1. Physical essence of propagable fractional-strength optical vortices in free space
- Author
-
Weng, Xiaoyu, Miao, Yu, Li, Yang, Dong, Xiangmei, Gao, Xiumin, and Zhuang, Songlin
- Subjects
Physics - Optics - Abstract
Fractional-order vector vortex beams are recently demonstrated to be new carriers of fractional-strength optical vortices. However, why can those new vortex beams formed by the combination of both unstable states propagate stably in free space? Here, we solve this scientific problem by revealing the physical essence of propagable fractional-strength optical vortices in free space.Three new understandings regarding those peculiar vortex beams are therefore proposed, namely Abbe diffraction limit, phase evolution of vortex beam, and phase binary time vector property.For the first one, owing to Abbe diffraction limit, the inherent polarization modes are intertwined together, thereby maintaining the entire peculiar vortex beams in free space. For the second one, we demonstrate the phase evolution of vortex beam, which is the physical reason of polarization rotation of fractional-order VVBs. For the third one, the phase is not merely a scalar attribute of light beam, but manifests a binary time vector property. This work provides entirely different physical viewpoints on the phase of vortex beam and Abbe diffraction limit, which may deepen our knowledge on the behavior of light beam in classical optics.
- Published
- 2022