1. The Multifunctional Sorting Protein PACS-2 Regulates SIRT1-Mediated Deacetylation of p53 to Modulate p21-Dependent Cell-Cycle Arrest
- Author
-
Atkins, KM, Thomas, LL, Barroso-Gonzalez, J, Thomas, L, Auclair, S, Yin, J, Kang, H, Chung, JH, Dikeakos, JD, Thomas, G, Atkins, KM, Thomas, LL, Barroso-Gonzalez, J, Thomas, L, Auclair, S, Yin, J, Kang, H, Chung, JH, Dikeakos, JD, and Thomas, G
- Abstract
SIRT1 regulates the DNA damage response by deacetylating p53, thereby repressing p53 transcriptional output. Here, we demonstrate that the sortingprotein PACS-2 regulates SIRT1-mediated deacetylation of p53 to modulate the DNA damage response. PACS-2 knockdown cells failed to efficiently undergo p53-induced cell-cycle arrest in response to DNA damage. Accordingly, p53 acetylation was reduced both in PACS-2 knockdown cells and thymocytes from Pacs-2-/- mice, thereby blunting induction of the cyclin-dependent kinase inhibitor p21 (CDKN1A). The SIRT1 inhibitor EX-527 or SIRT1 knockdown restored p53 acetylation and p21 induction as well as p21-dependent cell-cycle arrest in PACS-2 knockdown cells. Traffickingstudies revealed that cytoplasmic PACS-2 shuttled to the nucleus, where it interacted with SIRT1 andrepressed SIRT1-mediated p53 deacetylation. Correspondingly, invitro assays demonstrated that PACS-2 directly inhibited SIRT1-catalyzed p53 deacetylation. Together, these findings identify PACS-2 as an invivo mediator of the SIRT1-p53-p21 axis that modulates the DNA damage response.
- Published
- 2014