Danielle de Brito Silva, Paula Coelho, Arianna Cortesi, Gustavo Bruzual, Gladis Magris C., Ana L. Chies-Santos, Jose A. Hernandez-Jimenez, Alessandro Ederoclite, Izaskun San Roman, Jesús Varela, Duncan A. Forbes, Yolanda Jiménez-Teja, Javier Cenarro, David Cristóbal-Hornillos, Carlos Hernández-Monteagudo, Carlos López-Sanjuan, Antonio Marín-Franch, Mariano Moles, Héctor Vázquez Ramió, Renato Dupke, Laerte Sodré, Raul E. Angulo, Ministerio de Ciencia e Innovación (España), European Commission, Fundação de Amparo à Pesquisa do Estado de São Paulo, Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brasil), and Universidad Nacional Autónoma de México
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited., Context. Extragalactic globular clusters (GCs) are key objects in studies of galactic histories. The advent of wide-field surveys, such as the Javalambre Photometric Local Universe Survey (J-PLUS), offers new possibilities for the study of these systems. Aims. We performed the first study of GCs in J-PLUS to recover information on the history of NGC 1023, taking advantage of wide-field images and 12 filters. Methods. We developed the semiautomatic pipeline GCFinder for detecting GC candidates in J-PLUS images, which can also be adapted to similar surveys. We studied the stellar population properties of a sub-sample of GC candidates using spectral energy distribution (SED) fitting. Results. We found 523 GC candidates in NGC 1023, about 300 of which are new. We identified subpopulations of GC candidates, where age and metallicity distributions have multiple peaks. By comparing our results with the simulations, we report a possible broad age-metallicity relation, supporting the notion that NGC 1023 has experienced accretion events in the past. With a dominating age peak at 1010 yr, we report a correlation between masses and ages that suggests that massive GC candidates are more likely to survive the turbulent history of the host galaxy. Modeling the light of NGC 1023, we find two spiral-like arms and detect a displacement of the galaxy’s photometric center with respect to the outer isophotes and center of GC distribution (~700pc and ~1600pc, respectively), which could be the result of ongoing interactions between NGC 1023 and NGC 1023A. Conclusions. By studying the GC system of NGC 1023 with J-PLUS, we showcase the power of multi-band surveys for these kinds of studies and we find evidence to support the complex accretion history of the host galaxy. © D. de Brito Silva et al. 2022., D.B.S. also acknowledges Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) process number 2017J00204-6 for the financial support provided for the development of this project. P.C. acknowledges support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under grant 310041/2018-0 and from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) process number 2018J05392-8. A.C.S. acknowledges funding from CNPq and the Rio Grande do Sul Research Foundation (FAPERGS) through grants CNPq-403580/2016-1, CNPq-11153/2018-6, PqG/FAPERGS-17/2551-0001, FAPERGS/CAPES 19/2551-0000696-9 and L’Oréal UNESCO ABC Para Mulheres na Ciência and the Chinese Academy of Sciences (CAS) President’s International Fellowship Initiative (PIFI) through grant E085201009. G.B. acknowledges financial support from the National Autonomous University of México (UNAM) through grant DGAPA/PAPIIT IG100319 and from CONACyT through grant CB2015-252364. J.V. acknowledges the technical members of the UPAD for their invaluable work: Juan Castillo, Tamara Civera, Javier Hernández, Ángel López, Alberto Moreno, and David Muniesa. J.A.H.J. acknowledges Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), process number 2021J08920-8. A.E. acknowledges the financial support from the Spanish Ministry of Science and Innovation and the European Union – NextGenerationEU through the Recovery and Resilience Facility project ICTS-MRR-2021-03-CEFCA and from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under grant 313285/2020-9 D.A.F. thanks the ARC for financial assistance via DP170102344. Y.J.-T has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 898633. Y.J-T. also acknowledges financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709). Based on observations made with the JAST80 telescope telescope/s at the Observatorio Astrofísico de Javalambre, in Teruel, owned, managed, and operated by the Centro de Estudios de Física del Cosmos de Aragón. We thank the Centro de Estudios de Física del Cosmos de Aragón for the allocation of the Director’s Discretionary Time to this program. We thank the OAJ Data Processing and Archiving Unit (UPAD) for reducing and calibrating the OAJ data used in this work. Funding for the J-PLUS Project has been provided by the Governments of Spain and Aragón through the Fondo de Inversiones de Teruel; the Aragón Government through the Research Groups E96, E103, and E16_17R; the Spanish Ministry of Science, Innovation, and Universities (MCIU/AEI/FEDER, UE) with grants PGC2018-097585-B-C21 and PGC2018-097585-B-C22; the Spanish Ministry of Economy and Competitiveness (MINECO) under AYA2015-66211-C2-1-P, AYA2015-66211-C2-2, AYA2012-30789, and ICTS-2009-14; and European FEDER funding (FCDD10-4E-867, FCDD13-4E-2685). The Brazilian agencies FINEP, FAPESP, and the National Observatory of Brazil have also contributed to this project. This work has made use of the computing facilities of the Laboratory of Astroinformatics (IAG/USP, NAT/Unicsul), whose purchase was made possible by the Brazilian agency FAPESP (grant 2009/54006-4) and the INCT-A.