12 results on '"Diana Pelizzari Raymundo"'
Search Results
2. Different binding modalities of quercetin to inositol-requiring enzyme 1 of S. cerevisiae and human lead to opposite regulation
- Author
-
S. Jalil Mahdizadeh, Johan Grandén, Diana Pelizzari-Raymundo, Xavier Guillory, Antonio Carlesso, Eric Chevet, and Leif A. Eriksson
- Subjects
Chemistry ,QD1-999 - Abstract
Abstract The flavonoid Quercetin (Qe) was identified as an activator of Inositol-requiring enzyme 1 (IRE1) in S. cerevisiae (scIre1p), but its impact on human IRE1 (hIRE1) remains controversial due to the absence of a conserved Qe binding site. We have explored the binding modes and effect of Qe on both scIre1p and hIRE1 dimers using in silico and in vitro approaches. The activation site in scIre1p stably accommodates both Qe and its derivative Quercitrin (Qi), thus enhancing the stability of the RNase pocket. However, the corresponding region in hIRE1 does not bind any of the two molecules. Instead, we show that both Qe and Qi block the RNase activity of hIRE1 in vitro, with sub-micromolar IC50 values. Our results provide a rationale for why Qe is an activator in scIre1p but a potent inhibitor in hIRE1. The identification of a new allosteric site in hIRE1 opens a promising window for drug development and UPR modulation.
- Published
- 2024
- Full Text
- View/download PDF
3. A novel IRE1 kinase inhibitor for adjuvant glioblastoma treatment
- Author
-
Diana Pelizzari-Raymundo, Dimitrios Doultsinos, Raphael Pineau, Chloé Sauzay, Thodoris Koutsandreas, Timothy Langlais, Antonio Carlesso, Elena Gkotsi, Luc Negroni, Tony Avril, Aristotelis Chatziioannou, Eric Chevet, Leif A. Eriksson, and Xavier Guillory
- Subjects
Medicine ,Biological sciences ,Neuroscience ,Molecular neuroscience ,Science - Abstract
Summary: Inositol-requiring enzyme 1 (IRE1) is a major mediator of the unfolded protein response (UPR), which is activated upon endoplasmic reticulum (ER) stress. Tumor cells experience ER stress due to adverse microenvironmental cues, a stress overcome by relying on IRE1 signaling as an adaptive mechanism. Herein, we report the discovery of structurally new IRE1 inhibitors identified through the structural exploration of its kinase domain. Characterization in in vitro and in cellular models showed that they inhibit IRE1 signaling and sensitize glioblastoma (GB) cells to the standard chemotherapeutic, temozolomide (TMZ). Finally, we demonstrate that one of these inhibitors, Z4P, permeates the blood–brain barrier (BBB), inhibits GB growth, and prevents relapse in vivo when administered together with TMZ. The hit compound disclosed herein satisfies an unmet need for targeted, non-toxic IRE1 inhibitors and our results support the attractiveness of IRE1 as an adjuvant therapeutic target in GB.
- Published
- 2023
- Full Text
- View/download PDF
4. Sensor dimer disruption as a new mode of action to block the IRE1-mediated unfolded protein response
- Author
-
Kosala N. Amarasinghe, Diana Pelizzari-Raymundo, Antonio Carlesso, Eric Chevet, Leif A. Eriksson, and Sayyed Jalil Mahdizadeh
- Subjects
IRE1α ,UPR ,Peptide docking ,Dimer disruptor ,FDA approved drugs ,MD simulations ,Biotechnology ,TP248.13-248.65 - Abstract
The unfolded protein response (UPR) is activated to cope with an accumulation of improperly folded proteins in the Endoplasmic reticulum (ER). The Inositol requiring enzyme 1α (IRE1α) is the most evolutionary conserved transducer of the UPR. Activated IRE1 forms ‘back-to-back’-dimers that enables the unconventional splicing of X-box Binding Protein 1 (XBP1) mRNA. The spliced XBP1 (XBP1s) mRNA is translated into a transcription factor controlling the expression of UPR target genes. Herein, we report a detailed in silico screening specifically targeting for the first time the dimer interface at the IRE1 RNase region. Using the database of FDA approved drugs, we identified four compounds (neomycin, pemetrexed, quercitrin and rutin) that were able to bind to and distort IRE1 RNase cavity. The activity of the compounds on IRE1 phosphorylation was evaluated in HEK293T cells and on IRE1 RNase activity using an in vitro fluorescence assay. These analyzes revealed sub-micromolar IC50 values. The current study reveals a new and unique mode of action to target and block the IRE1-mediated UPR signaling, whereby we may avoid problems associated with selectivity occurring when targeting the IRE1 kinase pocket as well as the inherent reactivity of covalent inhibitors targeting the RNase pocket.
- Published
- 2022
- Full Text
- View/download PDF
5. Author Reply to Peer Reviews of IRE1 RNase controls CD95-mediated cell death
- Author
-
Diana Pelizzari-Raymundo, Raphael Pineau, Alexandra Papaioannou, Xingchen Zhou, Sophie Martin, Tony Avril, Matthieu Le Gallo, Eric Chevet, and Elodie Lafont
- Published
- 2023
- Full Text
- View/download PDF
6. A novel blood brain barrier-permeable IRE1 kinase inhibitor for adjuvant glioblastoma treatment in mice
- Author
-
Diana Pelizzari-Raymundo, Dimitrios Doultsinos, Raphael Pineau, Chloé Sauzay, Thodoris Koutsandreas, Antonio Carlesso, Elena Gkotsi, Luc Negroni, Tony Avril, Aristotelis Chatziioannou, Eric Chevet, Leif A. Eriksson, and Xavier Guillory
- Abstract
Inositol Requiring Enzyme 1 (IRE1) is a bifunctional serine/threonine kinase and endoribonuclease. It is a major mediator of the Unfolded Protein Response (UPR), which is activated during endoplasmic reticulum (ER) stress. Tumor cells experience ER stress due to adverse microenvironmental cues such as hypoxia or nutrient shortage and high metabolic/protein folding demand. To cope with those stresses, cancer cells utilize IRE1 signaling as an adaptive mechanism. Here we report the discovery of novel IRE1 inhibitors identified through a structural exploration of the IRE1 kinase domain. We first characterized the candidates in vitro and in cellular models. We showed that all molecules inhibit IRE1 signaling and sensitize glioblastoma cells to the standard chemotherapeutic temozolomide (TMZ). From these inhibitors, we retained a Blood-Brain Barrier (BBB) permeable molecule (Z4P) and demonstrated its ability to inhibit Glioblastoma (GB) growth and to prevent relapse in vivo when administered together with TMZ. These results support the attractiveness of IRE1 as an adjuvant therapeutic target in GB. We thus satisfy an unmet need for targeted, non-toxic, IRE1 inhibitors as adjuvant therapeutic agents against GB.
- Published
- 2022
- Full Text
- View/download PDF
7. Pharmacological Targeting of IRE1 in Cancer
- Author
-
Dimitrios Doultsinos, Eric Chevet, Antonio Carlesso, Diana Pelizzari Raymundo, Xavier Guillory, Leif A. Eriksson, Jonchère, Laurent, Chemistry, Oncogenesis, Stress and Signaling (COSS), Université de Rennes (UR)-CRLCC Eugène Marquis (CRLCC)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), University of Gothenburg (GU), This work was funded by grants from Institut National du Cancer (INCa PLBIO), Fondation pour la Recherche Médicale (FRM, équipe labellisée 2018), ERANET , and Agence Nationale de la Recherche (ERAAT) to E.C., EU H2020 MSCA ITN-675448 (TRAINERS), and MSCA RISE-734749 (INSPIRED) provided grants to L.A.E. and E.C. D.P.R. was funded by INSERM (LA VANNETAISE). X.G. was funded by a post-doctoral fellowship from Fondation ARC , and D.D. and A.C. were MSCA ITN fellows (TRAINERS)., Institut National de la Santé et de la Recherche Médicale (INSERM)-CRLCC Eugène Marquis (CRLCC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
- Subjects
0301 basic medicine ,Cancer Research ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,Context (language use) ,IRE1 ,Protein Serine-Threonine Kinases ,Inositol-requiring enzyme 1 ,Bioinformatics ,03 medical and health sciences ,0302 clinical medicine ,Allosteric Regulation ,Protein Domains ,[SDV.CAN] Life Sciences [q-bio]/Cancer ,Neoplasms ,Antineoplastic Combined Chemotherapy Protocols ,Endoribonucleases ,inhibitors ,Humans ,Medicine ,Mode of action ,Protein Kinase Inhibitors ,activators ,business.industry ,Cancer ,unfolded protein response ,Endoplasmic Reticulum Stress ,medicine.disease ,3. Good health ,Gene Expression Regulation, Neoplastic ,endoplasmic reticulum ,030104 developmental biology ,Oncology ,Protein kinase domain ,030220 oncology & carcinogenesis ,Proteostasis ,Unfolded protein response ,business ,Signal Transduction - Abstract
International audience; IRE1α (inositol requiring enzyme 1 alpha) is one of the main transducers of the unfolded protein response (UPR). IRE1α plays instrumental protumoral roles in several cancers, and high IRE1α activity has been associated with poorer prognoses. In this context, IRE1α has been identified as a potentially relevant therapeutic target. Pharmacological inhibition of IRE1α activity can be achieved by targeting either the kinase domain or the RNase domain. Herein, the recent advances in IRE1α pharmacological targeting is summarized. We describe the identification and optimization of IRE1α inhibitors as well as their mode of action and limitations as anticancer drugs. The potential pitfalls and challenges that could be faced in the clinic, and the opportunities that IRE1α modulating strategies may present are discussed.
- Published
- 2020
- Full Text
- View/download PDF
8. A novel blood brain barrier-permeable IRE1 kinase inhibitor sensitizes glioblastoma to chemotherapy in mice
- Author
-
Diana Pelizzari-Raymundo, Dimitrios Doultsinos, Raphael Pineau, Chloé Sauzay, Thodoris Koutsandreas, Antonio Carlesso, Elena Gkotsi, Luc Negroni, Tony Avril, Aristotelis Chatziioannou, Xavier Guillory, Leif A. Eriksson, and Eric Chevet
- Abstract
Inositol Requiring Enzyme 1 (IRE1) is a bifunctional serine/threonine kinase and endoribonuclease. It is a major mediator of the Unfolded Protein Response (UPR), which is activated during endoplasmic reticulum (ER) stress. Tumor cells experience ER stress due to adverse microenvironmental cues such as hypoxia or nutrient shortage and high metabolic/protein folding demand. To cope with those stresses, cancer cells utilize IRE1 signaling as an adaptive mechanism. Here we report the discovery of novel IRE1 inhibitors identified through a structural exploration of the IRE1 kinase domain. We first characterized these candidates in vitro and in cellular models. We showed that all molecules inhibit IRE1 signaling and sensitize glioblastoma cells to the standard chemotherapeutic temozolomide (TMZ). From these inhibitors, we retained a Blood-Brain Barrier (BBB) permeable molecule (Z4P) and demonstrated its ability to inhibit Glioblastoma (GB) growth and to prevent relapse in vivo when administered together with TMZ. These results support the attractiveness of IRE1 as an adjuvant therapeutic target in GB. We thus satisfy an unmet need for targeted, non-toxic, IRE1 inhibitors as adjuvant therapeutic agents against GB.
- Published
- 2022
- Full Text
- View/download PDF
9. Structure-Based Drug Discovery of IRE1 Modulators
- Author
-
Diana Pelizzari Raymundo, Leif A. Eriksson, Eric Chevet, and Xavier Guillory
- Published
- 2022
- Full Text
- View/download PDF
10. Structure-Based Drug Discovery of IRE1 Modulators
- Author
-
Diana, Pelizzari Raymundo, Leif A, Eriksson, Eric, Chevet, Xavier, Guillory, CRLCC Eugène Marquis (CRLCC), Oncogenesis, Stress, Signaling (OSS), Université de Rennes (UR)-CRLCC Eugène Marquis (CRLCC)-Institut National de la Santé et de la Recherche Médicale (INSERM), University of Gothenburg (GU), Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), This work was funded by grants from Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National du Cancer (INCa, PLBIO2017, 18, 19, 20), Fondation pour la Recherche Médicale (FRM, équipe labellisée 2018), Agence National de la Recherche (ANR, eRaNet ERAAT, IRE1inNASH) to EC. DPR was funded by INSERM (LA VANNETAISE) and Région Bretagne SAD1. LAE acknowledges the support of The Swedish Research Council (Vetenskapsrådet), grant no 2019-3684, and the Swedish National Infrastructure for Computing (SNIC) for access to supercomputing resources of the supercomputing center C3SE in Gothenburg. This work has also been supported by the Fondation ARC pour la recherche sur le cancer, grant PDF20191209830, to XG., ANR-17-RAR3-0003,ERAAT,Enhancing Endoplasmic Reticulum Proteostasis to Rescue Alpha1 Antitrypsin Deficiency(2017), and ANR-18-CE14-0022,IRE1inNASH,Cibler la voie IRE1 dans la stéatohépatite(2018)
- Subjects
Structure-based drug discovery (SBDD) ,Drug Discovery ,Endoribonucleases ,Unfolded Protein Response ,Unfolded protein response computer assisted drug design (CADD) ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,IRE1 ,Protein Serine-Threonine Kinases ,Endoplasmic Reticulum Stress ,Endoplasmic reticulum - Abstract
International audience; IRE1α (inositol-requiring enzyme 1 alpha, referred to IRE1 hereafter) is an Endoplasmic Reticulum (ER) resident transmembrane enzyme with cytosolic kinase/RNAse activities. Upon ER stress IRE1 is activated through trans-autophosphorylation and oligomerization, resulting in a conformational change of the RNase domain, thereby promoting two signaling pathways: i) the non-conventional splicing of XBP1 mRNA and ii) the regulated IRE1-dependent decay of RNA (RIDD). IRE1 RNase activity has been linked to diverse pathologies such as cancer or inflammatory, metabolic, and degenerative diseases and the modulation of IRE1 activity is emerging as an appealing therapeutic strategy against these diseases. Several modulators of IRE1 activity have been reported in the past, but none have successfully translated into the clinics as yet. Based on our expertise in the field, we describe in this chapter the approaches and protocols we used to discover novel IRE1 modulators and characterize their effect on IRE1 activity.
- Published
- 2022
- Full Text
- View/download PDF
11. Structural and molecular bases to IRE1 activity modulation
- Author
-
Nicolas Gouault, Timothy Langlais, Xavier Guillory, Eric Chevet, François Carreaux, Diana Pelizzari-Raymundo, Leif A. Eriksson, Sayyed Jalil Mahdizadeh, Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Chemistry, Oncogenesis, Stress and Signaling (COSS), Institut National de la Santé et de la Recherche Médicale (INSERM)-CRLCC Eugène Marquis (CRLCC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), University of Gothenburg (GU), Institut National du Cancer (INCa PLBIO) Institut National du Cancer (INCA) France, Fondation pour la Recherche Medicale (FRM) Fondation pour la Recherche Medicale [DEQ20180339169], ERANET, Agence Nationale de la Recherche (ERAAT) French National Research Agency (ANR), EU European Commission [H2020 MSCA ITN-675448, MSCA RISE-734749], Swedish Research Council (VR) Swedish Research Council [2019-3684], Vinnova Seal-of-Excellence programVinnova [2019-02205], Ecole Doctorale 3M, university of Rennes 1, Region BretagneRegion Bretagne, Fondation ARC pour la recherche sur le cancerFondation ARC pour la Recherche sur le Cancer [PDF20191209830], Vinnova Seal-of-Excellence program Vinnova [2019-02205], Region Bretagne Region Bretagne, Fondation ARC pour la recherche sur le cancer Fondation ARC pour la Recherche sur le Cancer [PDF20191209830], European Project: 675448,H2020,H2020-MSCA-ITN-2015,TRAIN-ERS(2015), European Project: 777657,H2020-EU.1.3.3. - Stimulating innovation by means of cross-fertilisation of knowledge,777657,MSCA-RISE(2018), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Oncogenesis, Stress, Signaling (OSS), Université de Rennes (UR)-CRLCC Eugène Marquis (CRLCC)-Institut National de la Santé et de la Recherche Médicale (INSERM), and CRLCC Eugène Marquis (CRLCC)
- Subjects
Protein Folding ,RNase P ,[CHIM.THER]Chemical Sciences/Medicinal Chemistry ,IRE1 ,Protein Serine-Threonine Kinases ,Endoplasmic Reticulum ,Biochemistry ,03 medical and health sciences ,0302 clinical medicine ,Endoribonucleases ,Animals ,Homeostasis ,Humans ,[CHIM]Chemical Sciences ,Enzyme Inhibitors ,Mode of action ,Molecular Biology ,030304 developmental biology ,0303 health sciences ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,Kinase ,Chemistry ,Endoplasmic reticulum ,structure activity relationship (SAR) ,Cell Biology ,unfolded protein response ,Endoplasmic Reticulum Stress ,Transmembrane protein ,Cell biology ,Cytosol ,structure-based drug design (SBDD) ,030220 oncology & carcinogenesis ,Unfolded protein response ,Protein folding ,ER stress ,Signal Transduction - Abstract
International audience; The Unfolded Protein response is an adaptive pathway triggered upon alteration of endoplasmic reticulum (ER) homeostasis. It is transduced by three major ER stress sensors, among which the Inositol Requiring Enzyme 1 (IRE1) is the most evolutionarily conserved. IRE1 is an ER-resident type I transmembrane protein exhibiting an ER luminal domain that senses the protein folding status and a catalytic kinase and RNase cytosolic domain. In recent years, IRE1 has emerged as a relevant therapeutic target in various diseases including degenerative, inflammatory and metabolic pathologies and cancer. As such several drugs altering IRE1 activity were developed that target either catalytic activity and showed some efficacy in preclinical pathological mouse models. In this review, we describe the different drugs identified to target IRE1 activity as well as their mode of action from a structural perspective, thereby identifying common and different modes of action. Based on this information we discuss on how new IRE1-targeting drugs could be developed that outperform the currently available molecules.
- Published
- 2021
- Full Text
- View/download PDF
12. The Expression of Myeloproliferative Neoplasm-Associated Calreticulin Variants Depends on the Functionality of ER-Associated Degradation
- Author
-
Gwénaële Jégou, Eric Lippert, Francois-Xavier Mahon, Béatrice Turcq, Olivier Mansier, Eric Chevet, Konstantinos Voutetakis, Diana Pelizzari Raymundo, Pierre-Yves Dumas, Kim Barroso, Chloé James, Vincent Praloran, Valérie Lagarde, Valérie Prouzet-Mauléon, Aristotelis Chatziioannou, Jean-François Viallard, Jean-Max Pasquet, Aurélie Chauveau, Actions for OnCogenesis understanding and Target Identification in ONcology (ACTION), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Bordeaux Segalen - Bordeaux 2-Institut Bergonié [Bordeaux], UNICANCER-UNICANCER, Biologie des maladies cardiovasculaires = Biology of Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB), Service d'Hématologie [Bordeaux], CHU Bordeaux [Bordeaux], Chemistry, Oncogenesis, Stress and Signaling (COSS), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-CRLCC Eugène Marquis (CRLCC)-Institut National de la Santé et de la Recherche Médicale (INSERM), Génétique, génomique fonctionnelle et biotechnologies (UMR 1078) (GGB), Institut Brestois Santé Agro Matière (IBSAM), Université de Brest (UBO)-Université de Brest (UBO)-EFS-Institut National de la Santé et de la Recherche Médicale (INSERM), CHRU Brest - Service d'Hématologie (CHU-Brest-Hemato), Centre Hospitalier Régional Universitaire de Brest (CHRU Brest), Biothérapies des maladies génétiques et cancers, Université Bordeaux Segalen - Bordeaux 2-Institut National de la Santé et de la Recherche Médicale (INSERM), Service d'Hématologie Clinique et Thérapie Cellulaire [CHU Bordeaux], Université de Bordeaux (UB)-CHU Bordeaux [Bordeaux], Centre National de la Recherche Scientifique (CNRS), Service de Médecine Interne [CHU de Bordeaux], CHU Bordeaux [Bordeaux]-Hôpital Haut-Lévêque [CHU de Bordeaux], Institute of Chemical Biology [Athens, Greece], National Hellenic Research Foundation [Athens], Department of Biochemistry and Biotechnology [Larissa, Greece], University of Thessaly [Volos] (UTH), Institut Bergonié [Bordeaux], UNICANCER-UNICANCER-Université Bordeaux Segalen - Bordeaux 2-Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Bordeaux (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université de Rennes (UR)-CRLCC Eugène Marquis (CRLCC)-Institut National de la Santé et de la Recherche Médicale (INSERM), EFS-Université de Brest (UBO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Brestois Santé Agro Matière (IBSAM), Université de Brest (UBO), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM)-CRLCC Eugène Marquis (CRLCC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), and Jonchère, Laurent
- Subjects
[SDV.MHEP.HEM] Life Sciences [q-bio]/Human health and pathology/Hematology ,0301 basic medicine ,Cancer Research ,XBP1 ,MPN ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,Endoplasmic-reticulum-associated protein degradation ,Protein degradation ,Article ,calreticulin ,03 medical and health sciences ,0302 clinical medicine ,[SDV.CAN] Life Sciences [q-bio]/Cancer ,[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN] ,biology ,Chemistry ,Endoplasmic reticulum ,food and beverages ,[SDV.MHEP.HEM]Life Sciences [q-bio]/Human health and pathology/Hematology ,ERAD ,3. Good health ,Cell biology ,endoplasmic reticulum ,030104 developmental biology ,Oncology ,Article RECHERCHE ,030220 oncology & carcinogenesis ,biology.protein ,Unfolded protein response ,STAT protein ,[SDV.BBM.GTP] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN] ,Janus kinase ,Calreticulin - Abstract
Background: Mutations in CALR observed in myeloproliferative neoplasms (MPN) were recently shown to be pathogenic via their interaction with MPL and the subsequent activation of the Janus Kinase &ndash, Signal Transducer and Activator of Transcription (JAK-STAT) pathway. However, little is known on the impact of those variant CALR proteins on endoplasmic reticulum (ER) homeostasis. Methods: The impact of the expression of Wild Type (WT) or mutant CALR on ER homeostasis was assessed by quantifying the expression level of Unfolded Protein Response (UPR) target genes, splicing of X-box Binding Protein 1 (XBP1), and the expression level of endogenous lectins. Pharmacological and molecular (siRNA) screens were used to identify mechanisms involved in CALR mutant proteins degradation. Coimmunoprecipitations were performed to define more precisely actors involved in CALR proteins disposal. Results: We showed that the expression of CALR mutants alters neither ER homeostasis nor the sensitivity of hematopoietic cells towards ER stress-induced apoptosis. In contrast, the expression of CALR variants is generally low because of a combination of secretion and protein degradation mechanisms mostly mediated through the ER-Associated Degradation (ERAD)-proteasome pathway. Moreover, we identified a specific ERAD network involved in the degradation of CALR variants. Conclusions: We propose that this ERAD network could be considered as a potential therapeutic target for selectively inhibiting CALR mutant-dependent proliferation associated with MPN, and therefore attenuate the associated pathogenic outcomes.
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.