1. Comparison of Two Damaging Wind Events Caused by Strong Downbursts
- Author
-
Guo Feiyan, Ding Feng, Chu Yingjia, Lang Jiahe, Li Xiaodong, and Luan Zaimao
- Subjects
damaging wind ,downburst ,strong downdraft ,downward momentum transport ,cold pool high-density flow ,Meteorology. Climatology ,QC851-999 - Abstract
Multi-source observations are used to comprehensively analyze the Doppler weather radar characteristics of strong storms and the formation mechanisms of surface damaging wind induced by two strong downbursts, occurred in Shandong on 2 June 2017 and 6 August 2017. It's found that two damaging wind events occurs under strong synoptic scale weather system forcing and favorable meso-scale environmental conditions, the relatively isolated supercell storm on 2 June (6·2 supercell) and strong single storm on 6 August (8·6 strong single storm) fiercely develop into series of downbursts, which leads to the occurrence of large-scale damaging winds. As two strong downbursts induced by 6·2 supercell storm and 8·6 strong single storm evolves, the vertically integrated liquid water content radar parameter first rises and then quickly plunges down. During 6·2 supercell storm, a powerful downburst descends sharply, causing the mesocyclone's top and bottom to shoal and its thickness to decrease. The occurrence of two strong downbursts are accompanied by obvious radar characteristics including reflective factor core rapid decline, high value area of radial velocity at low elevation, strong divergence at bottom, remarkable mid altitude radial convergence and severe divergence at upper-level. 6·2 supercell storm is characterized by intense rotation. Its mesocyclone lasts for a long time and extends deeply both upwards and downwards. Additionally, there are arc-shaped inflow notches and hook echoes at low levels of 6·2 supercell storm. 8·6 strong single storm is characterized by significant low-level convergence. Besides, there is a convergence zone at or near the surface formed by the outflow of the strong downburst and the inflow in front of 8·6 strong single storm. Among all the formation mechanisms of two damaging winds induced by two strong downbursts, the negative buoyancy effect of two storms is basically equivalent, but the cold pool outflow effect is more evident for 6·2 supercell storm, and the downward transport momentum effect is more significant for 8·6 strong single storm. The Nansun Station of Weifang locating right ahead of 8·6 strong single storm's approaching direction, therefore the front divergence flow from the strong downbursts is preferable superimposed on the fast moving homodromous storm, indicating the speed of the front divergence flow better superimposes on the speed of the storm itself, which is crucial for the occurrence of 37.0 m·s-1 extreme wind.
- Published
- 2024
- Full Text
- View/download PDF