1. Smoothed analysis of binary search trees
- Author
-
Manthey, Bodo and Reischuk, Rüdiger
- Subjects
- *
BINARY number system , *DATA structures , *LOGARITHMIC functions , *SMOOTHING (Numerical analysis) , *PERMUTATIONS - Abstract
Abstract: Binary search trees are one of the most fundamental data structures. While the height of such a tree may be linear in the worst case, the average height with respect to the uniform distribution is only logarithmic. The exact value is one of the best studied problems in average-case complexity. We investigate what happens in between by analysing the smoothed height of binary search trees: Randomly perturb a given (adversarial) sequence and then take the expected height of the binary search tree generated by the resulting sequence. As perturbation models, we consider partial permutations, partial alterations, and partial deletions. On the one hand, we prove tight lower and upper bounds of roughly for the expected height of binary search trees under partial permutations and partial alterations, where is the number of elements and is the smoothing parameter. This means that worst-case instances are rare and disappear under slight perturbations. On the other hand, we examine how much a perturbation can increase the height of a binary search tree, i.e. how much worse well balanced instances can become. [Copyright &y& Elsevier]
- Published
- 2007
- Full Text
- View/download PDF