30 results on '"Doug Worthy"'
Search Results
2. Measured Canadian oil sands CO2 emissions are higher than estimates made using internationally recommended methods
- Author
-
John Liggio, Shao-Meng Li, Ralf M. Staebler, Katherine Hayden, Andrea Darlington, Richard L. Mittermeier, Jason O’Brien, Robert McLaren, Mengistu Wolde, Doug Worthy, and Felix Vogel
- Subjects
Science - Abstract
Evaluating GHG emissions reported to inventories for the oil and gas (O&G) sector is important for countries with resource-based economies. Here the authors provide a top-down assessment of GHG emissions from the Canadian oil sands and find previous inventory reports underestimate emissions, by as much as 64% for surface mining facilities and 30% for the entire oil sands compared with their assessment.
- Published
- 2019
- Full Text
- View/download PDF
3. The Global Methane Budget 2000–2017
- Author
-
Marielle Saunois, Ann R. Stavert, Ben Poulter, Philippe Bousquet, Josep G. Canadell, Robert B. Jackson, Peter A. Raymond, Edward J. Dlugokencky, Sander Houweling, Prabir K. Patra, Philippe Ciais, Vivek K. Arora, David Bastviken, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Kimberly M. Carlson, Mark Carroll, Simona Castaldi, Naveen Chandra, Cyril Crevoisier, Patrick M. Crill, Kristofer Covey, Charles L. Curry, Giuseppe Etiope, Christian Frankenberg, Nicola Gedney, Michaela I. Hegglin, Lena Höglund-Isaksson, Gustaf Hugelius, Misa Ishizawa, Akihiko Ito, Greet Janssens-Maenhout, Katherine M. Jensen, Fortunat Joos, Thomas Kleinen, Paul B. Krummel, Ray L. Langenfelds, Goulven G. Laruelle, Licheng Liu, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Joe McNorton, Paul A. Miller, Joe R. Melton, Isamu Morino, Jurek Müller, Fabiola Murguia-Flores, Vaishali Naik, Yosuke Niwa, Sergio Noce, Simon O’Doherty, Robert J. Parker, Changhui Peng, Shushi Peng, Glen P. Peters, Catherine Prigent, Ronald Prinn, Michel Ramonet, Pierre Regnier, William J. Riley, Judith A. Rosentreter, Arjo Segers, Isobel J. Simpson, Hao Shi, Steven J. Smith, L. Paul Steele, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Francesco N. Tubiello, Aki Tsuruta, Nicolas Viovy, Apostolos Voulgarakis, Thomas S. Weber, Michiel van Weele, Guido R. van der Werf, Ray F. Weiss, Doug Worthy, Debra Wunch, Yi Yin, Yukio Yoshida, Wenxin Zhang, Zhen Zhang, Yuanhong Zhao, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
- Subjects
Earth Resources And Remote Sensing - Abstract
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations). For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 Tg CH4/yr (range 550–594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 Tg CH4/yr or ∼ 60 % is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4/yr or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is 29 Tg CH4/yr larger than our estimate for the previous decade (2000–2009), and 24 Tg CH4/yr larger than the one reported in the previous budget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30 % larger global emissions (737 Tg CH4/yr, range 594–881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions (∼ 65 % of the global budget, < 30° N) compared to mid-latitudes (∼ 30 %, 30–60° N) and high northern latitudes (∼ 4 %, 60–90° N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters. Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4/yr lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 Tg CH4/yr by 8 Tg CH4/yr, respectively. However, the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning.
- Published
- 2020
- Full Text
- View/download PDF
4. Sensitivity of biomass burning emissions estimates to land surface information
- Author
-
Yosuke Niwa, Kazuyuki Saito, Tomohiro Shiraishi, Tsuneo Matsunaga, Makoto Saito, Martin Steinbacher, Doug Worthy, and Ryuichi Hirata
- Subjects
TRACER ,Atmospheric carbon cycle ,Environmental science ,Satellite ,Land cover ,Atmospheric sciences ,Biomass burning ,Aboveground biomass ,Ecology, Evolution, Behavior and Systematics ,Highly sensitive ,Spatial difference ,Earth-Surface Processes - Abstract
Emissions from biomass burning (BB) are a key source of atmospheric tracer gases that affect the atmospheric carbon cycle. We developed four sets of global BB emissions estimates (named GlcGlob, GlcGeoc, McdGlob, and McdGeoc) using a bottom-up approach and by combining the remote sensing products related to fire distribution with two aboveground biomass (AGB) and two land cover classification (LCC) distributions. The sensitivity of the estimates of BB emissions to the AGB and LCC data was evaluated using the carbon monoxide (CO) emissions associated with each BB estimate. Using the AGB and/or LCC data led to substantially different spatial estimates of CO emissions, with a large (factor of approximately 3) spread of estimates for the mean annual CO emissions: 526±53, 219±35, 624±57, and 293±44 Tg CO yr−1 for GlcGlob, GlcGeoc, McdGlob, and McdGeoc, respectively, and 415±47 Tg CO yr−1 for their ensemble average (EsmAve). We simulated atmospheric CO variability at an approximately 2.5∘ grid using an atmospheric tracer transport model and the BB emissions estimates and compared it with ground-based and satellite observations. At ground-based observation sites during fire seasons, the impact of intermittent fire events was poorly defined in our simulations due to the coarse resolution, which obscured temporal and spatial variability in the simulated atmospheric CO concentration. However, when compared at the regional and global scales, the distribution of atmospheric CO concentrations in the simulations shows substantial differences among the estimates of BB emissions. These results indicate that the estimates of BB emissions are highly sensitive to the AGB and LCC data.
- Published
- 2022
5. Evaluating methane emissions between 2008 and 2019 in high northern latitudes by using inverse modeling
- Author
-
Sophie Wittig, Antoine Berchet, Jean-Daniel Paris, Marielle Saunois, Mikhail Arshinov, Toshinobu Machida, Motoki Sasakawa, Doug Worthy, and Isabelle Pison
- Abstract
The Arctic is particularly sensitive to global warming and the effects of the increasing temperatures can already be detected in this region by occurring events such as thawing permafrost and decreasing Arctic sea ice area. One of the possible consequences is the risk of enhanced regional greenhouse gas emissions such as methane (CH4) due to the exposure of large terrestrial carbon pools or subsea permafrost which have previously been shielded by ice and frozen soil. Various sources, both natural and anthropogenic, are presently emitting methane in the Arctic. Natural sources include wetlands and other freshwater biomes, as well as the ocean and biomass burning. Despite the relatively small population in this region, CH4 emissions due to human activities are also significant. The main anthropogenic sources are the extraction and distribution of fossil fuels in the Arctic nations and, to a lesser extent, livestock activities and waste management. However, assessing the amount of CH4 emissions in the Arctic and their contribution to the global budget still remains challenging due to the difficulties in carrying out accurate measurements in such remote areas. Besides, high variations in the spatial distribution of methane sources and a poor understanding of the effects of ongoing changes in carbon decomposition, vegetation and hydrology also complicate the assessment.Therefore, the aim of this work is to reduce uncertainties on methane emissions in high northern latitudes. In order to achieve that, an inverse modeling approach has been implemented by using observational data sets of CH4 concentrations obtained at 42 surface stations located in different Arctic regions for the period from 2008 to 2019, the atmospheric transport model FLEXPART, as well as available bottom-up estimates of methane emissions provided by process-based surface models and CH4 emission inventories. The results have been analysed with regards to seasonal and inter-annual fluctuations, spatial differences and trends over the period of study.
- Published
- 2022
- Full Text
- View/download PDF
6. Measured Canadian oil sands CO2 emissions are higher than estimates made using internationally recommended methods
- Author
-
Robert McLaren, Ralf M. Staebler, Andrea Darlington, John Liggio, Doug Worthy, Shao-Meng Li, Mengistu Wolde, Richard L. Mittermeier, Katherine Hayden, Felix Vogel, and Jason M. O'Brien
- Subjects
0301 basic medicine ,Science ,General Physics and Astronomy ,Inventory data ,02 engineering and technology ,Article ,General Biochemistry, Genetics and Molecular Biology ,Attribution ,03 medical and health sciences ,Atmospheric measurements ,Surface mining ,Environmental protection ,lcsh:Science ,Climate-change mitigation ,Multidisciplinary ,business.industry ,Fossil fuel ,General Chemistry ,021001 nanoscience & nanotechnology ,030104 developmental biology ,Greenhouse gas ,Environmental science ,Oil sands ,lcsh:Q ,0210 nano-technology ,business - Abstract
The oil and gas (O&G) sector represents a large source of greenhouse gas (GHG) emissions globally. However, estimates of O&G emissions rely upon bottom-up approaches, and are rarely evaluated through atmospheric measurements. Here, we use aircraft measurements over the Canadian oil sands (OS) to derive the first top-down, measurement-based determination of the their annual CO2 emissions and intensities. The results indicate that CO2 emission intensities for OS facilities are 13–123% larger than those estimated using publically available data. This leads to 64% higher annual GHG emissions from surface mining operations, and 30% higher overall OS GHG emissions (17 Mt) compared to that reported by industry, despite emissions reporting which uses the most up to date and recommended bottom-up approaches. Given the similarity in bottom-up reporting methods across the entire O&G sector, these results suggest that O&G CO2 emissions inventory data may be more uncertain than previously considered., Evaluating GHG emissions reported to inventories for the oil and gas (O&G) sector is important for countries with resource-based economies. Here the authors provide a top-down assessment of GHG emissions from the Canadian oil sands and find previous inventory reports underestimate emissions, by as much as 64% for surface mining facilities and 30% for the entire oil sands compared with their assessment.
- Published
- 2019
- Full Text
- View/download PDF
7. Using atmospheric in-situ measurements of 13CH4 to investigate methane emissions in Western Canada
- Author
-
Felix Vogel, Gabriela Gonzalez Arismendi, Sebastien Ars, Doug Worthy, and Karlis Muehlenbachs
- Subjects
Methane emissions ,In situ ,Environmental chemistry ,Environmental science - Abstract
The climate change impact of methane is significant and the recent increase in its atmospheric concentrations raises great concerns. Across Canada, methane emissions are unevenly distributed with a large part attributed to the Western Canadian Sedimentary Basin (WCSB), which is the fourth largest reserve of fossil fuels in the world. The WCSB extends from northeastern British Columbia to southwestern Manitoba, encompassing Alberta and southern Saskatchewan. The extraction of hydrocarbons mostly takes place in the provinces of Alberta and Saskatchewan and is a large source of methane.According to recent international agreements, the Government of Canada has committed to reducing methane emissions by 40 to 45% by 2025 based on 2012 levels. However, a recent study using atmospheric measurements of methane concentrations in the region showed that methane emissions from the oil and gas sector might be nearly twice that reported in Canada’s National Inventory (Chan et al., 2020). More investigations are required to better understand the discrepancy between these two estimates.In this study, we use atmospheric observations of δ13C measured successively at three locations across the WCSB between 2016 and 2020 to help identify the influence of different types of methane sources across the provinces of Alberta and Saskatchewan. We compare our atmospheric measurements with compilations and isotope contour maps of fugitive methane from energy facilities across the basin. Combining these measurements with trajectories computed with the HYSPLIT model developed by NOAA, we show a gradient in the methane isotopic signature across Alberta: methane being more depleted in southwestern Saskatchewan than northwestern Alberta. We also used the HYSPLIT5-STILT dispersion model to derive footprints during our measurements and estimate methane contributions of these two provinces using an optimization based on the isotopic measurements. Chan et al. 2020
- Published
- 2021
- Full Text
- View/download PDF
8. Assessment of CH4 sources in the Arctic using regional atmospheric measurements and their link to surface emissions
- Author
-
Isabelle Pison, Sophie Wittig, Motoki Sasakawa, Toshinobu Machida, Antoine Berchet, Jean-Daniel Paris, Mikhail Arshinov, and Doug Worthy
- Subjects
Surface (mathematics) ,Atmospheric measurements ,Environmental science ,Link (knot theory) ,Atmospheric sciences ,The arctic - Abstract
The Arctic is a critical area in terms of global warming. Not only are the rising temperatures already causing changes in the natural conditions of this region, but the high potential of increased methane (CH4) regional emissions are also likely to intensify global warming even stronger in the near term.This future effect consists in the thawing and destabilization of inland and sub-sea permafrost that enhance the release of methane into the atmosphere from extensive CH4 and organic carbon pools which have so far been shielded by ice and frozen soil. Moreover, the high latitude regions are already playing a key role in the global CH4-budget because of such large sources as wetlands and freshwater lakes in addition to human activities, predominantly the fossil fuel industry of the Arctic nations.However, the level of scientific understanding of the actual contribution of Arctic methane emissions to the global CH4-budget is still relatively immature. Besides the difficulties in carrying out measurements in such remote areas, this is due to a high inhomogeneity in the spatial distribution of methane sources and sinks as well as to ongoing changes in hydrology, vegetation and carbon decomposition.Therefore, the aim of this work is to reduce the uncertainties about methane sources and sinks in the Arctic region during the most recent years by using an atmospheric approach, in order to improve the quality of the assessment of the local and global impacts.To do so, the data of atmospheric CH4 concentrations measured at about 30 stations located in different Arctic nations have been analysed in regard to the trends, seasonal fluctuations and spatial patterns that they demonstrate as well as their link to regional emissions.
- Published
- 2020
- Full Text
- View/download PDF
9. Influences of hydroxyl radicals (OH) on top-down estimates of the global and regional methane budgets
- Author
-
Yuanhong Zhao, Marielle Saunois, Philippe Bousquet, Xin Lin, Antoine Berchet, Michaela I. Hegglin, Josep G. Canadell, Robert B. Jackson, Edward J. Dlugokencky, Ray L. Langenfelds, Michel Ramonet, Doug Worthy, Bo Zheng, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Modélisation INVerse pour les mesures atmosphériques et SATellitaires (SATINV), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Department of Meteorology [Reading], University of Reading (UOR), Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), Stanford Woods Institute for the Environment, Stanford University, NOAA Earth System Research Laboratory (ESRL), National Oceanic and Atmospheric Administration (NOAA), ICOS-RAMCES (ICOS-RAMCES), Environment and Climate Change Canada, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,010504 meteorology & atmospheric sciences ,13. Climate action ,01 natural sciences ,0105 earth and related environmental sciences - Abstract
The hydroxyl radical (OH), which is the dominant sink of methane (CH4), plays a key role in closing the global methane budget. Current top-down estimates of the global and regional CH4 budget using 3D models usually apply prescribed OH fields and attribute model–observation mismatches almost exclusively to CH4 emissions, leaving the uncertainties due to prescribed OH fields less quantified. Here, using a variational Bayesian inversion framework and the 3D chemical transport model LMDz, combined with 10 different OH fields derived from chemistry–climate models (Chemistry–Climate Model Initiative, or CCMI, experiment), we evaluate the influence of OH burden, spatial distribution, and temporal variations on the global and regional CH4 budget. The global tropospheric mean CH4-reaction-weighted [OH] ([OH]GM-CH4) ranges 10.3–16.3×105 molec cm−3 across 10 OH fields during the early 2000s, resulting in inversion-based global CH4 emissions between 518 and 757 Tg yr−1. The uncertainties in CH4 inversions induced by the different OH fields are similar to the CH4 emission range estimated by previous bottom-up syntheses and larger than the range reported by the top-down studies. The uncertainties in emissions induced by OH are largest over South America, corresponding to large inter-model differences of [OH] in this region. From the early to the late 2000s, the optimized CH4 emissions increased by 22±6 Tg yr−1 (17–30 Tg yr−1), of which ∼25 % (on average) offsets the 0.7 % (on average) increase in OH burden. If the CCMI models represent the OH trend properly over the 2000s, our results show that a higher increasing trend of CH4 emissions is needed to match the CH4 observations compared to the CH4 emission trend derived using constant OH. This study strengthens the importance of reaching a better representation of OH burden and of OH spatial and temporal distributions to reduce the uncertainties in the global and regional CH4 budgets.
- Published
- 2020
- Full Text
- View/download PDF
10. Supplementary material to 'Influences of hydroxyl radicals (OH) on top-down estimates of the global and regional methane budgets'
- Author
-
Yuanhong Zhao, Marielle Saunois, Philippe Bousquet, Xin Lin, Antoine Berchet, Michaela I. Hegglin, Josep G. Canadell, Robert B. Jackson, Edward J. Dlugokencky, Ray L. Langenfelds, Michel Ramonet, Doug Worthy, and Bo Zheng
- Published
- 2020
- Full Text
- View/download PDF
11. Quantification of methane sources in the Athabasca Oil Sands Region of Alberta by aircraft mass balance
- Author
-
Richard L. Mittermeier, Mengistu Wolde, Andrea Darlington, Jason M. O'Brien, Amy Leithead, Samar G. Moussa, Ralph Staebler, Mark Gordon, Katherine Hayden, Doug Worthy, Sabour Baray, Shao-Meng Li, Robert McLaren, and P. S. K. Liu
- Subjects
Hydrology ,Atmospheric Science ,010504 meteorology & atmospheric sciences ,business.industry ,Settling basin ,Open-pit mining ,BTEX ,010501 environmental sciences ,01 natural sciences ,Tailings ,lcsh:QC1-999 ,lcsh:Chemistry ,Surface mining ,lcsh:QD1-999 ,13. Climate action ,Greenhouse gas ,Environmental science ,Oil sands ,Fugitive emissions ,business ,lcsh:Physics ,0105 earth and related environmental sciences - Abstract
Aircraft-based measurements of methane (CH4) and other air pollutants in the Athabasca Oil Sands Region (AOSR) were made during a summer intensive field campaign between 13 August and 7 September 2013 in support of the Joint Canada–Alberta Implementation Plan for Oil Sands Monitoring. Chemical signatures were used to identify CH4 sources from tailings ponds (BTEX VOCs), open pit surface mines (NOy and rBC) and elevated plumes from bitumen upgrading facilities (SO2 and NOy). Emission rates of CH4 were determined for the five primary surface mining facilities in the region using two mass-balance methods. Emission rates from source categories within each facility were estimated when plumes from the sources were spatially separable. Tailings ponds accounted for 45 % of total CH4 emissions measured from the major surface mining facilities in the region, while emissions from operations in the open pit mines accounted for ∼ 50 %. The average open pit surface mining emission rates ranged from 1.2 to 2.8 t of CH4 h−1 for different facilities in the AOSR. Amongst the 19 tailings ponds, Mildred Lake Settling Basin, the oldest pond in the region, was found to be responsible for the majority of tailings ponds emissions of CH4 ( > 70 %). The sum of measured emission rates of CH4 from the five major facilities, 19.2 ± 1.1 t CH4 h−1, was similar to a single mass-balance determination of CH4 from all major sources in the AOSR determined from a single flight downwind of the facilities, 23.7 ± 3.7 t CH4 h−1. The measured hourly CH4 emission rate from all facilities in the AOSR is 48 ± 8 % higher than that extracted for 2013 from the Canadian Greenhouse Gas Reporting Program, a legislated facility-reported emissions inventory, converted to hourly units. The measured emissions correspond to an emissions rate of 0.17 ± 0.01 Tg CH4 yr−1 if the emissions are assumed as temporally constant, which is an uncertain assumption. The emission rates reported here are relevant for the summer season. In the future, effort should be devoted to measurements in different seasons to further our understanding of the seasonal parameters impacting fugitive emissions of CH4 and to allow for better estimates of annual emissions and year-to-year variability.
- Published
- 2018
12. Supplementary material to 'The Global Methane Budget 2000–2017'
- Author
-
Marielle Saunois, Ann R. Stavert, Ben Poulter, Philippe Bousquet, Joseph G. Canadell, Robert B. Jackson, Peter A. Raymond, Edward J. Dlugokencky, Sander Houweling, Prabir K. Patra, Philippe Ciais, Vivek K. Arora, David Bastviken, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Kimberly M. Carlson, Mark Carrol, Simona Castaldi, Naveen Chandra, Cyril Crevoisier, Patrick M. Crill, Kristofer Covey, Charles L. Curry, Giuseppe Etiope, Christian Frankenberg, Nicola Gedney, Michaela I. Hegglin, Lena Höglund-Isaksson, Gustaf Hugelius, Misa Ishizawa, Akihiko Ito, Greet Janssens-Maenhout, Katherine M. Jensen, Fortunat Joos, Thomas Kleinen, Paul B. Krummel, Ray L. Langenfelds, Goulven G. Laruelle, Licheng Liu, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Joe McNorton, Paul A. Miller, Joe R. Melton, Isamu Morino, Jureck Müller, Fabiola Murgia-Flores, Vaishali Naik, Yosuke Niwa, Sergio Noce, Simon O'Doherty, Robert J. Parker, Changhui Peng, Shushi Peng, Glen P. Peters, Catherine Prigent, Ronald Prinn, Michel Ramonet, Pierre Regnier, William J. Riley, Judith A. Rosentreter, Arjo Segers, Isobel J. Simpson, Hao Shi, Steven J. Smith, L. Paul Steele, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Francesco N. Tubiello, Aki Tsuruta, Nicolas Viovy, Apostolos Voulgarakis, Thomas S. Weber, Michiel van Weele, Guido R. van der Werf, Ray F. Weiss, Doug Worthy, Debra Wunch, Yi Yin, Yukio Yoshida, Wenxin Zhang, Zhen Zhang, Yuanhong Zhao, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
- Published
- 2019
- Full Text
- View/download PDF
13. Enhanced North American carbon uptake associated with El Niño
- Author
-
Kathryn McKain, Sébastien C. Biraud, Colm Sweeney, Doug Worthy, Lei Hu, S. E. Michel, Bruce H. Vaughn, Anna M. Michalak, M. E. Mountain, Edward J. Dlugokencky, Michael Trudeau, Y. P. Shiga, Stephen A. Montzka, Thomas Nehrkorn, Kirk Thoning, Arlyn E. Andrews, Vineet Yadav, James W. C. White, Marc Fischer, Ivar R. van der Velde, Sourish Basu, J. Kofler, Pieter P. Tans, John B. Miller, Economics, and Earth and Climate
- Subjects
0106 biological sciences ,010504 meteorology & atmospheric sciences ,Atmospheric sciences ,01 natural sciences ,chemistry.chemical_compound ,Surface air temperature ,Spring (hydrology) ,Research Articles ,0105 earth and related environmental sciences ,Carbon flux ,Climatology ,geography ,Multidisciplinary ,geography.geographical_feature_category ,010604 marine biology & hydrobiology ,Carbon uptake ,SciAdv r-articles ,La Niña ,chemistry ,El Niño ,Net ecosystem exchange ,Carbon dioxide ,Environmental science ,SDG 6 - Clean Water and Sanitation ,Research Article - Abstract
North American ecosystems absorb more CO2 from the atmosphere during El Niño than during La Niña periods., Long-term atmospheric CO2 mole fraction and δ13CO2 observations over North America document persistent responses to the El Niño–Southern Oscillation. We estimate these responses corresponded to 0.61 (0.45 to 0.79) PgC year−1 more North American carbon uptake during El Niño than during La Niña between 2007 and 2015, partially offsetting increases of net tropical biosphere-to-atmosphere carbon flux around El Niño. Anomalies in derived North American net ecosystem exchange (NEE) display strong but opposite correlations with surface air temperature between seasons, while their correlation with water availability was more constant throughout the year, such that water availability is the dominant control on annual NEE variability over North America. These results suggest that increased water availability and favorable temperature conditions (warmer spring and cooler summer) caused enhanced carbon uptake over North America near and during El Niño.
- Published
- 2019
- Full Text
- View/download PDF
14. The Facility Level and Area Methane Emissions inventory for the Greater Toronto Area (FLAME-GTA)
- Author
-
Elton Chan, Felix Vogel, Debra Wunch, Doug Worthy, Junhua Zhang, Sajjan Heerah, and Nasrin Mostafavi Pak
- Subjects
Methane emissions ,Atmospheric Science ,010504 meteorology & atmospheric sciences ,Climate change ,010501 environmental sciences ,Atmospheric sciences ,7. Clean energy ,01 natural sciences ,Metropolitan area ,Atmospheric research ,Methane ,symbols.namesake ,chemistry.chemical_compound ,chemistry ,13. Climate action ,symbols ,Environmental science ,Emission inventory ,Air quality index ,Lagrangian ,0105 earth and related environmental sciences ,General Environmental Science - Abstract
We present the Facility Level and Area Methane (CH4) Emissions inventory for the Greater Toronto Area (FLAME-GTA). We estimate that total emissions of CH4 in the GTA, the most populous metropolitan area in Canada, are about 86 ± 38 Gg/yr. The FLAME-GTA estimate is within uncertainty of, but lower in magnitude than the existing gridded inventories provided by the Emissions Database for Global Atmospheric Research (EDGAR v 5.0), and by Environment and Climate Change Canada's Air Quality Research Division (ECCC - AQRD) that estimate emissions of 96 ± 48 Gg/yr and 143 ± 71 Gg/yr in the GTA region, respectively. Using a Lagrangian transport model, we predict atmospheric mixing ratios based on different emission inventories and compare the predictions with in situ measurements available from an observatory within the GTA for January–March in both 2015 and 2016. Due to the strong influence of local sources on our observations only a subregion of our GTA inventory is evaluated. These results identify the need for a more extensive measurement network and an improved atmospheric transport modeling effort for further evaluation of the emission inventories.
- Published
- 2021
- Full Text
- View/download PDF
15. Evaluation of wetland methane emissions across North America using atmospheric data and inverse modeling
- Author
-
Edward J. Dlugokencky, Anna M. Michalak, Joe R. Melton, J. S. Benmergui, Doug Worthy, Colm Sweeney, Scot M. Miller, Greet Janssens-Maenhout, Roisin Commane, and Arlyn E. Andrews
- Subjects
010504 meteorology & atmospheric sciences ,lcsh:Life ,Magnitude (mathematics) ,Wetland ,Land cover ,010502 geochemistry & geophysics ,Atmospheric sciences ,Spatial distribution ,01 natural sciences ,Methane ,Synthetic data ,chemistry.chemical_compound ,lcsh:QH540-549.5 ,medicine ,Ecology, Evolution, Behavior and Systematics ,0105 earth and related environmental sciences ,Earth-Surface Processes ,Hydrology ,geography ,geography.geographical_feature_category ,lcsh:QE1-996.5 ,Seasonality ,medicine.disease ,lcsh:Geology ,lcsh:QH501-531 ,chemistry ,Environmental science ,lcsh:Ecology ,Wetland methane emissions - Abstract
Existing estimates of methane (CH4) fluxes from North American wetlands vary widely in both magnitude and distribution. In light of these differences, this study uses atmospheric CH4 observations from the US and Canada to analyze seven different bottom-up, wetland CH4 estimates reported in a recent model comparison project. We first use synthetic data to explore whether wetland CH4 fluxes are detectable at atmospheric observation sites. We find that the observation network can detect aggregate wetland fluxes from both eastern and western Canada but generally not from the US. Based upon these results, we then use real data and inverse modeling results to analyze the magnitude, seasonality, and spatial distribution of each model estimate. The magnitude of Canadian fluxes in many models is larger than indicated by atmospheric observations. Many models predict a seasonality that is narrower than implied by inverse modeling results, possibly indicating an oversensitivity to air or soil temperatures. The LPJ-Bern and SDGVM models have a geographic distribution that is most consistent with atmospheric observations, depending upon the region and season. These models utilize land cover maps or dynamic modeling to estimate wetland coverage while most other models rely primarily on remote sensing inundation data.
- Published
- 2016
16. Analysis of atmospheric CH4 in Canadian Arctic and estimation of the regional CH4 fluxes
- Author
-
Felix Vogel, Elton Chan, Doug Worthy, Misa Ishizawa, Douglas Chan, and Shamil Maksyutov
- Subjects
Estimation ,Atmospheric Science ,geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Range (biology) ,Wetland ,010501 environmental sciences ,Atmospheric sciences ,01 natural sciences ,Methane ,The arctic ,Current (stream) ,chemistry.chemical_compound ,Flux (metallurgy) ,Arctic ,chemistry ,Environmental science ,0105 earth and related environmental sciences - Abstract
The Canadian Arctic (> 60 ∘ N, 60–141 ∘ W) may undergo drastic changes if the Arctic warming trend continues. For methane ( CH4 ), Arctic reservoirs are large and widespread, and the climate feedbacks from such changes may be potentially substantial. Current bottom-up and top-down estimates of the regional CH4 flux range widely. This study analyzes the recent observations of atmospheric CH4 from five arctic monitoring sites and presents estimates of the regional CH4 fluxes for 2012–2015. The observational data reveal sizeable synoptic summertime enhancements in the atmospheric CH4 that are distinguishable from background variations, which indicate strong regional fluxes (primarily wetland and biomass burning CH4 emissions) around Behchoko and Inuvik in the western Canadian Arctic. Three regional Bayesian inversion modelling systems with two Lagrangian particle dispersion models and three meteorological datasets are applied to estimate fluxes for the Canadian Arctic and show relatively robust results in amplitude and temporal variations across different transport models, prior fluxes, and subregion masking. The estimated mean total CH4 flux for the entire Canadian Arctic is 1.8±0.6 Tg CH4 yr −1 . The flux estimate is partitioned into biomass burning of 0.3±0.1 Tg CH4 yr −1 and the remaining natural (wetland) flux of 1.5±0.5 Tg CH4 yr −1 . The summer natural CH4 flux estimates clearly show inter-annual variability that is positively correlated with surface temperature anomalies. The results indicate that years with warmer summer conditions result in more wetland CH4 emissions. More data and analysis are required to statistically characterize the dependence of regional CH4 fluxes on the climate in the Arctic. These Arctic measurement sites will aid in quantifying the inter-annual variations and long-term trends in CH4 emissions in the Canadian Arctic.
- Published
- 2018
- Full Text
- View/download PDF
17. Supplementary material to 'Analysis of atmospheric CH4 in Canadian Arctic and estimation of the regional CH4 fluxes'
- Author
-
Misa Ishizawa, Douglas Chan, Doug Worthy, Elton Chan, Felix Vogel, and Shamil Maksyutov
- Published
- 2018
- Full Text
- View/download PDF
18. A regional high-resolution carbon flux inversion of North America for 2004
- Author
-
Andrew Schuh, Doug Worthy, K. D. Corbin, Marek Uliasz, Nicholas C. Parazoo, A. S. Denning, Ian Baker, and Arlyn E. Andrews
- Subjects
Biosphere model ,Chemical transport model ,lcsh:QE1-996.5 ,Biome ,lcsh:Life ,Biosphere ,Inversion (meteorology) ,lcsh:Geology ,lcsh:QH501-531 ,lcsh:QH540-549.5 ,Climatology ,Mixing ratio ,Environmental science ,lcsh:Ecology ,Ecosystem respiration ,Jackknife resampling ,Ecology, Evolution, Behavior and Systematics ,Earth-Surface Processes - Abstract
Resolving the discrepancies between NEE estimates based upon (1) ground studies and (2) atmospheric inversion results, demands increasingly sophisticated techniques. In this paper we present a high-resolution inversion based upon a regional meteorology model (RAMS) and an underlying biosphere (SiB3) model, both running on an identical 40 km grid over most of North America. Current operational systems like CarbonTracker as well as many previous global inversions including the Transcom suite of inversions have utilized inversion regions formed by collapsing biome-similar grid cells into larger aggregated regions. An extreme example of this might be where corrections to NEE imposed on forested regions on the east coast of the United States might be the same as that imposed on forests on the west coast of the United States while, in reality, there likely exist subtle differences in the two areas, both natural and anthropogenic. Our current inversion framework utilizes a combination of previously employed inversion techniques while allowing carbon flux corrections to be biome independent. Temporally and spatially high-resolution results utilizing biome-independent corrections provide insight into carbon dynamics in North America. In particular, we analyze hourly CO2 mixing ratio data from a sparse network of eight towers in North America for 2004. A prior estimate of carbon fluxes due to Gross Primary Productivity (GPP) and Ecosystem Respiration (ER) is constructed from the SiB3 biosphere model on a 40 km grid. A combination of transport from the RAMS and the Parameterized Chemical Transport Model (PCTM) models is used to forge a connection between upwind biosphere fluxes and downwind observed CO2 mixing ratio data. A Kalman filter procedure is used to estimate weekly corrections to biosphere fluxes based upon observed CO2. RMSE-weighted annual NEE estimates, over an ensemble of potential inversion parameter sets, show a mean estimate 0.57 Pg/yr sink in North America. We perform the inversion with two independently derived boundary inflow conditions and calculate jackknife-based statistics to test the robustness of the model results. We then compare final results to estimates obtained from the CarbonTracker inversion system and at the Southern Great Plains flux site. Results are promising, showing the ability to correct carbon fluxes from the biosphere models over annual and seasonal time scales, as well as over the different GPP and ER components. Additionally, the correlation of an estimated sink of carbon in the South Central United States with regional anomalously high precipitation in an area of managed agricultural and forest lands provides interesting hypotheses for future work.
- Published
- 2018
19. A vegetation control on seasonal variations in global atmospheric mercury concentrations
- Author
-
Ingvar Wängberg, Cathrine Lund Myhre, Lynwill Martin, Casper Labuschagne, Aurélien Dommergue, Katriina Kyllönen, Johannes Bieser, Martin Jiskra, Thumeka Mkololo, Olivier Magand, Michel Ramonet, Doug Worthy, Jeroen E. Sonke, Daniel Obrist, Katrine Aspmo Pfaffhuber, Ralf Ebinghaus, Géochimie des Isotopes Stables Non-Traditionnels, Géosciences Environnement Toulouse ( GET ), Institut de Recherche pour le Développement ( IRD ) -Université Paul Sabatier - Toulouse 3 ( UPS ) -Observatoire Midi-Pyrénées ( OMP ) -Centre National de la Recherche Scientifique ( CNRS ) -Institut de Recherche pour le Développement ( IRD ) -Université Paul Sabatier - Toulouse 3 ( UPS ) -Observatoire Midi-Pyrénées ( OMP ) -Centre National de la Recherche Scientifique ( CNRS ), Desert Research Institute ( DRI ), GKSS-Research Center, Institute for Coastal Research, South African Weather Service ( SAWS ), Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de glaciologie et géophysique de l'environnement ( LGGE ), Observatoire des Sciences de l'Univers de Grenoble ( OSUG ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ) -Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ) -Centre National de la Recherche Scientifique ( CNRS ), Géosciences Environnement Toulouse (GET), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), University of Basel (Unibas), University of Massachusetts [Lowell] (UMass Lowell), University of Massachusetts System (UMASS), Helmholtz-Zentrum Geesthacht (GKSS), Norwegian Institute for Air Research (NILU), IVL Swedish Environmental Research Institute Ltd, Finnish Meteorological Institute (FMI), Climate Research Division [Toronto], Environment and Climate Change Canada, South African Weather Service (SAWS), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), ICOS-RAMCES (ICOS-RAMCES), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut des Géosciences de l’Environnement (IGE), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Recherche pour le Développement (IRD)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), European Project: 265113,EC:FP7:ENV,FP7-ENV-2010,GMOS(2010), European Project: 657195,H2020,H2020-MSCA-IF-2014,MEROXRE(2015), European Project: 258537,EC:FP7:ERC,ERC-2010-StG_20091028,MERCURY ISOTOPES(2010), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Swedish Environmental Research Institute (IVL), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
[ SDU.OCEAN ] Sciences of the Universe [physics]/Ocean, Atmosphere ,010504 meteorology & atmospheric sciences ,Birkenesobservatoriet ,chemistry.chemical_element ,010501 environmental sciences ,Atmospheric sciences ,Photosynthesis ,01 natural sciences ,Kvikksølv ,Latitude ,medicine ,[ SDU.ENVI ] Sciences of the Universe [physics]/Continental interfaces, environment ,Atmosphere and climate ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,Birkenes Observatory ,Southern Hemisphere ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Northern Hemisphere ,Primary production ,Mercury ,15. Life on land ,Seasonality ,medicine.disease ,Atmosfære og klima ,Mercury (element) ,chemistry ,13. Climate action ,Atmospheric chemistry ,General Earth and Planetary Sciences ,Environmental science - Abstract
International audience; Anthropogenic mercury emissions are transported through the atmosphere as gaseous elemental mercury (Hg(0)) before they are deposited to Earth’s surface. Strong seasonality in atmospheric Hg(0) concentrations in the Northern Hemisphere has been explained by two factors: anthropogenic Hg(0) emissions are thought to peak in winter due to higher energy consumption, and atmospheric oxidation rates of Hg(0) are faster in summer. Oxidation-driven Hg(0) seasonality should be equally pronounced in the Southern Hemisphere, which is inconsistent with observations of constant year-round Hg(0) levels. Here, we assess the role of Hg(0) uptake by vegetation as an alternative mechanism for driving Hg(0) seasonality. We find that at terrestrial sites in the Northern Hemisphere, Hg(0) co-varies with CO$_2$, which is known to exhibit a minimum in summer when CO$_2$ is assimilated by vegetation. The amplitude of seasonal oscillations in the atmospheric Hg(0) concentration increases with latitude and is larger at inland terrestrial sites than coastal sites. Using satellite data, we find that the photosynthetic activity of vegetation correlates with Hg(0) levels at individual sites and across continents. We suggest that terrestrial vegetation acts as a global Hg(0) pump, which can contribute to seasonal variations of atmospheric Hg(0), and that decreasing Hg(0) levels in the Northern Hemisphere over the past 20 years can be partly attributed to increased terrestrial net primary production.
- Published
- 2018
- Full Text
- View/download PDF
20. Quantification of Methane Sources in the Athabasca Oil Sands Region of Alberta by Aircraft Mass-Balance
- Author
-
Sabour Baray, Andrea Darlington, Mark Gordon, Katherine L. Hayden, Amy Leithead, Shao-Meng Li, Peter S. K. Liu, Richard L. Mittermeier, Samar G. Moussa, Jason O'Brien, Ralph Staebler, Mengistu Wolde, Doug Worthy, and Robert McLaren
- Subjects
13. Climate action - Abstract
Aircraft-based measurements of methane (CH4) and other air pollutants in the Athabasca Oil Sands Region (AOSR) were made during a summer intensive field campaign between August 13 and September 7 2013, in support of the Joint Canada–Alberta Implementation Plan for Oil Sands Monitoring. Chemical signatures were used to identify CH4 sources from tailings ponds (BTEX VOC's), open-pit surface mines (NOy and rBC) and elevated plumes from bitumen upgrading facilities (SO2 and NOy). Emission rates of CH4 were determined for the five primary surface mining facilities in the region using two mass balance methods. Emission rates from source categories within each facility were estimated when plumes from the sources were spatially separable. Tailings ponds accounted for 45 % of total CH4 emissions measured from the major surface mining facilities in the region while emissions from operations in the open pit mines accounted for ~ 50 %. The average open pit surface mining emission rates ranged from 1.2 to 2.8 tonnes of CH4 hr−1 for different facilities in the AOSR. Amongst the 19 tailings ponds, Mildred Lake Settling Basin, the oldest pond in the region, was found to be responsible for the majority of tailings ponds emissions of CH4 (> 70 %). The sum of measured emission rates of CH4 from the five major facilities, 19.2 ± 1.1 tonnes CH4 hr−1, was similar to a single mass balance determination of CH4 from all major sources in the AOSR determined from a single flight downwind of the facilities, 23.7 ± 3.7 tonnes CH4 hr−1. The measured hourly CH4 emission rate from all facilities in the AOSR is 48 ± 8 % higher than that extracted for 2013 from the Canadian Green House Gas Reporting Program, a legislated facility-reported Emissions Inventory, converted to hourly units. The measured emissions correspond to an emissions rate of 0.17 ± 0.01 Tg CH4 yr−1, if the emissions are assumed temporally constant, an uncertain assumption. The emission rates reported here are relevant for the summer season. In future, effort should be devoted to measurements in different seasons to further our understanding of seasonal parameters impacting fugitive emissions of CH4 and to allow better estimates of annual emissions and year to year variability.
- Published
- 2017
- Full Text
- View/download PDF
21. Supplementary material to 'Variability and quasi-decadal changes in the methane budget over the period 2000–2012'
- Author
-
Marielle Saunois, Philippe Bousquet, Benjamin Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Ray Weiss, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
- Published
- 2017
- Full Text
- View/download PDF
22. Methane fluxes in the high northern latitudes for 2005–2013 estimated using a Bayesian atmospheric inversion
- Author
-
Jost V. Lavric, Cathrine Lund Myhre, Toshinobu Machida, Motoki Sasakawa, Tuula Aalto, Rona Thompson, Doug Worthy, and Andreas Stohl
- Subjects
Atmospheric Science ,geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Inversion (meteorology) ,Wetland ,010501 environmental sciences ,01 natural sciences ,Methane ,lcsh:QC1-999 ,Latitude ,lcsh:Chemistry ,chemistry.chemical_compound ,Zeppelinobservatoriet ,Flux (metallurgy) ,chemistry ,lcsh:QD1-999 ,Temporal resolution ,Climatology ,Environmental science ,Water content ,Bay ,lcsh:Physics ,0105 earth and related environmental sciences - Abstract
We present methane (CH4) flux estimates for 2005 to 2013 from a Bayesian inversion focusing on the high northern latitudes (north of 50° N). Our inversion is based on atmospheric transport modelled by the Lagrangian particle dispersion model FLEXPART and CH4 observations from 17 in situ and five discrete flask-sampling sites distributed over northern North America and Eurasia. CH4 fluxes are determined at monthly temporal resolution and on a variable grid with maximum resolution of 1° × 1°. Our inversion finds a CH4 source from the high northern latitudes of 82 to 84 Tg yr−1, constituting ∼ 15 % of the global total, compared to 64 to 68 Tg yr−1 (∼ 12 %) in the prior estimates. For northern North America, we estimate a mean source of 16.6 to 17.9 Tg yr−1, which is dominated by fluxes in the Hudson Bay Lowlands (HBL) and western Canada, specifically the province of Alberta. Our estimate for the HBL, of 2.7 to 3.4 Tg yr−1, is close to the prior estimate (which includes wetland fluxes from the land surface model, LPX-Bern) and to other independent inversion estimates. However, our estimate for Alberta, of 5.0 to 5.8 Tg yr−1, is significantly higher than the prior (which also includes anthropogenic sources from the EDGAR-4.2FT2010 inventory). Since the fluxes from this region persist throughout the winter, this may signify that the anthropogenic emissions are underestimated. For northern Eurasia, we find a mean source of 52.2 to 55.5 Tg yr−1, with a strong contribution from fluxes in the Western Siberian Lowlands (WSL) for which we estimate a source of 19.3 to 19.9 Tg yr−1. Over the 9-year inversion period, we find significant year-to-year variations in the fluxes, which in North America, and specifically in the HBL, appear to be driven at least in part by soil temperature, while in the WSL, the variability is more dependent on soil moisture. Moreover, we find significant positive trends in the CH4 fluxes in North America of 0.38 to 0.57 Tg yr−2, and northern Eurasia of 0.76 to 1.09 Tg yr−2. In North America, this could be due to an increase in soil temperature, while in North Eurasia, specifically Russia, the trend is likely due, at least in part, to an increase in anthropogenic sources.
- Published
- 2017
23. The global methane budget 2000-2012
- Author
-
Akihiko Ito, Philippe Ciais, Peter Bergamaschi, Greet Janssens-Maenhout, David J. Beerling, Cyril Crevoisier, Philippe Bousquet, Julia Marshall, Simona Castaldi, Isabelle Pison, Heon Sook Kim, Yasunori Tohjima, Jean-Francois Lamarque, Atsushi Takizawa, Charles L. Curry, Debra Wunch, Kyle C. McDonald, Michel Ramonet, David Bastviken, Simon O'Doherty, Josep G. Canadell, Robin Locatelli, Francesco N. Tubiello, Prabir K. Patra, P. Steele, Brett F. Thornton, Catherine Prigent, Sander Houweling, Toshinobu Machida, David J. Wilton, Joe R. Melton, Ronald G. Prinn, William J. Riley, Edward J. Dlugokencky, Monia Santini, Giuseppe Etiope, Doug Worthy, Guido R. van der Werf, Christian Frankenberg, Shushi Peng, Vivek K. Arora, Patrick M. Crill, Ray F. Weiss, Nicolas Viovy, Michiel van Weele, Anna Peregon, Shamil Maksyutov, Vaishali Naik, Zhen Zhang, Thomas Kleinen, Lori Bruhwiler, Yukio Yoshida, Lena Höglund-Isaksson, Kristofer R. Covey, Fortunat Joos, Misa Ishizawa, Bowen Zhang, Christine Wiedinmyer, Ronny Schroeder, Nicola Gedney, Hanqin Tian, Changhui Peng, Apostolos Voulgarakis, Mihai Alexe, Victor Brovkin, Ray L. Langenfelds, Isamu Morino, Glen P. Peters, Xiyan Xu, Andy Wiltshire, Isobel J. Simpson, Ben Poulter, Marielle Saunois, Qiuan Zhu, Donald R. Blake, Paul B. Krummel, Frans-Jan W. Parmentier, Makoto Saito, Gordon Brailsford, Robert B. Jackson, Renato Spahni, Earth and Climate, Hydrology and Geo-environmental sciences, Faculty of Earth and Life Sciences, Saunois, Marielle, Bousquet, Philippe, Poulter, Ben, Peregon, Anna, Ciais, Philippe, Canadell Josep, G, Dlugokencky Edward, J., Etiope, Giuseppe, Bastviken, David, Houweling, Sander, Janssens Maenhout, Greet, Tubiello Francesco, N., Castaldi, Simona, Jackson Robert, B., Alexe, Mihai, Arora Vivek, K., Beerling David, J., Bergamaschi, Peter, Blake Donald, R., Brailsford, Gordon, Brovkin, Victor, Bruhwiler, Lori, Crevoisier, Cyril, Crill, Patrick, Covey, Kristofer, Curry, Charle, Frankenberg, Christian, Gedney, Nicola, Höglund Isaksson, Lena, Ishizawa, Misa, Ito, Akihiko, Joos, Fortunat, Kim Heon, Sook, Kleinen, Thoma, Krummel, Paul, Lamarque Jean, Françoi, Langenfelds, Ray, Locatelli, Robin, Machida, Toshinobu, Maksyutov, Shamil, McDonald Kyle, C., Marshall, Julia, Melton Joe, R., Morino, Isamu, Naik Vaishali, Oapo, Doherty, Simon, Parmentier Frans Jan, W., Patra Prabir, K., Peng, Changhui, Peng, Shushi, Peters Glen, P., Pison, Isabelle, Prigent, Catherine, Prinn, Ronald, Ramonet, Michel, Riley William, J., Saito, Makoto, Santini, Monia, Schroeder, Ronny, Simpson Isobel, J., Spahni, Renato, Steele, Paul, Takizawa, Atsushi, Thornton Brett, F., Tian, Hanqin, Tohjima, Yasunori, Viovy, Nicola, Voulgarakis, Apostolo, van Weele, Michiel, van der Werf Guido, R., Weiss, Ray, Wiedinmyer, Christine, Wilton David, J., Wiltshire, Andy, Worthy, Doug, Wunch, Debra, Xu, Xiyan, Yoshida, Yukio, Zhang, Bowen, Zhang, Zhen, Zhu, Qiuan, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Modélisation INVerse pour les mesures atmosphériques et SATellitaires (SATINV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), NASA Goddard Space Flight Center (GSFC), ICOS-ATC (ICOS-ATC), Istituto Nazionale di Geofisica e Vulcanologia, The Department of Thematic Studies - Water and Environmental Studies, Linköping University (LIU), SRON Netherlands Institute for Space Research (SRON), European Commission - Joint Research Centre [Ispra] (JRC), LM, Canadian Centre for Climate Modelling and Analysis (CCCma), Environment and Climate Change Canada, Department of Animal and Plant Sciences, University of Sheffield [Sheffield], JRC Institute for Environment and Sustainability (IES), Max Planck Institute for Meteorology (MPI-M), Max-Planck-Gesellschaft, NOAA Earth System Research Laboratory (ESRL), National Oceanic and Atmospheric Administration (NOAA), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Tropospheric sounding, assimilation, and modeling group [JPL], Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH)-NASA-California Institute of Technology (CALTECH), National Institute for Environmental Studies (NIES), Climate and Environmental Physics [Bern] (CEP), Physikalisches Institut [Bern], Universität Bern [Bern] (UNIBE)-Universität Bern [Bern] (UNIBE), Atmospheric Chemistry Division [Boulder], National Center for Atmospheric Research [Boulder] (NCAR), Oceans and Atmosphere, CSIRO, Strathom Energie, Centre Européen de Réalité Virtuelle (CERV), École Nationale d'Ingénieurs de Brest (ENIB), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Université du Québec à Trois-Rivières (UQTR), ICOS-RAMCES (ICOS-RAMCES), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Shandong Agricultural University (SDAU), Modélisation des Surfaces et Interfaces Continentales (MOSAIC), Department of Physics [Imperial College London], Imperial College London, Royal Netherlands Meteorological Institute (KNMI), Faculty of Earth and Life Sciences [Amsterdam] (FALW), Vrije Universiteit Amsterdam [Amsterdam] (VU), Scripps Institution of Oceanography (SIO - UC San Diego), University of California [San Diego] (UC San Diego), University of California (UC)-University of California (UC), Met Office Hadley Centre for Climate Change (MOHC), United Kingdom Met Office [Exeter], Climate Research Division [Toronto], California Institute of Technology (CALTECH), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), USC Viterbi School of Engineering, University of Southern California (USC), Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences, Prinn, Ronald G, Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Universität Bern [Bern]-Universität Bern [Bern], Scripps Institution of Oceanography (SIO), and University of California-University of California
- Subjects
010504 meteorology & atmospheric sciences ,Naturgeografi ,TRACE GASES ,010501 environmental sciences ,Atmospheric sciences ,7. Clean energy ,01 natural sciences ,Physical Geography and Environmental Geoscience ,Methane ,chemistry.chemical_compound ,Natural gas ,11. Sustainability ,SDG 13 - Climate Action ,Meteorology & Atmospheric Sciences ,Geosciences, Multidisciplinary ,Greenhouse effect ,lcsh:Environmental sciences ,ComputingMilieux_MISCELLANEOUS ,lcsh:GE1-350 ,[PHYS]Physics [physics] ,GREENHOUSE-GAS EMISSIONS ,methane ,lcsh:QE1-996.5 ,Geology ,PAST 2 DECADES ,Carbon project ,Atmospheric chemistry ,Physical Sciences ,hydroxyl ,Earth and Related Environmental Sciences ,Wetland methane emissions ,BIOMASS BURNING EMISSIONS ,NATURAL-GAS ,PROCESS-BASED MODEL ,TROPOSPHERIC METHANE ,530 Physics ,methane sources ,Climate change ,Atmospheric Sciences ,ATMOSPHERIC HYDROXYL RADICALS ,SDG 14 - Life Below Water ,ISOTOPIC COMPOSITION ,550 Earth sciences & geology ,0105 earth and related environmental sciences ,global model ,Science & Technology ,business.industry ,Environmental engineering ,Geovetenskap och miljövetenskap ,15. Life on land ,methane budget ,lcsh:Geology ,Climate Action ,Geochemistry ,chemistry ,Physical Geography ,13. Climate action ,Greenhouse gas ,General Earth and Planetary Sciences ,Environmental science ,business ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,INTERCOMPARISON PROJECT ACCMIP - Abstract
The global methane (CH4) budget is becoming an increasingly important component for managing realistic pathways to mitigate climate change. This relevance, due to a shorter atmospheric lifetime and a stronger warming potential than carbon dioxide, is challenged by the still unexplained changes of atmospheric CH4 over the past decade. Emissions and concentrations of CH4 are continuing to increase, making CH4 the second most important human-induced greenhouse gas after carbon dioxide. Two major difficulties in reducing uncertainties come from the large variety of diffusive CH4 sources that overlap geographically, and from the destruction of CH4 by the very short-lived hydroxyl radical (OH). To address these difficulties, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate research on the methane cycle, and producing regular (similar to biennial) updates of the global methane budget. This consortium includes atmospheric physicists and chemists, biogeochemists of surface and marine emissions, and socio-economists who study anthropogenic emissions. Following Kirschke et al. (2013), we propose here the first version of a living review paper that integrates results of top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models, inventories and data-driven approaches (including process-based models for estimating land surface emissions and atmospheric chemistry, and inventories for anthropogenic emissions, data-driven extrapolations). For the 2003-2012 decade, global methane emissions are estimated by top-down inversions at 558 TgCH(4) yr(-1), range 540-568. About 60% of global emissions are anthropogenic (range 50-65 %). Since 2010, the bottom-up global emission inventories have been closer to methane emissions in the most carbon-intensive Representative Concentrations Pathway (RCP8.5) and higher than all other RCP scenarios. Bottom-up approaches suggest larger global emissions (736 TgCH(4) yr(-1), range 596-884) mostly because of larger natural emissions from individual sources such as inland waters, natural wetlands and geological sources. Considering the atmospheric constraints on the top-down budget, it is likely that some of the individual emissions reported by the bottom-up approaches are overestimated, leading to too large global emissions. Latitudinal data from top-down emissions indicate a predominance of tropical emissions (similar to 64% of the global budget, amp;lt;30 degrees N) as compared to mid (similar to 32 %, 30-60 degrees N) and high northern latitudes (similar to 4 %, 60-90 degrees N). Top-down inversions consistently infer lower emissions in China (similar to 58 TgCH(4) yr(-1), range 51-72, -14 %) and higher emissions in Africa (86 TgCH(4) yr(-1), range 73-108, + 19 %) than bottom-up values used as prior estimates. Overall, uncertainties for anthropogenic emissions appear smaller than those from natural sources, and the uncertainties on source categories appear larger for top-down inversions than for bottom-up inventories and models. The most important source of uncertainty on the methane budget is attributable to emissions from wetland and other inland waters. We show that the wetland extent could contribute 30-40% on the estimated range for wetland emissions. Other priorities for improving the methane budget include the following: (i) the development of process-based models for inland-water emissions, (ii) the intensification of methane observations at local scale (flux measurements) to constrain bottom-up land surface models, and at regional scale (surface networks and satellites) to constrain top-down inversions, (iii) improvements in the estimation of atmospheric loss by OH, and (iv) improvements of the transport models integrated in top-down inversions. The data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (http://doi.org/10.3334/CDIAC/GLOBAL_METHANE_BUDGET_2016_V1.1) and the Global Carbon Project. Funding Agencies|Swiss National Science Foundation; NASA [NNX14AF93G, NNX14AO73G]; National Environmental Science Program - Earth Systems and Climate Change Hub; European Commission [283576, 633080]; ESA Climate Change Initiative Greenhouse Gases Phase 2 project; US Department of Energy, BER [DE-AC02-05CH11231]; FAO member countries; Environment Research and Technology Development Fund of the Ministry of the Environment, Japan [2-1502]; ERC [322998]; NERC [NE/J00748X/1]; Swedish Research Council VR; Research Council of Norway [244074]; NSF [1243232, 1243220]; National Science and Engineering Research Council of Canada (NSERC); Chinas QianRen Program; CSIRO Australia; Australian Bureau of Meteorology; Australian Institute of Marine Science; Australian Antarctic Division; NOAA USA; Meteorological Service of Canada; National Aeronautic and Space Administration (NASA) [NAG5-12669, NNX07AE89G, NNX11AF17G, NNX07AE87G, NNX07AF09G, NNX11AF15G, NNX11AF16G]; Department of Energy and Climate Change (DECC, UK) [GA01081]; Commonwealth Scientific and Industrial Research Organization (CSIRO Australia); Bureau of Meteorology (Australia); Joint DECC/Defra Met Office Hadley Centre Climate Programme [GA01101]
- Published
- 2016
- Full Text
- View/download PDF
24. Supplementary material to 'Methane fluxes in the high northern latitudes for 2005–2013 estimated using a Bayesian atmospheric inversion'
- Author
-
Rona L. Thompson, Motoki Sasakawa, Toshinobu Machida, Tuula Aalto, Doug Worthy, Jost V. Lavric, Cathrine Lund Myhre, and Andreas Stohl
- Published
- 2016
- Full Text
- View/download PDF
25. Supplementary material to 'The Global Methane Budget: 2000–2012'
- Author
-
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Victor Brovkin, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Charles Curry, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Julia Marshall, Joe R. Melton, Isamu Morino, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Catherine Prigent, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Paul Steele, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Michiel van Weele, Guido van der Werf, Ray Weiss, Christine Wiedinmyer, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra B. Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
- Published
- 2016
- Full Text
- View/download PDF
26. Growth Rate, Seasonal, Synoptic, Diurnal Variations and Budget of Methane in the Lower Atmosphere
- Author
-
Ray F. Weiss, A. J. Gomez-Pelaez, Karin Uhse, Jeong-Sik Kim, Frank Meinhardt, Ray L. Langenfelds, Takakiyo Nakazawa, Derek M. Cunnold, Kazuhiro Tsuboi, Ronald G. Prinn, Tae-Young Goo, P. Steele, Yasunori Tohjima, Kentaro Ishijima, Hitoshi Mukai, Peter Simmonds, Masayuki Takigawa, Edward J. Dlugokencky, Paul B. Krummel, Simon O'Doherty, Byoung-Choel Choi, Prabir K. Patra, Doug Worthy, and Paul J. Fraser
- Subjects
Atmosphere ,Atmospheric Science ,Boreal ,Climatology ,Diurnal temperature variation ,Mixing ratio ,medicine ,Northern Hemisphere ,Flux ,Growth rate ,Seasonality ,Atmospheric sciences ,medicine.disease - Abstract
We have used an AGCM (atmospheric general circulation model)-based Chemistry Transport Model (ACTM) for the simulation of methane (CH4) in the height range of earth’s surface to about 90 km. The model simulations are compared with measurements at hourly, daily, monthly and interannual time scales by filtering or averaging all the timeseries appropriately. From this model-observation comparison, we conclude that the recent (1990-2006) trends in growth rate and seasonal cycle at most measurement sites can be fairly successfully modeled by using existing knowledge of CH4 flux trends and seasonality. A large part of the interannual variability (IAV) in CH4 growth rate is apparently controlled by IAV in atmospheric dynamics at the tropical sites and forest fires in the high latitude sites. The flux amplitudes are optimized with respect to the available hydroxyl radical (OH) distribution and model transport for successful reproduction of latitudinal and longitudinal distribution of observed CH4 mixing ratio at the earth’s surface. Estimated atmospheric CH4 lifetime in this setup is 8.6 years. We found a small impact (less than 0.5 ppb integrated over 1 year) of OH diurnal variation, due to temperature dependence of reaction rate coefficient, on CH4 simulation compared to the transport related variability (order of ±15 ppb at interannual timescales). Model-observation comparisons of seasonal cycles, synoptic variations and diurnal cycles are shown to be useful for validating regional flux distribution patterns and strengths. Our results, based on two emission scenarios, suggest reduced emissions from temperate and tropical Asia region (by 13, 5, 3 Tg-CH4 for India, China and Indonesia, respectively), and compensating increase (by 9, 9, 3 Tg-CH4 for Russia, United States and Canada, respectively) in the boreal Northern Hemisphere (NH) are required for improved model-observation agreement.
- Published
- 2009
- Full Text
- View/download PDF
27. State of the Climate in 2013
- Author
-
Olga Clorinda Penalba, David A. Robinson, Steve Ready, Edward Hanna, Philip J. Klotzbach, Christopher W. Landsea, Hugo G. Hidalgo, Ursula Schauer, H. Loeng, Martin O. Jeffries, Jacqueline M. Spence, Christopher S. Meinen, Garret G. Campbell, Qiuhong Tang, Muyin Wang, Hongxing Liu, R. Yamada, Gloria L. Manney, Nicolas Fauchereau, Xavier Fettweis, Ricardo M. Trigo, S Barreira, Norman G. Loeb, Tuomas Laurila, Uwe Send, Eduardo Zambrano, Alexander Baklanov, Diego Loyola, Eleanor Frajka-Williams, Ahira Sánchez-Lugo, Kaarle Kupiainen, Gabriel J. Wolken, H. Kheyrollah Pour, John Kennedy, Simon McGree, Nicolai I. Shiklomanov, Alberto Setzer, Vernie Marcellin-Honore’, Adelina Albanil, Jack Kohler, Patricia K. Quinn, Edward J. Dlugokencky, N. G. Oberman, L. Chang’a, Laurence C. Smith, David Burgess, Peter Schlosser, Jochem Marotzke, Eric S. Blake, Shujie Wang, Arne Dahlback, Shotaro Tanaka, Vladimir E. Romanovsky, David A. Siegel, Agnes Kijazi, P. Sawaengphokhai, Lori Bruhwiler, Jeremy T. Mathis, Jason E. Box, R. B. Ingvaldsen, Stacey M. Frith, Stanley B. Goldenberg, Michele L. Newlin, Igor V. Polyakov, Kyun Kuk Kang, Robert Whitewood, Suzana J. Camargo, John A. Augustine, Natalya Kramarova, James W. Elkins, Michael S. Halpert, Zeng-Zhen Hu, M. C. Gregg, James S. Famiglietti, Johannes W. Kaiser, Mary-Louise Timmermans, William E. Johns, Melanie Coldewey-Egbers, Chris K. Folland, Shaun Quegan, Kazuyoshi Yoshimatsu, Marcel Nicolaus, Michael Kendon, Steven A. Ackerman, Gerard McCarthy, Peter Ambenje, Ivan E. Frolov, Laban Ogallo, Juan Bazo, Jonathan Gottschalck, Kaisa Lakkala, Alexandre M. Ramos, Arun Kumar, Serhat Sensoy, Russell S. Vose, Matthias Lankhorst, Isabelle Tobin, Allen Pope, Hyuanjun Kim, Nadine Gobron, R. Pascual, Samuel Remy, Chris Fenimore, Wassila M. Thiaw, Sharon L. Smith, Samar Khatiwala, Linda M. Keller, Jnes Uwe Grooß, Shashi K. Gupta, Fatemeh Rahimzadeh, Benjamin Rabe, Jacqueline A. Richter-Menge, Mauri Pelto, K. S. Law, Lisan Yu, Catia M. Domingues, Kathleen Dohan, Jake Crouch, Taro Takahashi, Robert Vautard, Germar Bernhard, Don P. Chambers, P. Luhunga, Song Shu, T. S. Jensen, Ryan L. Fogt, Silvia L. Garzoli, T. Kikuchi, Robert Dunn, José Luis Stella, H. Ng’ongolo, Joshua K. Willis, Andreas Herber, Gualberto Carrasco, Geoff S. Dutton, Yan Xue, Kyle Hilburn, Laura C. Brown, Gustavo J. Goni, Paul A. Newman, Ricardo A. Locarnini, E. Hyung Park, Mario Bidegain, Chris T. Fogarty, Jorge A. Amador, Hiroshi Ohno, David E. Parker, I. Hanssen-Bauer, Johannes Flemming, J. V. Revadekar, Michael C. Pitts, Alexandre Bernardes Pezza, Chunzai Wang, Bryan A. Franz, Jared Rennie, Scott J. Weaver, Thomas M. Smith, Stuart A. Cunningham, K. von Salzen, Shigeto Nishino, Stephen Baxter, Rene Lobato, David P. Kratz, I. A. James, Zo Rakotomavo, Peter Thorne, Kathleen L. McInnes, Phillipe Ciais, Von P. Walden, Martin Stengel, Geir O. Braathen, J. L. Vazquez, Angela Benedetti, Daniel Chung, Todd B. Kimberlain, Lincoln M. Alves, Christopher J. Cox, Mark Flanner, Jae Schemm, Peiqun Zhang, Eric J. Alfaro, Dmitry A. Streletskiy, John Cappelen, Yinghui Liu, Terry Haran, Natalia N. Korshunova, Jessica N. Cross, Idelmis T. Gonzalez, Uma S. Bhatt, Tannecia S. Stephenson, Nick Rayner, Shenfu Dong, Takmeng Wong, Xungang Yin, Ingrid L. Rivera, Seong-Joong Kim, David A. Smeed, Peter Bissolli, Mary Butler, Maurizio Santoro, Jerry Ziemke, Will Hobbs, Jeffrey R. Key, P. Jeremy Werdell, Bryan J. Johnson, Wiley Evans, Lamjav Oyunjargal, Liang Peng, Arlene P. Aaron-Morrison, John J. Marra, Avalon O. Porter, Juan Arévalo, Andries Kruger, Blanca Calderón, Phillip Reid, James A. Renwick, Stefan Hendricks, Christoph Reimer, Gregory C. Johnson, Gary T. Mitchum, Torsten Kanzow, John Wahr, K. Alama Coulibaly, G. V. Malkova, David H. Bromwich, Michael A. Taylor, Shu Oeng Ben Ho, Christian Euscátegui, Rick Lumpkin, Matthew A. Lazzara, Michael J. Behrenfeld, Kyle R. Clem, Ross Brown, Michael J. Foster, Juan José Nieto, Robert A. Massom, Blair Trewin, John I. Antonov, Mark A. Merrifield, Christoph Paulik, Guido R. van der Werf, Robert Parinussa, Mark A. Lander, Mark Weber, Diana Hovhannisyan, Rochard A.M. de Jeu, Jennifer A. Francis, L. M. Andreassen, Anthony Arendt, Rik Wanninkhof, Sebastian Hahn, Walter N. Meier, Gustavo Goni, Vyacheslav N. Razuvaev, Robert S. Pickart, John R. Christy, Xiangze Jin, José A. Marengo, Awatif Ebrahim, Eric R. Nash, Rolf Müller, Donald K. Perovich, Chris Derksen, H. K. Ha, Ben Hamlington, L. Jones, Junhong Wang, Guillaume Jumaux, Denis Volkov, I-I Lin, Christopher S. Oludhe, Asa K. Rennermalm, Caio A. S. Coelho, Stephen A. Montzka, Vladimir Sokolov, Rebecca A. Woodgate, Paul Berrisford, Ted Scambos, John Walsh, Michiyo Yamamoto-Kawai, Andrew K. Heidinger, Tim R. McVicar, Shih-Yu Wang, Amal Sayouri, S. J. Vavrus, Jing-Jia Luo, Philip R. Thompson, Katja Trachte, James Reagan, Olga N. Bulygina, Wolfgang Wagner, Mark Tschudi, Derek S. Arndt, Zachary Atheru, Sangeeta Sharma, Christopher L. Sabine, John M. Lyman, David Phillips, Carl Mears, Richard A. Krishfield, Ana María Durán-Quesada, Darren Rayner, Molly O. Baringer, Fatou Sima, Jhan Carlo Espinoza, Taikan Oki, James E. Overland, Sharon Stammerjohn, Hsun Ying Kao, Gerald D. Bell, Bjørn Helge Johnsen, Bin Wang, Thomas E. Evans, William J. Williams, Jan L. Lieser, John A. Knaff, B. M. Kim, Tapani Koskela, Antje Inness, Andre Obregon, Alexander Kholodov, Carla Vega, Andreas Becker, B. C. Maddux, Andrew Lorrey, Khadija Kabidi, Pamela Levira, Helga Nitsche, M. L. Geai, Igor Ashik, S. Zimmerman, Charles Chip Guard, J A Ronald van der, Lin Zhao, Petra R. Chappell, Timothy P. Boyer, Dmitry Drozdov, Bert Wouters, Jayaka D. Campbell, Francis S. Dekaa, W. M. Smethie, Viva Banzon, R. Steven Nerem, Rob Allan, Craig S. Long, R. Martinez, Sergei Marchenko, Wolfgang Steinbrecht, Karin Gleason, Robert S. Stone, Lei Wang, A. Brett Mullan, Skie Tobin, Jeannette Noetzli, Doug Worthy, Vigdis Vestreng, Michelle L. Santee, Kate M. Willett, Nathan Bindoff, Michael Steele, Karen H. Rosenlof, Anu Heikkilä, Claude R. Duguay, Josyane Ronchail, Anne C. Wilber, A. Johannes Dolman, A. K. Srivastava, Andreas Stohl, M. Rajeevan, R. S. W. van de Wal, Catherine Ganter, Markus G. Donat, Adrian R. Trotman, Lucie A. Vincent, Carl J. Schreck, Richard A. Feely, Y. Y. Liu, Michelle L’Heureux, Kari Luojus, Mauro Gugliemin, Charlotte McBride, Howard J. Diamond, David Barriopedro, Rosalind C. Blenman, Tove Marit Svendby, Jessica Blunden, Sebastian Gerland, Paul W. Stackhouse, Simon A. Good, Guojie Wang, Richard J. Pasch, Julia Schmale, Glenroy Brown, B. D. Hall, Sean M. Davis, Mahbobeh Khoshkam, John M. Toole, Claudia Schmid, Bernard Pinty, Wilson Gitau, Leif G. Anderson, Matthew Rodell, Kathy Lantz, Dale F. Hurst, Hanne H. Christiansen, Thomas L. Mote, Owen R. Cooper, Richard R. Heim, William Sweet, Eric Leuliette, G. S.E. Lagerloef, Gregor Macara, Marco Tedesco, Vitali Fioletov, T. W. Kim, Melisa Menendez, Natalie McLean, J. D. Wild, Steve Colwell, Michael C. Kruk, Martin Sharp, J.-J. Morcrette, Jens Mühle, and Wouter Dorigo
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Meteorology ,Download ,010502 geochemistry & geophysics ,01 natural sciences ,Geography ,13. Climate action ,Synoptic scale meteorology ,F860 Climatology ,Data_FILES ,14. Life underwater ,State (computer science) ,0105 earth and related environmental sciences - Abstract
In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved.
- Published
- 2014
28. Implications for Deriving Regional Fossil Fuel CO 2 Estimates from Atmospheric Observations in a Hot Spot of Nuclear Power Plant 14 CO 2 Emissions
- Author
-
Felix Vogel, Doug Worthy, Ingeborg Levin, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,010506 paleontology ,Archeology ,010504 meteorology & atmospheric sciences ,business.industry ,Fossil fuel ,Hot spot (veterinary medicine) ,7. Clean energy ,01 natural sciences ,Mean difference ,law.invention ,13. Climate action ,Nuclear industry ,law ,Climatology ,Nuclear power plant ,General Earth and Planetary Sciences ,Environmental science ,Emission inventory ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,business ,Spurious relationship ,0105 earth and related environmental sciences - Abstract
Using Δ14C observations to infer the local concentration excess of CO2 due to the burning of fossil fuels (ΔFFCO2) is a promising technique to monitor anthropogenic CO2 emissions. A recent study showed that 14CO2 emissions from the nuclear industry can significantly alter the local atmospheric 14CO2 concentration and thus mask the Δ14C depletion due to ΔFFCO2. In this study, we investigate the relevance of this effect for the vicinity of Toronto, Canada, a hot spot of anthropogenic 14CO2 emissions. Comparing the measured emissions from local power plants to a global emission inventory highlighted significant deviations on interannual timescales. Although the previously assumed emission factor of 1.6 TBq(GWa)-1 agrees with the observed long-term average for all CANDU reactors of 1.50 ± 0.18 TBq(GWa)-1. This power-based parameterization neglects the different emission ratios for individual reactors, which range from 3.4 ± 0.82 to 0.65 ± 0.09 TBq(GWa)-1. This causes a mean difference of-14% in 14CO2 concentrations in our simulations at our observational site in Egbert, Canada. On an annual time basis, this additional 14CO2 masks the equivalent of 27–82% of the total annual FFCO2 offset. A pseudo-data experiment suggests that the interannual variability in the masked fraction may cause spurious trends in the ΔFFCO2 estimates of the order of 30% from 2006–2010. In addition, a comparison of the modeled Δ14C levels with our observational time series from 2008–2010 underlines that incorporating the best available 14CO2 emissions significantly increases the agreement. There were also short periods with significant observed Δ14C offsets, which were found to be linked with maintenance periods conducted on these nuclear reactors.
- Published
- 2013
- Full Text
- View/download PDF
29. Corrigendum to 'A regional high-resolution carbon flux inversion of North America for 2004' published in Biogeosciences, 7, 1625-1644, 2010
- Author
-
Ian Baker, Marek Uliasz, K. D. Corbin, A. S. Denning, Andrew Schuh, Nicholas C. Parazoo, Arlyn E. Andrews, and Doug Worthy
- Subjects
lcsh:QE1-996.5 ,lcsh:Life ,High resolution ,Inversion (meteorology) ,Atmospheric research ,lcsh:Geology ,lcsh:QH501-531 ,Oceanography ,lcsh:QH540-549.5 ,Environmental science ,lcsh:Ecology ,Biogeosciences ,Ecology, Evolution, Behavior and Systematics ,Earth-Surface Processes ,Carbon flux - Abstract
A. E. Schuh1, A. S. Denning1, K. D. Corbin1,*, I. T. Baker1, M. Uliasz1, N. Parazoo1, A. E. Andrews2, and D. E. J. Worthy3 1Colorado State University, Fort Collins, Colorado, USA 2National Oceanic and Atmospheric Administration Earth System Research Laboratory, 325 Broadway R/GMD1, Boulder, CO 80305, USA 3Environment Canada, 4905 Dufferin Street, Toronto, Ontario, Canada *now at: CSIRO Marine and Atmospheric Research Aspendale, VIC, Aspendale, Australia
- Published
- 2010
30. Regional trends and drivers of the global methane budget
- Author
-
Naveen Chandra, Akihiko Ito, Philippe Ciais, Peter A. Raymond, Jurek Müller, Ann R. Stavert, Joe R. Melton, Marielle Saunois, Phillipe Bousquet, Adrian Gustafson, Yosuke Niwa, Robert B. Jackson, Shushi Peng, Qianlai Zhuang, Hanqin Tian, Aki Tsuruta, George H. Allen, Benjamin Poulter, Joe McNorton, Bo Zheng, Yi Yin, Prabir K. Patra, Thomas Kleinen, Pierre Regnier, Peter Bergamaschi, Ronny Lauerwald, Shamil Maksyutov, Misa Ishizawa, Arjo Segers, William J. Riley, Josep G. Canadell, Zhen Zhang, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Modélisation INVerse pour les mesures atmosphériques et SATellitaires (SATINV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université libre de Bruxelles (ULB), This paper is the result of a collaborative international effort under the umbrella of the Global Carbon Project, a Global Research Project of Future Earth and a research partner of the World Climate Research Programme. We acknowledge primary support for the methane budget from the Gordon and Betty Moore Foundation through Grant GBMF5439 'Advancing Understanding of the Global Methane Cycle' to Stanford University (P.I. Rob Jackson, co- P.I.s Philippe Bousquet, Marielle Saunois, Josep Canadell, Gustaf Hugelius, and Ben Poulter). Josep Canadell acknowledges the support of the Australian National Environmental Science Program – Earth Systems and Climate Change. Prabir K Patra and Neveen Chandra acknowledge support from Environment Research and Technology Development Funds of the Environmental Restoration and Conservation Agency of Japan (JPMEERF20182002, JPMEERF20172001). Jurek Müller thanks for support by the Swiss National Science Foundation (#200020_172476). Peter Bergamaschi acknowledges the support of ECMWF providing computing resources under the special project 'Improve European and global CH4 and N2O flux inversions (2018-2020)'. Pierre Regnier acknowledges the support from the VERIFY project under European Union's Horizon 2020 research and innovation program grant agree-ment no. 776810. The TM5-CAMS inversions are available from https://atmos phere.copernicus.eu, Arjo Segers acknowledges the support from the Copernicus Atmosphere Monitoring Service, implemented by the European Centre for Medium-Range Weather Forecasts on be-half of the European Commission (grant no. CAMS73). William Riley acknowledges support by the US Department of Energy, Office of Science, Biological and Environmental Research, Regional and Global Climate Modeling Program through the RUBISCO Scientific Focus Area under contract DE-AC02- 05CH11231 to Lawrence Berkeley National Laboratory. The authors gratefully acknowledge those re-sponsible for the global network of atmospheric observations used in this study including Donald R Blake and Isobel Simpson, University of California Irvine, USA, Gordon Brailsford, NIWA, Cyril Crevosier, LMD, France, New Zealand, Paul Krummel and Ray Langenfelds, CSIRO, Australia, Toshinobu Machida, Yasunori Tohjima and Yukio Yoshida, NIES, Japan, Ronald Prinn, MIT, USA, Simon O’Doherty, University of Bristol, UK, Michel Ramonet, LSCE-IPSL, France, Atsushi Takizawa, JMA, Japan, Ray Weiss, Scripps Institute of Oceanography, USA and Doug Worthy, Environment Canada, Canada. We would also like to thank Lena Höglund-Isaksson, IIASA, Austria, Greet Janssens- Maenhout EC-JRC, Italy and Steven Smith, PNNL-JGCR, USA for their assistance with the anthropogenic inventory data. The authors also acknowledge the significant contribution of Goulven G. Laruelle, Department Geoscience, Environment & Society, Université Libre de Bruxelles, Brussels, Belgium who, with P. Regnier, developed the re-gionally distributed estuarine flux data set., and European Project: 776810,H2020,H2020-SC5-2017-OneStageB,VERIFY(2018)
- Subjects
China ,Municipal solid waste ,Livestock ,010504 meteorology & atmospheric sciences ,methane emissions ,Oceans and Seas ,010501 environmental sciences ,7. Clean energy ,01 natural sciences ,Methane ,12. Responsible consumption ,bottom-up ,Atmosphere ,chemistry.chemical_compound ,Enteric fermentation ,Environmental protection ,source sectors ,Environmental Chemistry ,Animals ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,General Environmental Science ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Global and Planetary Change ,regional ,Ecology ,business.industry ,Coal mining ,Biological Sciences ,Climate Action ,natural emissions ,Carbon project ,chemistry ,13. Climate action ,Greenhouse gas ,top-down ,Environmental science ,anthropogenic emissions ,business ,Environmental Sciences - Abstract
The ongoing development of the Global Carbon Project (GCP) global methane (CH4 ) budget shows a continuation of increasing CH4 emissions and CH4 accumulation in the atmosphere during 2000-2017. Here, we decompose the global budget into 19 regions (18land and 1 oceanic) and five key source sectors to spatially attribute the observed global trends. A comparison of top-down (TD) (atmospheric and transport model-based) and bottom-up (BU) (inventory- and process model-based) CH4 emission estimates demonstrates robust temporal trends with CH4 emissions increasing in 16 of the 19 regions. Five regions-China, Southeast Asia, USA, South Asia, and Brazil-account for >40% of the global total emissions (their anthropogenic and natural sources together totaling >270Tg CH4 yr-1 in 2008-2017). Two of these regions, China and South Asia, emit predominantly anthropogenic emissions (>75%) and together emit more than 25% of global anthropogenic emissions. China and the Middle East show the largest increases in total emission rates over the 2000 to 2017 period with regional emissions increasing by >20%. In contrast, Europe and Korea and Japan show a steady decline in CH4 emission rates, with total emissions decreasing by ~10% between 2000 and 2017. Coal mining, waste (predominantly solid waste disposal) and livestock (especially enteric fermentation) are dominant drivers of observed emissions increases while declines appear driven by a combination of waste and fossil emission reductions. As such, together these sectors present the greatest risks of further increasing the atmospheric CH4 burden and the greatest opportunities for greenhouse gas abatement.
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.