30 results on '"Drew JC"'
Search Results
2. Saliva microbiome, dietary, and genetic markers are associated with suicidal ideation in university students.
- Author
-
Ahrens AP, Sanchez-Padilla DE, Drew JC, Oli MW, Roesch LFW, and Triplett EW
- Subjects
- Alleles, Diet, Genetic Markers, Genetic Predisposition to Disease, HLA Antigens, HLA-DRB1 Chains genetics, Histocompatibility Antigens Class II genetics, Humans, Saliva, Students, Universities, Young Adult, Microbiota genetics, Suicidal Ideation
- Abstract
Here, salivary microbiota and major histocompatibility complex (MHC) human leukocyte antigen (HLA) alleles were compared between 47 (12.6%) young adults with recent suicidal ideation (SI) and 325 (87.4%) controls without recent SI. Several bacterial taxa were correlated with SI after controlling for sleep issues, diet, and genetics. Four MHC class II alleles were protective for SI including DRB1*04, which was absent in every subject with SI while present in 21.7% of controls. Increased incidence of SI was observed with four other MHC class II alleles and two MHC class I alleles. Associations between these HLA alleles and salivary bacteria were also identified. Furthermore, rs10437629, previously associated with attempted suicide, was correlated here with SI and the absence of Alloprevotella rava, a producer of an organic acid known to promote brain energy homeostasis. Hence, microbial-genetic associations may be important players in the diathesis-stress model for suicidal behaviors., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
3. There Is More than Multiple Choice: Crowd-Sourced Assessment Tips for Online, Hybrid, and Face-to-Face Environments.
- Author
-
Drew JC, Grandgenett N, Dinsdale EA, Vázquez Quiñones LE, Galindo S, Morgan WR, Pauley M, Rosenwald A, Triplett EW, Tapprich W, and Kleinschmit AJ
- Abstract
Developing effective assessments of student learning is a challenging task for faculty and even more difficult for those in emerging disciplines that lack readily available resources and standards. With the power of technology-enhanced education and accessible digital learning platforms, instructors are also looking for assessments that work in an online format. This article will be useful for all teachers, but especially for entry-level instructors, in addition to more mature instructors who are looking to become more well versed in assessment, who seek a succinct summary of assessment types to springboard the integration of new forms of assessment of student learning into their courses. In this paper, ten assessment types, all appropriate for face-to-face, blended, and online modalities, are discussed. The assessments are mapped to a set of bioinformatics core competencies with examples of how they have been used to assess student learning. Although bioinformatics is used as the focus of the assessment types, the question types are relevant to many disciplines.
- Published
- 2021
- Full Text
- View/download PDF
4. The Need for Equitable Scholarship Criteria for Part-Time Students.
- Author
-
Ardissone AN, Galindo S, Wysocki AF, Triplett EW, and Drew JC
- Abstract
Current policies and interventions to enhance student success and retention are often tied to full-time enrollment, which are substantiated by studies associating part-time enrollment with lower retention and poorer academic outcomes. However, these findings are limited to studies of first-time college students and do not represent today's nontraditional undergraduate who may be transfer, online, and working adult students. To enhance retention of on-campus and hybrid online 2 + 2 transfer students in a STEM undergraduate program, need-based scholarships are awarded to students enrolled full-time as stipulated by the federal granting agency. Although the scholarship has helped >80 students to date, over 40% of eligible transfer students are excluded only because they are enrolled part-time, disproportionately affecting students in the hybrid online track who are more likely to be women and underrepresented minorities. Using quantitative and qualitative methods, this study explores enrollment behavior of transfer students (online and on-campus), its relationship with student characteristics and academic outcomes, and implications for scholarship eligibility. Full-time enrollment is a significant challenge for transfer students. While scholarship requirements are a key factor influencing full-time enrollment, online transfer students additionally cite work and family obligations as drivers of enrollment behavior. Thus, online 2 + 2 transfer students face different challenges than on-campus peers and are more likely to enroll part-time out of necessity, yet still have comparable GPA and graduation rates. These findings support a growing awareness of barriers nontraditional students face questioning the relevance of policies driven by "traditional" student outcomes, which perpetuate inequity in higher education., Supplementary Information: The online version contains supplementary material available at 10.1007/s10755-021-09549-7., Competing Interests: Conflicts of Interest/Competing InterestsThis research is funded by a grant from the National Science Foundation S-STEM (Award #1643780). The results and ideas in this manuscript are expressed independently of the funding agency., (© The Author(s) 2021.)
- Published
- 2021
- Full Text
- View/download PDF
5. pime: A package for discovery of novel differences among microbial communities.
- Author
-
Roesch LFW, Dobbler PT, Pylro VS, Kolaczkowski B, Drew JC, and Triplett EW
- Subjects
- Bacteria classification, Bacteria genetics, DNA, Bacterial genetics, Phylogeny, RNA, Ribosomal, 16S genetics, Bacteria isolation & purification, Computational Biology methods, Microbiota
- Abstract
The data used for profiling microbial communities is usually sparse with some microbes having high abundance in a few samples and being nearly absent in others. However, current bioinformatics tools able to deal with this sparsity are lacking. pime (Prevalence Interval for Microbiome Evaluation) was designed to remove those taxa that may be high in relative abundance in just a few samples but have a low prevalence overall. The reliability and robustness of pime were compared against existing methods and tested using 16S rRNA independent data sets. pime filters microbial taxa not shared in a per treatment prevalence interval started at 5% prevalence with increasing increments of 5% at each filtering step. For each prevalence interval, hundreds of decision trees were calculated to predict the likelihood of detecting differences in treatments. The best prevalence-filtered data set was user-selected by choosing the prevalence interval that kept a large portion of the 16S rRNA sequences in the data set while also showing the lowest error rate. To obtain the likelihood of introducing type I error while building prevalence-filtered data sets, an error detection step based was also included. A pime reanalysis of published data sets uncovered other expected microbial associations than previously reported, which may be masked when only relative abundance was considered., (© 2019 John Wiley & Sons Ltd.)
- Published
- 2020
- Full Text
- View/download PDF
6. Barriers to integration of bioinformatics into undergraduate life sciences education: A national study of US life sciences faculty uncover significant barriers to integrating bioinformatics into undergraduate instruction.
- Author
-
Williams JJ, Drew JC, Galindo-Gonzalez S, Robic S, Dinsdale E, Morgan WR, Triplett EW, Burnette JM 3rd, Donovan SS, Fowlks ER, Goodman AL, Grandgenett NF, Goller CC, Hauser C, Jungck JR, Newman JD, Pearson WR, Ryder EF, Sierk M, Smith TM, Tosado-Acevedo R, Tapprich W, Tobin TC, Toro-Martínez A, Welch LR, Wilson MA, Ebenbach D, McWilliams M, Rosenwald AG, and Pauley MA
- Subjects
- Female, Humans, Male, Motivation, Students psychology, Surveys and Questionnaires statistics & numerical data, United States, Biology education, Computational Biology education, Curriculum, Faculty statistics & numerical data
- Abstract
Bioinformatics, a discipline that combines aspects of biology, statistics, mathematics, and computer science, is becoming increasingly important for biological research. However, bioinformatics instruction is not yet generally integrated into undergraduate life sciences curricula. To understand why we studied how bioinformatics is being included in biology education in the US by conducting a nationwide survey of faculty at two- and four-year institutions. The survey asked several open-ended questions that probed barriers to integration, the answers to which were analyzed using a mixed-methods approach. The barrier most frequently reported by the 1,260 respondents was lack of faculty expertise/training, but other deterrents-lack of student interest, overly-full curricula, and lack of student preparation-were also common. Interestingly, the barriers faculty face depended strongly on whether they are members of an underrepresented group and on the Carnegie Classification of their home institution. We were surprised to discover that the cohort of faculty who were awarded their terminal degree most recently reported the most preparation in bioinformatics but teach it at the lowest rate., Competing Interests: We declare that author TMS has an affiliation with a private company, Digital World Biology (DWB). As noted in the Funding Statement, DWB provided support for this work in the form of salary for TMS. This affiliation does not alter our adherence to PLoS ONE policies on sharing data and materials.
- Published
- 2019
- Full Text
- View/download PDF
7. Successful Integration of Face-to-Face Bootcamp Lab Courses in a Hybrid Online STEM Program.
- Author
-
Ardissone AN, Oli MW, Rice KC, Galindo S, Urrets-Zavalia M, Wysocki AF, Triplett EW, and Drew JC
- Abstract
The Microbiology and Cell Science program at the University of Florida compressed two standard 16-week lab courses into five-day versions of the course, which are referred to as bootcamp labs. The bootcamp labs have the same objectives, activities, and assessments as their traditional counterparts. Development of the bootcamp labs was part of a larger effort to increase access to the major, and more broadly STEM, by offering a 2+2 hybrid online transfer program. The results of this mixed-methods study include a direct comparison between bootcamp and traditional lab format as an approach for delivery of a face-to-face lab course. The bootcamp lab cohort has a greater diversity of students, with more women and underrepresented minorities in STEM than the traditional semester-long cohorts. Students in the bootcamp labs have comparable grade outcomes and learning gains to students in traditional lab format. Regression analysis identified GPA, but not lab format, as the most significant predictor of success for students enrolled in lab courses. Qualitative results suggest that the bootcamp format may be a better way than traditional formats to teach microbiology lab. In summary, the results demonstrate that a bootcamp version of a face-to-face microbiology course is just as effective as the traditional semester-long version. This work has broader implications as it supports the bootcamp lab approach as a model in STEM education for increasing access and for overcoming a major barrier to online STEM programs: face-to-face delivery of key lab courses., (©2019 Author(s). Published by the American Society for Microbiology.)
- Published
- 2019
- Full Text
- View/download PDF
8. Bioinformatics core competencies for undergraduate life sciences education.
- Author
-
Wilson Sayres MA, Hauser C, Sierk M, Robic S, Rosenwald AG, Smith TM, Triplett EW, Williams JJ, Dinsdale E, Morgan WR, Burnette JM 3rd, Donovan SS, Drew JC, Elgin SCR, Fowlks ER, Galindo-Gonzalez S, Goodman AL, Grandgenett NF, Goller CC, Jungck JR, Newman JD, Pearson W, Ryder EF, Tosado-Acevedo R, Tapprich W, Tobin TC, Toro-Martínez A, Welch LR, Wright R, Barone L, Ebenbach D, McWilliams M, Olney KC, and Pauley MA
- Subjects
- Adolescent, Adult, Female, Humans, Male, United States, Computational Biology education, Mental Competency, Problem-Based Learning
- Abstract
Although bioinformatics is becoming increasingly central to research in the life sciences, bioinformatics skills and knowledge are not well integrated into undergraduate biology education. This curricular gap prevents biology students from harnessing the full potential of their education, limiting their career opportunities and slowing research innovation. To advance the integration of bioinformatics into life sciences education, a framework of core bioinformatics competencies is needed. To that end, we here report the results of a survey of biology faculty in the United States about teaching bioinformatics to undergraduate life scientists. Responses were received from 1,260 faculty representing institutions in all fifty states with a combined capacity to educate hundreds of thousands of students every year. Results indicate strong, widespread agreement that bioinformatics knowledge and skills are critical for undergraduate life scientists as well as considerable agreement about which skills are necessary. Perceptions of the importance of some skills varied with the respondent's degree of training, time since degree earned, and/or the Carnegie Classification of the respondent's institution. To assess which skills are currently being taught, we analyzed syllabi of courses with bioinformatics content submitted by survey respondents. Finally, we used the survey results, the analysis of the syllabi, and our collective research and teaching expertise to develop a set of bioinformatics core competencies for undergraduate biology students. These core competencies are intended to serve as a guide for institutions as they work to integrate bioinformatics into their life sciences curricula., Competing Interests: We declare that author TMS has an affiliation with a private company, Digital World Biology (DWB). As noted in the updated Funding Statement, DWB provided support for this work in the form of salary for TMS. This affiliation does not alter our adherence to PLOS ONE policies on sharing data and materials.
- Published
- 2018
- Full Text
- View/download PDF
9. Development of Chemically Defined Media Reveals Citrate as Preferred Carbon Source for Liberibacter Growth.
- Author
-
Cruz-Munoz M, Petrone JR, Cohn AR, Munoz-Beristain A, Killiny N, Drew JC, and Triplett EW
- Abstract
Liberibacter crescens is the closest cultured relative of four important uncultured crop pathogens. Candidatus L. asiaticus, L. americanus, and L. africanus are causal agents of citrus greening disease, otherwise known as huanglongling (HLB). Candidatus L. solanacearum is responsible for potato Zebra chip disease. Cultures of L. crescens grow slowly on BM-7 complex medium, while attempts to culture the Ca. Liberibacter pathogens in BM-7 have failed. Developing a defined medium for the growth of L. crescens will be useful in the study of Liberibacter metabolism and will improve the prospects for culturing the Ca . Liberibacter pathogens. Here, M15 medium is presented and described as the first chemically defined medium for the growth of L. crescens cultures that approaches the growth rates obtained with BM-7. The development of M15 was a four step process including: (1) the identification of Hi-Graces Insect medium (Hi-GI) as an essential, yet undefined component in BM-7, for the growth of L. crescens , (2) metabolomic reconstruction of Hi-GI to create a defined medium for the growth of L. crescens cultures, and (3) the discovery of citrate as the preferred carbon and energy source for L. crescens growth. The composition of M15 medium includes inorganic salts as in the Hi-GI formula, amino acids derived from the metabolomic analyses of Hi-GI, and a 10-fold increase in vitamins compared to the Hi-GI formula, with exception choline chloride, which was increased 5000-fold in M15. Since genome comparisons of L. crescens and the Ca . Liberibacter pathogens show that they are very similar metabolically. Thus, these results imply citrate and other TCA cycle intermediates are main energy sources for these pathogens in their insect and plant hosts. Thus, strategies to reduce citrate levels in the habitats of these pathogens may be effective in reducing Ca. Liberibacter pathogen populations thereby reducing symptoms in the plant host.
- Published
- 2018
- Full Text
- View/download PDF
10. Broadening Participation of Women and Underrepresented Minorities in STEM through a Hybrid Online Transfer Program.
- Author
-
Drew JC, Galindo-Gonzalez S, Ardissone AN, and Triplett EW
- Subjects
- Curriculum, Educational Measurement, Female, Humans, Engineering education, Internet, Mathematics education, Minority Groups education, Science education, Technology education, Women
- Abstract
The Microbiology and Cell Science (MCS) Department at the University of Florida (UF) developed a new model of a 2 + 2 program that uses a hybrid online approach to bring its science, technology, engineering, and mathematics (STEM) curriculum to students. In this paradigm, 2-year graduates transfer as online students into the Distance Education in MCS (DE MCS) bachelor of science program. The program has broadened access to STEM with a steadily increasing enrollment that does not draw students away from existing on-campus programs. Notably, half of the DE MCS students are from underrepresented minority (URM) backgrounds and two-thirds are women, which represents a greater level of diversity than the corresponding on-campus cohort and the entire university. Additionally, the DE MCS cohort has comparable retention and academic performance compared with the on-campus transfer cohort. Of those who have earned a BS through the DE MCS program, 71% are women and 61% are URM. Overall, these data demonstrate that the hybrid online approach is successful in increasing diversity and provides another viable route in the myriad of STEM pathways. As the first of its kind in a STEM field, the DE MCS program serves as a model for programs seeking to broaden their reach., (© 2016 J. C. Drew et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).)
- Published
- 2016
- Full Text
- View/download PDF
11. Corrigendum: Integrating DNA Methylation and Gene Expression Data in the Development of the Soybean-Bradyrhizobium N2-Fixing Symbiosis.
- Author
-
Davis-Richardson AG, Russell JT, Dias R, McKinlay AJ, Canepa R, Fagen JR, Rusoff KT, Drew JC, Kolaczkowski B, Emerich DW, and Triplett EW
- Abstract
[This corrects the article on p. 518 in vol. 7, PMID: 27148207.].
- Published
- 2016
- Full Text
- View/download PDF
12. Integrating DNA Methylation and Gene Expression Data in the Development of the Soybean-Bradyrhizobium N2-Fixing Symbiosis.
- Author
-
Davis-Richardson AG, Russell JT, Dias R, McKinlay AJ, Canepa R, Fagen JR, Rusoff KT, Drew JC, Kolaczkowski B, Emerich DW, and Triplett EW
- Abstract
Very little is known about the role of epigenetics in the differentiation of a bacterium from the free-living to the symbiotic state. Here genome-wide analysis of DNA methylation changes between these states is described using the model of symbiosis between soybean and its root nodule-forming, nitrogen-fixing symbiont, Bradyrhizobium diazoefficiens. PacBio resequencing of the B. diazoefficiens genome from both states revealed 43,061 sites recognized by five motifs with the potential to be methylated genome-wide. Of those sites, 3276 changed methylation states in 2921 genes or 35.5% of all genes in the genome. Over 10% of the methylation changes occurred within the symbiosis island that comprises 7.4% of the genome. The CCTTGAG motif was methylated only during symbiosis with 1361 adenosines methylated among the 1700 possible sites. Another 89 genes within the symbiotic island and 768 genes throughout the genome were found to have methylation and significant expression changes during symbiotic development. Of those, nine known symbiosis genes involved in all phases of symbiotic development including early infection events, nodule development, and nitrogenase production. These associations between methylation and expression changes in many B. diazoefficiens genes suggest an important role of the epigenome in bacterial differentiation to the symbiotic state.
- Published
- 2016
- Full Text
- View/download PDF
13. Development of a distance education program by a Land-Grant University augments the 2-year to 4-year STEM pipeline and increases diversity in STEM.
- Author
-
Drew JC, Oli MW, Rice KC, Ardissone AN, Galindo-Gonzalez S, Sacasa PR, Belmont HJ, Wysocki AF, Rieger M, and Triplett EW
- Subjects
- Curriculum, Engineering education, Florida, Humans, Mathematics education, Science education, Technology education, Education, Distance, Universities
- Abstract
Although initial interest in science, technology, engineering and mathematics (STEM) is high, recruitment and retention remains a challenge, and some populations are disproportionately underrepresented in STEM fields. To address these challenges, the Microbiology and Cell Science Department in the College of Agricultural and Life Sciences at the University of Florida has developed an innovative 2+2 degree program. Typical 2+2 programs begin with a student earning an associate's degree at a local community college and then transferring to a 4-year institution to complete a bachelor's degree. However, many universities in the United States, particularly land-grant universities, are located in rural regions that are distantly located from their respective states' highly populated urban centers. This geographical and cultural distance could be an impediment to recruiting otherwise highly qualified and diverse students. Here, a new model of a 2+2 program is described that uses distance education as the vehicle to bring a research-intensive university's life sciences curriculum to students rather than the oft-tried model of a university attempting to recruit underrepresented minority students to its location. In this paradigm, community college graduates transfer into the Microbiology and Cell Science program as distance education students to complete their Bachelor of Science degree. The distance education students' experiences are similar to the on-campus students' experiences in that both groups of students take the same department courses taught by the same instructors, take required laboratory courses in a face-to-face format, take only proctored exams, and have the same availability to instructors. Data suggests that a hybrid online transfer program may be a viable approach to increasing STEM participation (as defined by enrollment) and diversity. This approach is particularly compelling as the distance education cohort has comparable grade point averages and retention rates compared to the corresponding on-campus transfer cohort.
- Published
- 2015
- Full Text
- View/download PDF
14. Bacteroides dorei dominates gut microbiome prior to autoimmunity in Finnish children at high risk for type 1 diabetes.
- Author
-
Davis-Richardson AG, Ardissone AN, Dias R, Simell V, Leonard MT, Kemppainen KM, Drew JC, Schatz D, Atkinson MA, Kolaczkowski B, Ilonen J, Knip M, Toppari J, Nurminen N, Hyöty H, Veijola R, Simell T, Mykkänen J, Simell O, and Triplett EW
- Abstract
The incidence of the autoimmune disease, type 1 diabetes (T1D), has increased dramatically over the last half century in many developed countries and is particularly high in Finland and other Nordic countries. Along with genetic predisposition, environmental factors are thought to play a critical role in this increase. As with other autoimmune diseases, the gut microbiome is thought to play a potential role in controlling progression to T1D in children with high genetic risk, but we know little about how the gut microbiome develops in children with high genetic risk for T1D. In this study, the early development of the gut microbiomes of 76 children at high genetic risk for T1D was determined using high-throughput 16S rRNA gene sequencing. Stool samples from children born in the same hospital in Turku, Finland were collected at monthly intervals beginning at 4-6 months after birth until 2.2 years of age. Of those 76 children, 29 seroconverted to T1D-related autoimmunity (cases) including 22 who later developed T1D, the remaining 47 subjects remained healthy (controls). While several significant compositional differences in low abundant species prior to seroconversion were found, one highly abundant group composed of two closely related species, Bacteroides dorei and Bacteroides vulgatus, was significantly higher in cases compared to controls prior to seroconversion. Metagenomic sequencing of samples high in the abundance of the B. dorei/vulgatus group before seroconversion, as well as longer 16S rRNA sequencing identified this group as Bacteroides dorei. The abundance of B. dorei peaked at 7.6 months in cases, over 8 months prior to the appearance of the first islet autoantibody, suggesting that early changes in the microbiome may be useful for predicting T1D autoimmunity in genetically susceptible infants. The cause of increased B. dorei abundance in cases is not known but its timing appears to coincide with the introduction of solid food.
- Published
- 2014
- Full Text
- View/download PDF
15. The methylome of the gut microbiome: disparate Dam methylation patterns in intestinal Bacteroides dorei.
- Author
-
Leonard MT, Davis-Richardson AG, Ardissone AN, Kemppainen KM, Drew JC, Ilonen J, Knip M, Simell O, Toppari J, Veijola R, Hyöty H, and Triplett EW
- Abstract
Despite the large interest in the human microbiome in recent years, there are no reports of bacterial DNA methylation in the microbiome. Here metagenomic sequencing using the Pacific Biosciences platform allowed for rapid identification of bacterial GATC methylation status of a bacterial species in human stool samples. For this work, two stool samples were chosen that were dominated by a single species, Bacteroides dorei. Based on 16S rRNA analysis, this species represented over 45% of the bacteria present in these two samples. The B. dorei genome sequence from these samples was determined and the GATC methylation sites mapped. The Bacteroides dorei genome from one subject lacked any GATC methylation and lacked the DNA adenine methyltransferase genes. In contrast, B. dorei from another subject contained 20,551 methylated GATC sites. Of the 4970 open reading frames identified in the GATC methylated B. dorei genome, 3184 genes were methylated as well as 1735 GATC methylations in intergenic regions. These results suggest that DNA methylation patterns are important to consider in multi-omic analyses of microbiome samples seeking to discover the diversity of bacterial functions and may differ between disease states.
- Published
- 2014
- Full Text
- View/download PDF
16. Genome sequence of Candidatus Nitrososphaera evergladensis from group I.1b enriched from Everglades soil reveals novel genomic features of the ammonia-oxidizing archaea.
- Author
-
Zhalnina KV, Dias R, Leonard MT, Dorr de Quadros P, Camargo FA, Drew JC, Farmerie WG, Daroub SH, and Triplett EW
- Subjects
- Adaptation, Physiological genetics, Archaea cytology, Archaea physiology, Biological Transport genetics, Carbon metabolism, Carbon Cycle genetics, Cell Division genetics, Chemotaxis genetics, DNA Repair genetics, DNA Replication genetics, Energy Metabolism genetics, Metals, Heavy toxicity, Molecular Sequence Annotation, Nitrogen metabolism, Oceans and Seas, Osmotic Pressure, Oxidation-Reduction, Phylogeny, Terpenes metabolism, Ammonia metabolism, Archaea genetics, Archaea metabolism, Genomics, Soil Microbiology
- Abstract
The activity of ammonia-oxidizing archaea (AOA) leads to the loss of nitrogen from soil, pollution of water sources and elevated emissions of greenhouse gas. To date, eight AOA genomes are available in the public databases, seven are from the group I.1a of the Thaumarchaeota and only one is from the group I.1b, isolated from hot springs. Many soils are dominated by AOA from the group I.1b, but the genomes of soil representatives of this group have not been sequenced and functionally characterized. The lack of knowledge of metabolic pathways of soil AOA presents a critical gap in understanding their role in biogeochemical cycles. Here, we describe the first complete genome of soil archaeon Candidatus Nitrososphaera evergladensis, which has been reconstructed from metagenomic sequencing of a highly enriched culture obtained from an agricultural soil. The AOA enrichment was sequenced with the high throughput next generation sequencing platforms from Pacific Biosciences and Ion Torrent. The de novo assembly of sequences resulted in one 2.95 Mb contig. Annotation of the reconstructed genome revealed many similarities of the basic metabolism with the rest of sequenced AOA. Ca. N. evergladensis belongs to the group I.1b and shares only 40% of whole-genome homology with the closest sequenced relative Ca. N. gargensis. Detailed analysis of the genome revealed coding sequences that were completely absent from the group I.1a. These unique sequences code for proteins involved in control of DNA integrity, transporters, two-component systems and versatile CRISPR defense system. Notably, genomes from the group I.1b have more gene duplications compared to the genomes from the group I.1a. We suggest that the presence of these unique genes and gene duplications may be associated with the environmental versatility of this group.
- Published
- 2014
- Full Text
- View/download PDF
17. Compromised gut microbiota networks in children with anti-islet cell autoimmunity.
- Author
-
Endesfelder D, zu Castell W, Ardissone A, Davis-Richardson AG, Achenbach P, Hagen M, Pflueger M, Gano KA, Fagen JR, Drew JC, Brown CT, Kolaczkowski B, Atkinson M, Schatz D, Bonifacio E, Triplett EW, and Ziegler AG
- Subjects
- Autoimmunity, Breast Feeding, Case-Control Studies, Child, Preschool, Delivery, Obstetric adverse effects, Diabetes Mellitus, Type 1 etiology, Environmental Exposure adverse effects, Female, Follow-Up Studies, Gastrointestinal Tract microbiology, Humans, Infant, Infant Food, Infant Nutritional Physiological Phenomena, Male, Risk Factors, Diabetes Mellitus, Type 1 immunology, Feces microbiology, Gastrointestinal Tract immunology, Islets of Langerhans immunology, Microbiota immunology, Milk, Human immunology
- Abstract
The gut microbiome is suggested to play a role in the pathogenesis of autoimmune disorders such as type 1 diabetes. Evidence of anti-islet cell autoimmunity in type 1 diabetes appears in the first years of life; however, little is known regarding the establishment of the gut microbiome in early infancy. Here, we sought to determine whether differences were present in early composition of the gut microbiome in children in whom anti-islet cell autoimmunity developed. We investigated the microbiome of 298 stool samples prospectively taken up to age 3 years from 22 case children in whom anti-islet cell autoantibodies developed, and 22 matched control children who remained islet cell autoantibody-negative in follow-up. The microbiome changed markedly during the first year of life, and was further affected by breast-feeding, food introduction, and birth delivery mode. No differences between anti-islet cell autoantibody-positive and -negative children were found in bacterial diversity, microbial composition, or single-genus abundances. However, substantial alterations in microbial interaction networks were observed at age 0.5 and 2 years in the children in whom anti-islet cell autoantibodies developed. The findings underscore a role of the microbiome in the pathogenesis of anti-islet cell autoimmunity and type 1 diabetes., (© 2014 by the American Diabetes Association.)
- Published
- 2014
- Full Text
- View/download PDF
18. Meconium microbiome analysis identifies bacteria correlated with premature birth.
- Author
-
Ardissone AN, de la Cruz DM, Davis-Richardson AG, Rechcigl KT, Li N, Drew JC, Murgas-Torrazza R, Sharma R, Hudak ML, Triplett EW, and Neu J
- Subjects
- Amniotic Fluid microbiology, Biodiversity, Biomarkers metabolism, Colony Count, Microbial, Confounding Factors, Epidemiologic, Delivery, Obstetric, Female, Gestational Age, Humans, Infant, Newborn, Inflammation Mediators metabolism, Pregnancy, S100A12 Protein metabolism, Bacteria metabolism, Meconium microbiology, Microbiota, Premature Birth microbiology
- Abstract
Background: Preterm birth is the second leading cause of death in children under the age of five years worldwide, but the etiology of many cases remains enigmatic. The dogma that the fetus resides in a sterile environment is being challenged by recent findings and the question has arisen whether microbes that colonize the fetus may be related to preterm birth. It has been posited that meconium reflects the in-utero microbial environment. In this study, correlations between fetal intestinal bacteria from meconium and gestational age were examined in order to suggest underlying mechanisms that may contribute to preterm birth., Methods: Meconium from 52 infants ranging in gestational age from 23 to 41 weeks was collected, the DNA extracted, and 16S rRNA analysis performed. Resulting taxa of microbes were correlated to clinical variables and also compared to previous studies of amniotic fluid and other human microbiome niches., Findings: Increased detection of bacterial 16S rRNA in meconium of infants of <33 weeks gestational age was observed. Approximately 61·1% of reads sequenced were classified to genera that have been reported in amniotic fluid. Gestational age had the largest influence on microbial community structure (R = 0·161; p = 0·029), while mode of delivery (C-section versus vaginal delivery) had an effect as well (R = 0·100; p = 0·044). Enterobacter, Enterococcus, Lactobacillus, Photorhabdus, and Tannerella, were negatively correlated with gestational age and have been reported to incite inflammatory responses, suggesting a causative role in premature birth., Interpretation: This provides the first evidence to support the hypothesis that the fetal intestinal microbiome derived from swallowed amniotic fluid may be involved in the inflammatory response that leads to premature birth.
- Published
- 2014
- Full Text
- View/download PDF
19. Complete genome of the switchgrass endophyte Enterobacter clocace P101.
- Author
-
Humann JL, Wildung M, Pouchnik D, Bates AA, Drew JC, Zipperer UN, Triplett EW, Main D, and Schroeder BK
- Abstract
The Enterobacter cloacae complex is genetically very diverse. The increasing number of complete genomic sequences of E. cloacae is helping to determine the exact relationship among members of the complex. E. cloacae P101 is an endophyte of switchgrass (Panicum virgatum) and is closely related to other E. cloacae strains isolated from plants. The P101 genome consists of a 5,369,929 bp chromosome. The chromosome has 5,164 protein-coding regions, 100 tRNA sequences, and 8 rRNA operons.
- Published
- 2014
- Full Text
- View/download PDF
20. Ca. Nitrososphaera and Bradyrhizobium are inversely correlated and related to agricultural practices in long-term field experiments.
- Author
-
Zhalnina K, de Quadros PD, Gano KA, Davis-Richardson A, Fagen JR, Brown CT, Giongo A, Drew JC, Sayavedra-Soto LA, Arp DJ, Camargo FA, Daroub SH, Clark IM, McGrath SP, Hirsch PR, and Triplett EW
- Abstract
Agricultural land management, such as fertilization, liming, and tillage affects soil properties, including pH, organic matter content, nitrification rates, and the microbial community. Three different study sites were used to identify microorganisms that correlate with agricultural land use and to determine which factors regulate the relative abundance of the microbial signatures of the agricultural land-use. The three sites included in this study are the Broadbalk Experiment at Rothamsted Research, UK, the Everglades Agricultural Area, Florida, USA, and the Kellogg Biological Station, Michigan, USA. The effects of agricultural management on the abundance and diversity of bacteria and archaea were determined using high throughput, barcoded 16S rRNA sequencing. In addition, the relative abundance of these organisms was correlated with soil features. Two groups of microorganisms involved in nitrogen cycle were highly correlated with land use at all three sites. The ammonia oxidizing-archaea, dominated by Ca. Nitrososphaera, were positively correlated with agriculture while a ubiquitous group of soil bacteria closely related to the diazotrophic symbiont, Bradyrhizobium, was negatively correlated with agricultural management. Analysis of successional plots showed that the abundance of ammonia oxidizing-archaea declined and the abundance of bradyrhizobia increased with time away from agriculture. This observation suggests that the effect of agriculture on the relative abundance of these genera is reversible. Soil pH and NH3 concentrations were positively correlated with archaeal abundance but negatively correlated with the abundance of Bradyrhizobium. The high correlations of Ca. Nitrososphaera and Bradyrhizobium abundances with agricultural management at three long-term experiments with different edaphoclimatic conditions allowed us to suggest these two genera as signature microorganisms for agricultural land use.
- Published
- 2013
- Full Text
- View/download PDF
21. Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes.
- Author
-
St John JA, Braun EL, Isberg SR, Miles LG, Chong AY, Gongora J, Dalzell P, Moran C, Bed'hom B, Abzhanov A, Burgess SC, Cooksey AM, Castoe TA, Crawford NG, Densmore LD, Drew JC, Edwards SV, Faircloth BC, Fujita MK, Greenwold MJ, Hoffmann FG, Howard JM, Iguchi T, Janes DE, Khan SY, Kohno S, de Koning AJ, Lance SL, McCarthy FM, McCormack JE, Merchant ME, Peterson DG, Pollock DD, Pourmand N, Raney BJ, Roessler KA, Sanford JR, Sawyer RH, Schmidt CJ, Triplett EW, Tuberville TD, Venegas-Anaya M, Howard JT, Jarvis ED, Guillette LJ Jr, Glenn TC, Green RE, and Ray DA
- Subjects
- Animals, Alligators and Crocodiles genetics, Genome, Sequence Analysis, DNA
- Abstract
The International Crocodilian Genomes Working Group (ICGWG) will sequence and assemble the American alligator (Alligator mississippiensis), saltwater crocodile (Crocodylus porosus) and Indian gharial (Gavialis gangeticus) genomes. The status of these projects and our planned analyses are described.
- Published
- 2012
- Full Text
- View/download PDF
22. Complete genome of the onion pathogen Enterobacter cloacae EcWSU1.
- Author
-
Humann JL, Wildung M, Cheng CH, Lee T, Stewart JE, Drew JC, Triplett EW, Main D, and Schroeder BK
- Published
- 2011
- Full Text
- View/download PDF
23. Whole-genome sequencing and phenotypic analysis of Bacillus subtilis mutants following evolution under conditions of relaxed selection for sporulation.
- Author
-
Brown CT, Fishwick LK, Chokshi BM, Cuff MA, Jackson JM 4th, Oglesby T, Rioux AT, Rodriguez E, Stupp GS, Trupp AH, Woollcombe-Clarke JS, Wright TN, Zaragoza WJ, Drew JC, Triplett EW, and Nicholson WL
- Subjects
- Acetoin metabolism, Bacillus subtilis genetics, Bacillus subtilis physiology, DNA Transformation Competence, DNA, Bacterial chemistry, DNA, Bacterial genetics, Genome, Bacterial, Genotype, Locomotion, Phenotype, Sequence Analysis, DNA, Spores, Bacterial genetics, Spores, Bacterial physiology, Bacillus subtilis growth & development, Bacillus subtilis isolation & purification, DNA Mutational Analysis, Mutation, Selection, Genetic, Spores, Bacterial growth & development
- Abstract
Little is known about how genetic variation at the nucleotide level contributes to competitive fitness within species. During a 6,000-generation study of Bacillus subtilis evolved under relaxed selection for sporulation, a new strain, designated WN716, emerged with significantly different colony and cell morphologies; loss of sporulation, competence, acetoin production, and motility; multiple auxotrophies; and increased competitive fitness (H. Maughan and W. L. Nicholson, Appl. Environ. Microbiol. 77:4105-4118, 2011). The genome of WN716 was analyzed by OpGen optical mapping, whole-genome 454 pyrosequencing, and the CLC Genomics Workbench. No large chromosomal rearrangements were found; however, 34 single-nucleotide polymorphisms (SNPs) and +1 frameshifts were identified in WN716 that resulted in amino acid changes in coding sequences of annotated genes, and 11 SNPs were located in intergenic regions. Several classes of genes were affected, including biosynthetic pathways, sporulation, competence, and DNA repair. In several cases, attempts were made to link observed phenotypes of WN716 with the discovered mutations, with various degrees of success. For example, a +1 frameshift was identified at codon 13 of sigW, the product of which (SigW) controls a regulon of genes involved in resistance to bacteriocins and membrane-damaging antibiotics. Consistent with this finding, WN716 exhibited sensitivity to fosfomycin and to a bacteriocin produced by B. subtilis subsp. spizizenii and exhibited downregulation of SigW-dependent genes on a transcriptional microarray, consistent with WN716 carrying a knockout of sigW. The results suggest that propagation of B. subtilis for less than 2,000 generations in a nutrient-rich environment where sporulation is suppressed led to rapid initiation of genomic erosion.
- Published
- 2011
- Full Text
- View/download PDF
24. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes.
- Author
-
Brown CT, Davis-Richardson AG, Giongo A, Gano KA, Crabb DB, Mukherjee N, Casella G, Drew JC, Ilonen J, Knip M, Hyöty H, Veijola R, Simell T, Simell O, Neu J, Wasserfall CH, Schatz D, Atkinson MA, and Triplett EW
- Subjects
- Autoantibodies, Butyrates metabolism, Case-Control Studies, Databases, Nucleic Acid, Diabetes Mellitus, Type 1 etiology, Fatty Acids, Volatile biosynthesis, Humans, Mucins metabolism, RNA, Ribosomal, 16S, Autoimmunity genetics, Diabetes Mellitus, Type 1 immunology, Gastrointestinal Tract microbiology, Metagenome genetics, Metagenomics methods
- Abstract
Recent studies have suggested a bacterial role in the development of autoimmune disorders including type 1 diabetes (T1D). Over 30 billion nucleotide bases of Illumina shotgun metagenomic data were analyzed from stool samples collected from four pairs of matched T1D case-control subjects collected at the time of the development of T1D associated autoimmunity (i.e., autoantibodies). From these, approximately one million open reading frames were predicted and compared to the SEED protein database. Of the 3,849 functions identified in these samples, 144 and 797 were statistically more prevalent in cases and controls, respectively. Genes involved in carbohydrate metabolism, adhesions, motility, phages, prophages, sulfur metabolism, and stress responses were more abundant in cases while genes with roles in DNA and protein metabolism, aerobic respiration, and amino acid synthesis were more common in controls. These data suggest that increased adhesion and flagella synthesis in autoimmune subjects may be involved in triggering a T1D associated autoimmune response. Extensive differences in metabolic potential indicate that autoimmune subjects have a functionally aberrant microbiome. Mining 16S rRNA data from these datasets showed a higher proportion of butyrate-producing and mucin-degrading bacteria in controls compared to cases, while those bacteria that produce short chain fatty acids other than butyrate were higher in cases. Thus, a key rate-limiting step in butyrate synthesis is more abundant in controls. These data suggest that a consortium of lactate- and butyrate-producing bacteria in a healthy gut induce a sufficient amount of mucin synthesis to maintain gut integrity. In contrast, non-butyrate-producing lactate-utilizing bacteria prevent optimal mucin synthesis, as identified in autoimmune subjects.
- Published
- 2011
- Full Text
- View/download PDF
25. Toward defining the autoimmune microbiome for type 1 diabetes.
- Author
-
Giongo A, Gano KA, Crabb DB, Mukherjee N, Novelo LL, Casella G, Drew JC, Ilonen J, Knip M, Hyöty H, Veijola R, Simell T, Simell O, Neu J, Wasserfall CH, Schatz D, Atkinson MA, and Triplett EW
- Subjects
- Age Factors, Autoantibodies blood, Bacteria genetics, Bacteria isolation & purification, Biodiversity, Case-Control Studies, Child, Child, Preschool, Diabetes Mellitus, Type 1 diagnosis, Feces microbiology, Humans, Infant, RNA, Ribosomal, 16S genetics, Bacteria classification, Diabetes Mellitus, Type 1 microbiology, Metagenome
- Abstract
Several studies have shown that gut bacteria have a role in diabetes in murine models. Specific bacteria have been correlated with the onset of diabetes in a rat model. However, it is unknown whether human intestinal microbes have a role in the development of autoimmunity that often leads to type 1 diabetes (T1D), an autoimmune disorder in which insulin-secreting pancreatic islet cells are destroyed. High-throughput, culture-independent approaches identified bacteria that correlate with the development of T1D-associated autoimmunity in young children who are at high genetic risk for this disorder. The level of bacterial diversity diminishes overtime in these autoimmune subjects relative to that of age-matched, genotype-matched, nonautoimmune individuals. A single species, Bacteroides ovatus, comprised nearly 24% of the total increase in the phylum Bacteroidetes in cases compared with controls. Conversely, another species in controls, represented by the human firmicute strain CO19, represented nearly 20% of the increase in Firmicutes compared with cases overtime. Three lines of evidence are presented that support the notion that, as healthy infants approach the toddler stage, their microbiomes become healthier and more stable, whereas, children who are destined for autoimmunity develop a microbiome that is less diverse and stable. Hence, the autoimmune microbiome for T1D may be distinctly different from that found in healthy children. These data also suggest bacterial markers for the early diagnosis of T1D. In addition, bacteria that negatively correlated with the autoimmune state may prove to be useful in the prevention of autoimmunity development in high-risk children.
- Published
- 2011
- Full Text
- View/download PDF
26. Astrobiology undergraduate education: students' knowledge and perceptions of the field.
- Author
-
Foster JS and Drew JC
- Subjects
- Florida, Humans, Students, Cognition, Education, Medical, Undergraduate methods, Exobiology, Perception, Problem-Based Learning methods
- Abstract
With the field of astrobiology continually evolving, it has become increasingly important to develop and maintain an educational infrastructure for the next generation of astrobiologists. In addition to developing more courses and programs for students, it is essential to monitor the learning experiences and progress of students taking these astrobiology courses. At the University of Florida, a new pilot course in astrobiology was developed that targeted undergraduate students with a wide range of scientific backgrounds. Pre- and post-course surveys along with knowledge assessments were used to evaluate the students' perceived and actual learning experiences. The class incorporated a hybrid teaching platform that included traditional in-person and distance learning technologies. Results indicate that undergraduate students have little prior knowledge of key astrobiology concepts; however, post-course testing demonstrated significant improvements in the students' comprehension of astrobiology. Improvements were not limited to astrobiology knowledge. Assessments revealed that students developed confidence in science writing as well as reading and understanding astrobiology primary literature. Overall, student knowledge of and attitudes toward astrobiological research dramatically increased during this course, which demonstrates the ongoing need for additional astrobiology education programs as well as periodic evaluations of those programs currently underway. Together, these approaches serve to improve the overall learning experiences and perceptions of future astrobiology researchers.
- Published
- 2009
- Full Text
- View/download PDF
27. Whole genome sequencing in the undergraduate classroom: outcomes and lessons from a pilot course.
- Author
-
Drew JC and Triplett EW
- Abstract
The BIO2010 report challenged undergraduate institutions to prepare the next generation of researchers for the changing direction of biology that increasingly integrates advanced technologies, digital information, and large-scale analyses. In response, the Microbiology and Cell Science Department at the University of Florida developed a research-based course, "Bacterial Genome Sequencing." The objectives were to teach undergraduates about genomics and original research by sequencing a bacterial genome, to develop scientific communication skills by writing and submitting the project results as a class effort, and to promote an interest in biological research, particularly genomics. The students worked together to sequence, assemble, and annotate the Enterobacter cloacae P101 genome. We assessed student learning, scientific communication skills, and student attitudes by a variety of methods including exams, writing assignments, oral presentations, pre- and postcourse surveys, and a final exit survey. Assessment results demonstrate student learning gains and positive attitudes regarding the course.
- Published
- 2008
28. Ancestral bias in the Hras1 gene and distal Chromosome 7 among inbred mice.
- Author
-
Drew JC, Kastenmeier AS, and Drinkwater NR
- Subjects
- Alleles, Animals, Chromosome Mapping, Haplotypes, Mice, Mice, Inbred Strains, Models, Genetic, Mutation, Phylogeny, Quantitative Trait Loci, Chromosomes, Gene Expression Regulation, Polymorphism, Single Nucleotide, Proto-Oncogene Proteins p21(ras) genetics
- Abstract
Inbred strains of mice vary in their frequency of liver tumors initiated by a mutation in the Hras1 (H-ras) proto-oncogene. We sequenced 4.5 kb of the Hras1 gene on distal Chr 7 in a diverse set of 12 commonly used laboratory inbred strains of mice and detected no sequence variation to account for strain-specific differences in Hras1 mutation prevalence. Furthermore, the Hras1 sequence is essentially monoallelic for an ancestral gene derived from the M. m. domesticus species. To determine if the monoallelism and associated low rate of polymorphism are unique to Hras1 or representative of the general chromosomal locale, we extended the sequence analysis to 12 genes in the final 8 Mb of distal Chr 7. A region of at least 2.5 Mb that encompasses several genes, including Hras1 and the H19/Igf2 loci, demonstrates virtually no sequence variation. The 12 inbred strains share one dominant haplotype derived from the M. m. domesticus allele. Chromosomal regions flanking the monoallelic segment exhibit a significantly higher rate of variation and multiple haplotypes, a majority of which are attributed to M. m. domesticus or M. m. musculus ancestry.
- Published
- 2007
- Full Text
- View/download PDF
29. Values unlimited.
- Author
-
Guevara EB, Mendias EP, Goins PN, Drew JC, Heredia AM, Felizzia S, Ferraz CA, Mishima SM, Morales MA, and Valdez Martinez ME
- Subjects
- Health Care Reform, Humans, Attitude of Health Personnel, Attitude to Health, Cultural Diversity, Global Health, Health Services Needs and Demand, Nurses psychology, Social Values
- Published
- 1998
30. Health maintenance organizations: history, evolution, & survival.
- Author
-
Drew JC
- Subjects
- Aged, Health Services for the Aged, Humans, Nursing Care, Quality Assurance, Health Care, United States, Health Maintenance Organizations trends
- Abstract
It's hard to believe that HMOs are old enough to have a past, but Drew does an excellent job of reviewing their development and present status. Issues of cost, quality, and politics are covered in thoughtful and precise detail. What is the future of HMOs? Drew draws some interesting conclusions.
- Published
- 1990
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.