12 results on '"Dumas, Alexia"'
Search Results
2. A Pulmonary Lactobacillus murinus Strain Induces Th17 and RORγt + Regulatory T Cells and Reduces Lung Inflammation in Tuberculosis
- Author
-
Bernard-Raichon, Lucie, Colom, André, Monard, Sarah, Namouchi, Amine, Cescato, Margaux, Garnier, Hugo, Leon-Icaza, Stephen, Métais, Arnaud, Dumas, Alexia, Corral, Dan, Ghebrendrias, Natsinet, Guilloton, Pauline, Vérollet, Christel, Hudrisier, Denis, Remot, Aude, Langella, Philippe, Thomas, Muriel, Cougoule, Céline, Neyrolles, Olivier, Lugo-Villarino, Geanncarlo, Marín Franco, José Luis, Genoula, Melanie, Duette, Gabriel, Ferreyra, Malena, Maio, Mariano, Dolotowicz, María Belén, Aparicio-Trejo, Omar Emiliano, Patiño-Martínez, Eduardo, Charton, Alison, Fuentes, Federico, Soldan, Vanessa, Moraña, Eduardo José, Palmero, Domingo, Ostrowski, Matías, Schierloh, Pablo, Sánchez-Torres, Carmen, Hernández-Pando, Rogelio, Pedraza-Chaverri, José, Rombouts, Yoann, Layre, Emilie, Maridonneau-Parini, Isabelle, Sasiain, María del Carmen, Balboa, Luciana, Institut de pharmacologie et de biologie structurale (IPBS), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences [Oslo], Faculty of Mathematics and Natural Sciences [Oslo], University of Oslo (UiO)-University of Oslo (UiO)-Faculty of Mathematics and Natural Sciences [Oslo], University of Oslo (UiO)-University of Oslo (UiO), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Norwegian University of Life Sciences (NMBU), MICrobiologie de l'ALImentation au Service de la Santé (MICALIS), AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Infectiologie et Santé Publique (UMR ISP), Université de Tours (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), CNRS, Fondation pour la Recherche Medicale (DEQ2016 0334894, FDT201805005210), Fondation Bettencourt Schueller, ANR-15-CE15-0012,MMI-TB,Rôle du microbiome dans la réponse des macrophages à Mycobacterium tuberculosis: un programme de recherche intégrant le microbiote, le métabolisme et l'immunité(2015), ANR-18-CE15-0004,GENDER-TB,Bases immunologiques de la susceptibilité différentielle des genres à la tuberculose(2018), and European Project: 267196,EC:FP7:PEOPLE,FP7-PEOPLE-2010-COFUND,AGREENSKILLS(2012)
- Subjects
Tuberculosis ,Regulatory T cell ,T cell ,[SDV]Life Sciences [q-bio] ,Immunology ,Inflammation ,Mycobacterium tuberculosis ,03 medical and health sciences ,0302 clinical medicine ,Immunity ,RAR-related orphan receptor gamma ,Immunology and Allergy ,Medicine ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology ,0303 health sciences ,Lung ,biology ,business.industry ,biology.organism_classification ,medicine.disease ,3. Good health ,medicine.anatomical_structure ,medicine.symptom ,business ,030215 immunology - Abstract
The lungs harbor multiple resident microbial communities, otherwise known as the microbiota. There is an emerging interest in deciphering whether the pulmonary microbiota modulate local immunity, and whether this knowledge could shed light on mechanisms operating in the response to respiratory pathogens. In this study, we investigate the capacity of a pulmonary Lactobacillus strain to modulate the lung T cell compartment and assess its prophylactic potential upon infection with Mycobacterium tuberculosis, the etiological agent of tuberculosis. In naive mice, we report that a Lactobacillus murinus (Lagilactobacillus murinus) strain (CNCM I-5314) increases the presence of lung Th17 cells and of a regulatory T cell (Treg) subset known as RORγt+ Tregs. In particular, intranasal but not intragastric administration of CNCM I-5314 increases the expansion of these lung leukocytes, suggesting a local rather than systemic effect. Resident Th17 and RORγt+ Tregs display an immunosuppressive phenotype that is accentuated by CNCM I-5314. Despite the well-known ability of M. tuberculosis to modulate lung immunity, the immunomodulatory effect by CNCM I-5314 is dominant, as Th17 and RORγt+ Tregs are still highly increased in the lung at 42-d postinfection. Importantly, CNCM I-5314 administration in M. tuberculosis–infected mice results in reduction of pulmonary inflammation, without increasing M. tuberculosis burden. Collectively, our findings provide evidence for an immunomodulatory capacity of CNCM I-5314 at steady state and in a model of chronic inflammation in which it can display a protective role, suggesting that L. murinus strains found in the lung may shape local T cells in mice and, perhaps, in humans.
- Published
- 2021
3. A Pulmonary Lactobacillus murinus Strain Induces Th17 and RORγt+ Regulatory T Cells and Reduces Lung Inflammation in Tuberculosis
- Author
-
Bernard-Raichon, Lucie, primary, Colom, André, additional, Monard, Sarah C., additional, Namouchi, Amine, additional, Cescato, Margaux, additional, Garnier, Hugo, additional, Leon-Icaza, Stephen A., additional, Métais, Arnaud, additional, Dumas, Alexia, additional, Corral, Dan, additional, Ghebrendrias, Natsinet, additional, Guilloton, Pauline, additional, Vérollet, Christel, additional, Hudrisier, Denis, additional, Remot, Aude, additional, Langella, Philippe, additional, Thomas, Muriel, additional, Cougoule, Céline, additional, Neyrolles, Olivier, additional, and Lugo-Villarino, Geanncarlo, additional
- Published
- 2021
- Full Text
- View/download PDF
4. Raising the ‘Good’ Oxidants for Immune Protection
- Author
-
Dumas, Alexia, primary and Knaus, Ulla G., additional
- Published
- 2021
- Full Text
- View/download PDF
5. Rôle du microbiote dans les interactions hôte-pathogène dans la tuberculose
- Author
-
Dumas, Alexia and Dumas, Alexia
- Abstract
Le microbiote désigne l'ensemble des microorganismes (bactéries, virus, champignons) vivant dans un environnement spécifique, en particulier chez un hôte (humain, animal ou végétal). La relation symbiotique existant entre le microbiote et son hôte a été mise en évidence dans de nombreux contextes. Le rôle protecteur du microbiote a été démontré chez l'homme, dans diverses pathologies, dont des infections bactériennes. Le microbiote colonise l'ensemble des muqueuses, dont l'intestin, où il est le plus abondant. Bien que le rôle du microbiote intestinal ait été beaucoup décrit, l'existence de bactéries commensales dans les poumons a été mise en évidence plus récemment. D'abord sujette à controverse, l'existence d'un microbiote pulmonaire, dont la composition est distincte de celle de l'intestin, et qui peut être altérée en conditions pathologiques, est maintenant bien établie. Il est également établi que le microbiote d'un organe peut agir sur la physiologie d'autres organes ; ainsi on parle par exemple d'un axe " intestin-poumons " pour désigner l'action de composés solubles produits par le microbiote intestinal, ainsi que de cellules immunitaires ou cytokines de l'intestin, véhiculés par le sang ou la lymphe, sur la physiologie du poumon. Les poumons sont une cible majeure pour la colonisation par des pathogènes. La tuberculose (TB), une inflammation chronique pulmonaire causée par la bactérie Mycobacterium tuberculosis, est encore aujourd'hui la pathologie respiratoire due à un agent étiologique unique la plus meurtrière. A ce jour la complexité des mécanismes mis en jeu pour expliquer la différence de susceptibilité à la TB entre les individus n'est pas encore complètement comprise. Il est proposé que la balance entre virulence de la souche de M. tuberculosis, et statut immunitaire de l'hôte pourrait expliquer l'inégalité entre les individus face au développement de la maladie. Ici nous avons émis l'hypothèse que le microbiote de l'hôte serait un facteur influença, The microbiota refers to all microorganisms (bacteria, viruses, fungi) living in a specific environment, especially in a host (human, animal or plant). The symbiotic relationship existing between the microbiota and its host has been demonstrated in many contexts. In particular, it is now well-established that the microbiota plays a protective role during different human pathologies, including bacterial infections. The microbiota colonizes all the mucosal membranes of the body; particularly the intestine where it is more abundant. While role of the gut microbiota has already been widely studied, the existence of bacteria in the lungs has been described more recently. Even if at first controversial, the existence of a pulmonary microbiota, whose composition is distinct from that of the intestine, and which can be altered in pathological conditions, is now well established. It is also well-established that the microbiota of an organ can act on the physiology of other organs; for instance, a "gut-lungs" axis is used to designate the action of soluble compounds produced by the intestinal microbiota, as well as immunes cells or cytokines from the gut, carried by the blood or the lymph, on the physiology of the lung. The lungs are one of the major colonization site for different pathogens. Tuberculosis (TB), a chronic pulmonary inflammation caused by the bacteria Mycobacterium tuberculosis, is still today the most lethal respiratory disease due to a single etiological agent. To date, the complexity of the mechanisms explaining the difference in susceptibility to TB between individuals has not been fully understood yet. It has been suggested that the balance between virulence of the strain of M. tuberculosis and immune status of the host could explain the inequality in disease development between individuals. Here we hypothesized that the host microbiota could be a factor influencing the host-pathogen interaction in TB via i) the modulation of antituberculous immunity and/o
- Published
- 2018
6. The Host Microbiota Contributes to Early Protection Against Lung Colonization by Mycobacterium tuberculosis
- Author
-
Dumas, Alexia, primary, Corral, Dan, additional, Colom, André, additional, Levillain, Florence, additional, Peixoto, Antonio, additional, Hudrisier, Denis, additional, Poquet, Yannick, additional, and Neyrolles, Olivier, additional
- Published
- 2018
- Full Text
- View/download PDF
7. The role of the lung microbiota and the gut-lung axis in respiratory infectious diseases
- Author
-
Dumas, Alexia, primary, Bernard, Lucie, additional, Poquet, Yannick, additional, Lugo-Villarino, Geanncarlo, additional, and Neyrolles, Olivier, additional
- Published
- 2018
- Full Text
- View/download PDF
8. Mycobacterium tuberculosis Exploits Asparagine to Assimilate Nitrogen and Resist Acid Stress during Infection
- Author
-
Gouzy, Alexandre, primary, Larrouy-Maumus, Gérald, additional, Bottai, Daria, additional, Levillain, Florence, additional, Dumas, Alexia, additional, Wallach, Joshua B., additional, Caire-Brandli, Irène, additional, de Chastellier, Chantal, additional, Wu, Ting-Di, additional, Poincloux, Renaud, additional, Brosch, Roland, additional, Guerquin-Kern, Jean-Luc, additional, Schnappinger, Dirk, additional, Sório de Carvalho, Luiz Pedro, additional, Poquet, Yannick, additional, and Neyrolles, Olivier, additional
- Published
- 2014
- Full Text
- View/download PDF
9. Online consumer misbehaviour: an application of neutralization theory
- Author
-
Harris, Lloyd C., primary and Dumas, Alexia, additional
- Published
- 2009
- Full Text
- View/download PDF
10. Mycobacterium tuberculosis Exploits Asparagine to Assimilate Nitrogen and Resist Acid Stress during Infection.
- Author
-
Gouzy, Alexandre, Larrouy-Maumus, Gérald, Bottai, Daria, Levillain, Florence, Dumas, Alexia, Wallach, Joshua B., Caire-Brandli, Irène, de Chastellier, Chantal, Wu, Ting-Di, Poincloux, Renaud, Brosch, Roland, Guerquin-Kern, Jean-Luc, Schnappinger, Dirk, Sório de Carvalho, Luiz Pedro, Poquet, Yannick, and Neyrolles, Olivier
- Subjects
MYCOBACTERIUM tuberculosis ,ASPARAGINE ,NITROGEN ,INTRACELLULAR pathogens ,PHAGOSOMES ,PROTEIN hydrolysates - Abstract
Mycobacterium tuberculosis is an intracellular pathogen. Within macrophages, M. tuberculosis thrives in a specialized membrane-bound vacuole, the phagosome, whose pH is slightly acidic, and where access to nutrients is limited. Understanding how the bacillus extracts and incorporates nutrients from its host may help develop novel strategies to combat tuberculosis. Here we show that M. tuberculosis employs the asparagine transporter AnsP2 and the secreted asparaginase AnsA to assimilate nitrogen and resist acid stress through asparagine hydrolysis and ammonia release. While the role of AnsP2 is partially spared by yet to be identified transporter(s), that of AnsA is crucial in both phagosome acidification arrest and intracellular replication, as an M. tuberculosis mutant lacking this asparaginase is ultimately attenuated in macrophages and in mice. Our study provides yet another example of the intimate link between physiology and virulence in the tubercle bacillus, and identifies a novel pathway to be targeted for therapeutic purposes. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
11. Prenatal stress induces changes in PAR2- and M3-dependent regulation of colon primitive cells.
- Author
-
Berger M, Guiraud L, Dumas A, Sagnat D, Payros G, Rolland C, Vergnolle N, Deraison C, Cenac N, and Racaud-Sultan C
- Subjects
- Male, Female, Mice, Animals, Pregnancy, Glycogen Synthase Kinase 3 beta, Stem Cells, Receptors, G-Protein-Coupled, Receptor, PAR-2 genetics, Colon
- Abstract
Prenatal stress is associated with a high risk of developing adult intestinal pathologies, such as irritable bowel syndrome, chronic inflammation, and cancer. Although epithelial stem cells and progenitors have been implicated in intestinal pathophysiology, how prenatal stress could impact their functions is still unknown. We have investigated the proliferative and differentiation capacities of primitive cells using epithelial crypts isolated from colons of adult male and female mice whose mothers have been stressed during late gestation. Our results show that stem cell/progenitor proliferation and differentiation in vitro are negatively impacted by prenatal stress in male progeny. This is promoted by a reinforcement of the negative proliferative/differentiation control by the protease-activated receptor 2 (PAR2) and the muscarinic receptor 3 (M3), two G protein-coupled receptors present in the crypt. Conversely, prenatal stress does not change in vitro proliferation of colon primitive cells in female progeny. Importantly, this maintenance is associated with a functional switch in the M3 negative control of colonoid growth, becoming proliferative after prenatal stress. In addition, the proliferative role of PAR2 specific to females is maintained under prenatal stress, even though PAR2-targeted stress signals Dusp6 and activated GSK3β are increased, reaching the levels of males. An epithelial serine protease could play a critical role in the activation of the survival kinase GSK3β in colonoids from prenatally stressed female progeny. Altogether, our results show that following prenatal stress, colon primitive cells cope with stress through sexually dimorphic mechanisms that could pave the way to dysregulated crypt regeneration and intestinal pathologies. NEW & NOTEWORTHY Primitive cells isolated from mouse colon following prenatal stress and exposed to additional stress conditions such as in vitro culture, present sexually dimorphic mechanisms based on PAR2- and M3-dependent regulation of proliferation and differentiation. Whereas prenatal stress reinforces the physiological negative control exerted by PAR2 and M3 in crypts from males, in females, it induces a switch in M3- and PAR2-dependent regulation leading to a resistant and proliferative phenotype of progenitor.
- Published
- 2022
- Full Text
- View/download PDF
12. A Pulmonary Lactobacillus murinus Strain Induces Th17 and RORγt + Regulatory T Cells and Reduces Lung Inflammation in Tuberculosis.
- Author
-
Bernard-Raichon L, Colom A, Monard SC, Namouchi A, Cescato M, Garnier H, Leon-Icaza SA, Métais A, Dumas A, Corral D, Ghebrendrias N, Guilloton P, Vérollet C, Hudrisier D, Remot A, Langella P, Thomas M, Cougoule C, Neyrolles O, and Lugo-Villarino G
- Subjects
- Animals, Cells, Cultured, Disease Models, Animal, Humans, Lung microbiology, Lymphocyte Activation, Mice, Mice, Inbred C57BL, Pneumonia, Lactobacillus physiology, Lung immunology, Mycobacterium tuberculosis physiology, Nuclear Receptor Subfamily 1, Group F, Member 3 metabolism, T-Lymphocytes, Regulatory immunology, Th17 Cells immunology, Tuberculosis, Pulmonary immunology
- Abstract
The lungs harbor multiple resident microbial communities, otherwise known as the microbiota. There is an emerging interest in deciphering whether the pulmonary microbiota modulate local immunity, and whether this knowledge could shed light on mechanisms operating in the response to respiratory pathogens. In this study, we investigate the capacity of a pulmonary Lactobacillus strain to modulate the lung T cell compartment and assess its prophylactic potential upon infection with Mycobacterium tuberculosis , the etiological agent of tuberculosis. In naive mice, we report that a Lactobacillus murinus ( Lagilactobacillus murinus ) strain (CNCM I-5314) increases the presence of lung Th17 cells and of a regulatory T cell (Treg) subset known as RORγt
+ Tregs. In particular, intranasal but not intragastric administration of CNCM I-5314 increases the expansion of these lung leukocytes, suggesting a local rather than systemic effect. Resident Th17 and RORγt+ Tregs display an immunosuppressive phenotype that is accentuated by CNCM I-5314. Despite the well-known ability of M. tuberculosis to modulate lung immunity, the immunomodulatory effect by CNCM I-5314 is dominant, as Th17 and RORγt+ Tregs are still highly increased in the lung at 42-d postinfection. Importantly, CNCM I-5314 administration in M. tuberculosis -infected mice results in reduction of pulmonary inflammation, without increasing M. tuberculosis burden. Collectively, our findings provide evidence for an immunomodulatory capacity of CNCM I-5314 at steady state and in a model of chronic inflammation in which it can display a protective role, suggesting that L. murinus strains found in the lung may shape local T cells in mice and, perhaps, in humans., (Copyright © 2021 by The American Association of Immunologists, Inc.)- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.