1. Solving Nonlinear Algebraic Loops Arising in Input-Saturated Feedbacks
- Author
-
Franco Blanchini, Giulia Giordano, Francesco Riz, Luca Zaccarian, Dipartimento di Ingegneria Industriale [Trento], University of Trento [Trento], Équipe Méthodes et Algorithmes en Commande (LAAS-MAC), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), and ANR-18-CE40-0010,HANDY,Systèmes Dynamiques Hybrides et en Réseau(2018)
- Subjects
[SPI]Engineering Sciences [physics] ,Iterative methods ,Control and Systems Engineering ,Linear matrix inequalities ,Heuristic algorithms ,Software packages ,Approximation algorithms ,Simulation ,Tuning ,Electrical and Electronic Engineering ,Computer Science Applications - Abstract
We propose a dynamic augmentation scheme for the asymptotic solution of the nonlinear algebraic loops arising in well-known input saturated feedbacks typically designed by solving linear matrix inequalities (LMIs). We prove that the existing approach based on dynamic augmentation, which replaces the static loop by a dynamic one through the introduction of a sufficiently small time constant, works under some restrictive sufficient well-posedness conditions, requiring the existence of a diagonal Lyapunov matrix. However it can fail in general, even when the algebraic loop is well-posed. Then, we propose a novel approach whose effectiveness is guaranteed whenever wellposedness holds. We also show how this augmentation allows preserving the guaranteed region of attraction with Lyapunovbased designs, as long as a gain parameter is sufficiently large. We finally propose an adaptive version of the scheme where this parameter is adjusted online. Simulation results show the effectiveness of the proposed solutions.
- Published
- 2023
- Full Text
- View/download PDF