1. Beneficial impact of lithium bis(oxalato)borate as electrolyte additive for high‐voltage nickel‐rich lithium‐battery cathodes
- Author
-
Fanglin Wu, Angelo Mullaliu, Thomas Diemant, Dominik Stepien, Tatjana N. Parac‐Vogt, Jae‐Kwang Kim, Dominic Bresser, Guk‐Tae Kim, and Stefano Passerini
- Subjects
cathode electrolyte interphase ,electrolyte additive ,high voltage cathodes ,LiBOB ,nickel‐rich cathodes ,Materials of engineering and construction. Mechanics of materials ,TA401-492 ,Information technology ,T58.5-58.64 - Abstract
Abstract High‐voltage nickel‐rich layered cathodes possess the requisite, such as excellent discharge capacity and high energy density, to realize lithium batteries with higher energy density. However, such materials suffer from structural and interfacial instability at high voltages (>4.3 V). To reinforce the stability of these cathode materials at elevated voltages, lithium borate salts are investigated as electrolyte additives to generate a superior cathode‐electrolyte interphase. Specifically, the use of lithium bis(oxalato)borate (LiBOB) leads to an enhanced cycling stability with a capacity retention of 81.7%. Importantly, almost no voltage hysteresis is detected after 200 cycles at 1C. This outstanding electrochemical performance is attributed to an enhanced structural and interfacial stability, which is attained by suppressing the generation of micro‐cracks and the superficial structural degradation upon cycling. The improved stability stems from the formation of a fortified borate‐containing interphase which protects the highly reactive cathode from parasitic reactions with the electrolyte. Finally, the decomposition process of LiBOB and the possible adsorption routes to the cathode surface are deduced and elucidated.
- Published
- 2023
- Full Text
- View/download PDF