1. PEG hydrogel containing calcium-releasing particles and mesenchymal stromal cells promote vessel maturation
- Author
-
Soledad Pérez-Amodio, Oscar Castaño, Jessica D. Weaver, Andrés J. García, Douglas A. Clift, Claudia Navarro-Requena, Amy Y. Clark, Elisabeth Engel, Dennis W. Zhou, Universitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica, and Universitat Politècnica de Catalunya. BBT - Biomaterials, Biomecànica i Enginyeria de Teixits
- Subjects
Male ,0301 basic medicine ,Angiogenesis ,030204 cardiovascular system & hematology ,Biochemistry ,Chorioallantoic Membrane ,Hydrogel, Polyethylene Glycol Dimethacrylate ,Fat pad ,Polyethylene Glycols ,Maleimides ,Cell therapy ,Mice ,Glass-ceramic particles ,0302 clinical medicine ,Implants, Experimental ,Epididymis ,Chemistry ,Soft tissue ,General Medicine ,Cells, Immobilized ,Cell biology ,Chorioallantoic membrane ,medicine.anatomical_structure ,Adipose Tissue ,Biotechnology ,Blood vessel ,Cell Survival ,Biomedical Engineering ,Neovascularization, Physiologic ,Enginyeria dels materials [Àrees temàtiques de la UPC] ,Models, Biological ,Article ,Biomaterials ,03 medical and health sciences ,In vivo ,medicine ,Animals ,Humans ,Colloids ,Particle Size ,Molecular Biology ,Glass-ceramics ,Cell Proliferation ,Col·loides ,Vascularization ,Mesenchymal stem cell ,Calci ,Mesenchymal Stem Cells ,HMSC ,Hydrogel ,030104 developmental biology ,Blood Vessels ,Angiogenesis Inducing Agents ,Calcium ,Chickens - Abstract
The use of human mesenchymal stromal cells (hMSC) for treating diseased tissues with poor vascularization has received significant attention, but low cell survival has hampered its translation to the clinic. Bioglasses and glass-ceramics have also been suggested as therapeutic agents for stimulating angiogenesis in soft tissues, but these effects need further evaluation in vivo. In this study, calcium-releasing particles and hMSC were combined within a hydrogel to examine their vasculogenic potential in vitro and in vivo. The particles provided sustained calcium release and showed proangiogenic stimulation in a chorioallantoic membrane (CAM) assay. The number of hMSC encapsulated in a degradable RGD-functionalized PEG hydrogel containing particles remained constant over time and IGF-1 release was increased. When implanted in the epidydimal fat pad of immunocompromised mice, this composite material improved cell survival and stimulated vessel formation and maturation. Thus, the combination of hMSC and calcium-releasing glass-ceramics represents a new strategy to achieve vessel stabilization, a key factor in the revascularization of ischemic tissues. Statement of Significance: Increasing blood vessel formation in diseased tissues with poor vascularization is a current clinical challenge. Cell therapy using human mesenchymal stem cells has received considerable interest, but low cell survival has hampered its translation to the clinic. Bioglasses and glass-ceramics have been explored as therapeutic agents for stimulating angiogenesis in soft tissues, but these effects need further evaluation in vivo. By incorporating both human mesenchymal stem cells and glass-ceramic particles in an implantable hydrogel, this study provides insights into the vasculogenic potential in soft tissues of the combined strategies. Enhancement of vessel formation and maturation supports further investigation of this strategy.
- Published
- 2018
- Full Text
- View/download PDF