gene Expression Regulation, Plant, Cyclopentanes metabolism, Biological Evolution, Chlorophyta metabolism, Chlorophyta genetics, Signal Transduction, Plant Growth Regulators metabolism, Indoleacetic Acids metabolism, Phylogeny, Cytokinins metabolism
- Abstract
The genomes of charophyte green algae, close relatives of land plants, typically do not show signs of developmental regulation by phytohormones. However, scattered reports of endogenous phytohormone production in these organisms exist. We performed a comprehensive analysis of multiple phytohormones in Viridiplantae, focusing mainly on charophytes. We show that auxin, salicylic acid, ethylene and tRNA-derived cytokinins including cis-zeatin are found ubiquitously in Viridiplantae. By contrast, land plants but not green algae contain the trans-zeatin type cytokinins as well as auxin and cytokinin conjugates. Charophytes occasionally produce jasmonates and abscisic acid, whereas the latter is detected consistently in land plants. Several phytohormones are excreted into the culture medium, including auxin by charophytes and cytokinins and salicylic acid by Viridiplantae in general. We note that the conservation of phytohormone biosynthesis and signaling pathways known from angiosperms does not match the capacity for phytohormone biosynthesis in Viridiplantae. Our phylogenetically guided analysis of established algal cultures provides an important insight into phytohormone biosynthesis and metabolism across Streptophyta., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
7. UV-B responses in the spotlight: Dynamic photoreceptor interplay and cell-type specificity.
- Author
-
Depaepe T, Vanhaelewyn L, and Van Der Straeten D
- Subjects
- Light Signal Transduction, Ultraviolet Rays, Signal Transduction physiology, Plants metabolism
- Abstract
Plants are constantly exposed to a multitude of external signals, including light. The information contained within the full spectrum of light is perceived by a battery of photoreceptors, each with specific and shared signalling outputs. Recently, it has become clear that UV-B radiation is a vital component of the electromagnetic spectrum, guiding growth and being crucial for plant fitness. However, given the large overlap between UV-B specific signalling pathways and other photoreceptors, understanding how plants can distinguish UV-B specific signals from other light components deserves more scrutiny. With recent evidence, we propose that UV-B signalling and other light signalling pathways occur within distinct tissues and cell-types and that the contribution of each pathway depends on the type of response and the developmental stage of the plant. Elucidating the precise site(s) of action of each molecular player within these signalling pathways is key to fully understand how plants are able to orchestrate coordinated responses to light within the whole plant body. Focusing our efforts on the molecular study of light signal interactions to understand plant growth in natural environments in a cell-type specific manner will be a next step in the field of photobiology., (© 2023 John Wiley & Sons Ltd.)
- Published
- 2023
- Full Text
- View/download PDF
8. Ethylene signaling in salt-stressed Arabidopsis thaliana ein2-1 and ctr1-1 mutants - A dissection of molecular mechanisms involved in acclimation.
- Author
-
Vaseva II, Simova-Stoilova L, Kirova E, Mishev K, Depaepe T, Van Der Straeten D, and Vassileva V
- Subjects
- Dissection, Ethylenes, Gene Expression Regulation, Plant, Mutation, Protein Kinases genetics, Receptors, Cell Surface metabolism, Salt Tolerance genetics, Arabidopsis genetics, Arabidopsis metabolism, Arabidopsis Proteins genetics, Arabidopsis Proteins metabolism
- Abstract
To pinpoint ethylene-mediated molecular mechanisms involved in the adaptive response to salt stress we conducted a comparative study of Arabidopsis thaliana wild type (Col-0), ethylene insensitive (ein2-1), and constitutive signaling (ctr1-1) mutant plants. Reduced germination and survival rates were observed in ein2-1 plants at increasing NaCl concentrations. By contrast, ctr1-1 mutation conferred salt stress tolerance during early vegetative development, corroborating earlier studies. Аll genotypes experienced strong stress as evidenced by the accumulation of reactive oxygen species (ROS) and increased membrane lipid peroxidation. However, the isoenzyme profiles of ROS scavenging enzymes demonstrated a higher peroxidase (POX) activity in ctr1-1 individuals under control and salt stress conditions. A markedly elevated free L-Proline (L-Pro) content was detected in the ethylene constitutive mutant. This coincided with the increased levels of Delta-1-Pyrroline-5-Carboxylate Synthase (P5CS) which is the rate-limiting enzyme from the proline biosynthetic pathway. A stabilized upregulation of a stress-induced P5CS1 splice variant was observed in the ctr1-1 background, which was not documented in the ethylene insensitive mutant ein2-1. Transcript profiling of the major SALT OVERLY SENSITIVE (SOS) pathway players (SOS1, SOS2, and SOS3) revealed altered gene expression in the organs of the ethylene signaling mutants. Overall suppressed SOS expression was observed in the ein2-1 mutants while only the SOS transcript profiles in the ctr1-1 roots were similar to the wild type. Altogether, we provide experimental evidence for ethylene-mediated molecular mechanisms implicated in the acclimation response to salt stress in Arabidopsis, which operate mainly through the regulation of free proline accumulation and enhanced ROS scavenging., (Copyright © 2021 Elsevier Masson SAS. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
9. At the Crossroads of Survival and Death: The Reactive Oxygen Species-Ethylene-Sugar Triad and the Unfolded Protein Response.
- Author
-
Depaepe T, Hendrix S, Janse van Rensburg HC, Van den Ende W, Cuypers A, and Van Der Straeten D
- Subjects
- Ethylenes, Reactive Oxygen Species metabolism, Unfolded Protein Response, Endoplasmic Reticulum Stress, Sugars
- Abstract
Upon stress, a trade-off between plant growth and defense responses defines the capacity for survival. Stress can result in accumulation of misfolded proteins in the endoplasmic reticulum (ER) and other organelles. To cope with these proteotoxic effects, plants rely on the unfolded protein response (UPR). The involvement of reactive oxygen species (ROS), ethylene (ETH), and sugars, as well as their crosstalk, in general stress responses is well established, yet their role in UPR deserves further scrutiny. Here, a synopsis of current evidence for ROS-ETH-sugar crosstalk in UPR is discussed. We propose that this triad acts as a major signaling hub at the crossroads of survival and death, integrating information from ER, chloroplasts, and mitochondria, thereby facilitating a coordinated stress response., (Copyright © 2020 The Author(s). Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
10. The Diverse Salt-Stress Response of Arabidopsis ctr1-1 and ein2-1 Ethylene Signaling Mutants Is Linked to Altered Root Auxin Homeostasis.
- Author
-
Vaseva II, Mishev K, Depaepe T, Vassileva V, and Van Der Straeten D
- Abstract
We explored the interplay between ethylene signals and the auxin pool in roots exposed to high salinity using Arabidopsis thaliana wild-type plants (Col-0), and the ethylene-signaling mutants ctr1-1 (constitutive) and ein2-1 (insensitive). The negative effect of salt stress was less pronounced in ctr1-1 individuals, which was concomitant with augmented auxin signaling both in the ctr1-1 controls and after 100 mM NaCl treatment. The R2D2 auxin sensorallowed mapping this active auxin increase to the root epidermal cells in the late Cell Division (CDZ) and Transition Zone (TZ). In contrast, the ethylene-insensitive ein2-1 plants appeared depleted in active auxins. The involvement of ethylene/auxin crosstalk in the salt stress response was evaluated by introducing auxin reporters for local biosynthesis ( pTAR2::GUS ) and polar transport ( pLAX3::GUS , pAUX1::AUX1-YFP , pPIN1::PIN1-GFP , pPIN2::PIN2-GFP , pPIN3::GUS ) in the mutants. The constantly operating ethylene-signaling pathway in ctr1-1 was linked to increased auxin biosynthesis. This was accompanied by a steady expression of the auxin transporters evaluated by qRT-PCR and crosses with the auxin transport reporters. The results imply that the ability of ctr1-1 mutant to tolerate high salinity could be related to the altered ethylene/auxin regulatory loop manifested by a stabilized local auxin biosynthesis and transport.
- Published
- 2021
- Full Text
- View/download PDF
11. Comparable canopy and soil free-living nitrogen fixation rates in a lowland tropical forest.
- Author
-
Van Langenhove L, Depaepe T, Verryckt LT, Fuchslueger L, Donald J, Leroy C, Krishna Moorthy SM, Gargallo-Garriga A, Ellwood MDF, Verbeeck H, Van Der Straeten D, Peñuelas J, and Janssens IA
- Subjects
- Ecosystem, Forests, Nitrogen, Trees, Tropical Climate, Nitrogen Fixation, Soil
- Abstract
Biological nitrogen fixation (BNF) is a fundamental part of nitrogen cycling in tropical forests, yet little is known about the contribution made by free-living nitrogen fixers inhabiting the often-extensive forest canopy. We used the acetylene reduction assay, calibrated with
15 N2 , to measure free-living BNF on forest canopy leaves, vascular epiphytes, bryophytes and canopy soil, as well as on the forest floor in leaf litter and soil. We used a combination of calculated and published component densities to upscale free-living BNF rates to the forest level. We found that bryophytes and leaves situated in the canopy in particular displayed high mass-based rates of free-living BNF. Additionally, we calculated that nearly 2 kg of nitrogen enters the forest ecosystem through free-living BNF every year, 40% of which was fixed by the various canopy components. Our results reveal that in the studied tropical lowland forest a large part of the nitrogen input through free-living BNF stems from the canopy, but also that the total nitrogen inputs by free-living BNF are lower than previously thought and comparable to the inputs of reactive nitrogen by atmospheric deposition., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2020 Elsevier B.V. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF
12. Regulation of nitrogen fixation from free-living organisms in soil and leaf litter of two tropical forests of the Guiana shield.
- Author
-
Van Langenhove L, Depaepe T, Vicca S, van den Berge J, Stahl C, Courtois E, Weedon J, Urbina I, Grau O, Asensio D, Peñuelas J, Boeckx P, Richter A, Van Der Straeten D, and Janssens IA
- Abstract
Background and Aims: Biological fixation of atmospheric nitrogen (N
2 ) is the main pathway for introducing N into unmanaged ecosystems. While recent estimates suggest that free-living N fixation (FLNF) accounts for the majority of N fixed in mature tropical forests, the controls governing this process are not completely understood. The aim of this study was to quantify FLNF rates and determine its drivers in two tropical pristine forests of French Guiana., Methods: We used the acetylene reduction assay to measure FLNF rates at two sites, in two seasons and along three topographical positions, and used regression analyses to identify which edaphic explanatory variables, including carbon (C), nitrogen (N), phosphorus (P) and molybdenum (Mo) content, pH, water and available N and P, explained most of the variation in FLNF rates., Results: Overall, FLNF rates were lower than measured in tropical systems elsewhere. In soils seasonal variability was small and FLNF rates differed among topographies at only one site. Water, P and pH explained 24% of the variation. In leaf litter, FLNF rates differed seasonally, without site or topographical differences. Water, C, N and P explained 46% of the observed variation. We found no regulatory role of Mo at our sites., Conclusions: Rates of FLNF were low in primary rainforest on poor soils on the Guiana shield. Water was the most important rate-regulating factor and FLNF increased with increasing P, but decreased with increasing N. Our results support the general assumption that N fixation in tropical lowland forests is limited by P availability., (© The Author(s) 2019.)- Published
- 2020
- Full Text
- View/download PDF
13. The Ethylene Precursor ACC Affects Early Vegetative Development Independently of Ethylene Signaling.
- Author
-
Vanderstraeten L, Depaepe T, Bertrand S, and Van Der Straeten D
- Abstract
The plant hormone ethylene plays a pivotal role in virtually every aspect of plant development, including vegetative growth, fruit ripening, senescence, and abscission. Moreover, it acts as a primary defense signal during plant stress. Being a volatile, its immediate biosynthetic precursor, 1-aminocyclopropane-1-carboxylic acid, ACC, is generally employed as a tool to provoke ethylene responses. However, several reports propose a role for ACC in parallel or independently of ethylene signaling. In this study, pharmacological experiments with ethylene biosynthesis and signaling inhibitors, 2-aminoisobutyric acid and 1-methylcyclopropene, as well as mutant analyses demonstrate ACC-specific but ethylene-independent growth responses in both dark- and light-grown Arabidopsis seedlings. Detection of ethylene emanation in ethylene-deficient seedlings by means of laser-based photoacoustic spectroscopy further supports a signaling role for ACC. In view of these results, future studies employing ACC as a proxy for ethylene should consider ethylene-independent effects as well. The use of multiple knockout lines of ethylene biosynthesis genes will aid in the elucidation of the physiological roles of ACC as a signaling molecule in addition to its function as an ethylene precursor., (Copyright © 2019 Vanderstraeten, Depaepe, Bertrand and Van Der Straeten.)
- Published
- 2019
- Full Text
- View/download PDF
14. Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2-keto-4-methylthiobutyric acid production.
- Author
-
de Zélicourt A, Synek L, Saad MM, Alzubaidy H, Jalal R, Xie Y, Andrés-Barrao C, Rolli E, Guerard F, Mariappan KG, Daur I, Colcombet J, Benhamed M, Depaepe T, Van Der Straeten D, and Hirt H
- Subjects
- Arabidopsis genetics, Arabidopsis metabolism, Arabidopsis microbiology, Gene Expression Regulation, Plant, Methionine biosynthesis, Methionine metabolism, Plant Roots metabolism, Plant Shoots metabolism, Potassium metabolism, Adaptation, Physiological, Arabidopsis physiology, Enterobacter physiology, Ethylenes metabolism, Methionine analogs & derivatives, Stress, Physiological
- Abstract
Several plant species require microbial associations for survival under different biotic and abiotic stresses. In this study, we show that Enterobacter sp. SA187, a desert plant endophytic bacterium, enhances yield of the crop plant alfalfa under field conditions as well as growth of the model plant Arabidopsis thaliana in vitro, revealing a high potential of SA187 as a biological solution for improving crop production. Studying the SA187 interaction with Arabidopsis, we uncovered a number of mechanisms related to the beneficial association of SA187 with plants. SA187 colonizes both the surface and inner tissues of Arabidopsis roots and shoots. SA187 induces salt stress tolerance by production of bacterial 2-keto-4-methylthiobutyric acid (KMBA), known to be converted into ethylene. By transcriptomic, genetic and pharmacological analyses, we show that the ethylene signaling pathway, but not plant ethylene production, is required for KMBA-induced plant salt stress tolerance. These results reveal a novel molecular communication process during the beneficial microbe-induced plant stress tolerance.
- Published
- 2018
- Full Text
- View/download PDF
15. ACCERBATIN, a small molecule at the intersection of auxin and reactive oxygen species homeostasis with herbicidal properties.
- Author
-
Hu Y, Depaepe T, Smet D, Hoyerova K, Klíma P, Cuypers A, Cutler S, Buyst D, Morreel K, Boerjan W, Martins J, Petrášek J, Vandenbussche F, and Van Der Straeten D
- Subjects
- Arabidopsis genetics, Arabidopsis Proteins metabolism, Ethylenes metabolism, Gene Expression, Homeostasis, Seedlings metabolism, Amino Acids, Cyclic metabolism, Arabidopsis metabolism, Herbicides chemistry, Indoleacetic Acids metabolism, Quinolones metabolism, Reactive Oxygen Species metabolism
- Abstract
The volatile two-carbon hormone ethylene acts in concert with an array of signals to affect etiolated seedling development. From a chemical screen, we isolated a quinoline carboxamide designated ACCERBATIN (AEX) that exacerbates the 1-aminocyclopropane-1-carboxylic acid-induced triple response, typical for ethylene-treated seedlings in darkness. Phenotypic analyses revealed distinct AEX effects including inhibition of root hair development and shortening of the root meristem. Mutant analysis and reporter studies further suggested that AEX most probably acts in parallel to ethylene signaling. We demonstrated that AEX functions at the intersection of auxin metabolism and reactive oxygen species (ROS) homeostasis. AEX inhibited auxin efflux in BY-2 cells and promoted indole-3-acetic acid (IAA) oxidation in the shoot apical meristem and cotyledons of etiolated seedlings. Gene expression studies and superoxide/hydrogen peroxide staining further revealed that the disrupted auxin homeostasis was accompanied by oxidative stress. Interestingly, in light conditions, AEX exhibited properties reminiscent of the quinoline carboxylate-type auxin-like herbicides. We propose that AEX interferes with auxin transport from its major biosynthesis sites, either as a direct consequence of poor basipetal transport from the shoot meristematic region, or indirectly, through excessive IAA oxidation and ROS accumulation. Further investigation of AEX can provide new insights into the mechanisms connecting auxin and ROS homeostasis in plant development and provide useful tools to study auxin-type herbicides., (© The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.)
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.