1. Validation of GEANT4 Monte Carlo Models with a Highly Granular Scintillator-Steel Hadron Calorimeter
- Author
-
C Adloff, J Blaha, J -J Blaising, C Drancourt, A Espargilière, R Gaglione, N Geffroy, Y Karyotakis, J Prast, G Vouters, K Francis, J Repond, J Schlereth, J Smith, L Xia, E Baldolemar, J Li, S T Park, M Sosebee, A P White, J Yu, T Buanes, G Eigen, Y Mikami, N K Watson, G Mavromanolakis, M A Thomson, D R Ward, W Yan, D Benchekroun, A Hoummada, Y Khoulaki, J Apostolakis, A Dotti, G Folger, V Ivantchenko, V Uzhinskiy, M Benyamna, C Cârloganu, F Fehr, P Gay, S Manen, L Royer, G C Blazey, A Dyshkant, J G R Lima, V Zutshi, J -Y Hostachy, L Morin, U Cornett, D David, G Falley, K Gadow, P Göttlicher, C Günter, B Hermberg, S Karstensen, F Krivan, A -I Lucaci-Timoce, S Lu, B Lutz, S Morozov, V Morgunov, M Reinecke, F Sefkow, P Smirnov, M Terwort, A Vargas-Trevino, N Feege, E Garutti, I Marchesini, M Ramilli, P Eckert, T Harion, A Kaplan, H -Ch Schultz-Coulon, W Shen, R Stamen, B Bilki, E Norbeck, Y Onel, G W Wilson, K Kawagoe, P D Dauncey, A -M Magnan, V Bartsch, M Wing, F Salvatore, E Calvo Alamillo, M -C Fouz, J Puerta-Pelayo, B Bobchenko, M Chadeeva, M Danilov, A Epifantsev, O Markin, R Mizuk, E Novikov, V Popov, V Rusinov, E Tarkovsky, N Kirikova, V Kozlov, Y Soloviev, P Buzhan, A Ilyin, V Kantserov, V Kaplin, A Karakash, E Popova, V Tikhomirov, C Kiesling, K Seidel, F Simon, C Soldner, M Szalay, M Tesar, L Weuste, M S Amjad, J Bonis, S Callier, S Conforti di Lorenzo, P Cornebise, Ph Doublet, F Dulucq, J Fleury, T Frisson, N van der Kolk, H Li, G Martin-Chassard, F Richard, Ch de la Taille, R Pöschl, L Raux, J Rouëné, N Seguin-Moreau, M Anduze, V Boudry, J-C Brient, D Jeans, P Mora de Freitas, G Musat, M Reinhard, M Ruan, H Videau, B Bulanek, J Zacek, J Cvach, P Gallus, M Havranek, M Janata, J Kvasnicka, D Lednicky, M Marcisovsky, I Polak, J Popule, L Tomasek, M Tomasek, P Ruzicka, P Sicho, J Smolik, V Vrba, J Zalesak, B Belhorma, H Ghazlane, T Takeshita, S Uozumi, M Götze, O Hartbrich, J Sauer, S Weber, C Zeitnitz, Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Corpusculaire - Clermont-Ferrand (LPC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Leprince-Ringuet (LLR), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), CALICE, Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), and Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
- Subjects
Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,Highly Granular Calorimetry [9.5] ,Hadron ,Monte Carlo method ,FOS: Physical sciences ,Scintillator ,01 natural sciences ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Silicon photomultiplier ,Pion ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,ddc:610 ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Detectors and Experimental Techniques ,010306 general physics ,physics.ins-det ,Instrumentation ,Mathematical Physics ,Advanced infrastructures for detector R&D [9] ,Physics ,Range (particle radiation) ,hep-ex ,010308 nuclear & particles physics ,Instrumentation and Detectors (physics.ins-det) ,Computational physics ,Calorimeter ,High Energy Physics::Experiment ,Granularity ,Particle Physics - Experiment - Abstract
Calorimeters with a high granularity are a fundamental requirement of the Particle Flow paradigm. This paper focuses on the prototype of a hadron calorimeter with analog readout, consisting of thirty-eight scintillator layers alternating with steel absorber planes. The scintillator plates are finely segmented into tiles individually read out via Silicon Photomultipliers. The presented results are based on data collected with pion beams in the energy range from 8GeV to 100GeV. The fine segmentation of the sensitive layers and the high sampling frequency allow for an excellent reconstruction of the spatial development of hadronic showers. A comparison between data and Monte Carlo simulations is presented, concerning both the longitudinal and lateral development of hadronic showers and the global response of the calorimeter. The performance of several GEANT4 physics lists with respect to these observables is evaluated. Calorimeters with a high granularity are a fundamentalrequirement of the Particle Flow paradigm. This paper focuses on theprototype of a hadron calorimeter with analog readout, consisting ofthirty-eight scintillator layers alternating with steel absorberplanes. The scintillator plates are finely segmented into tilesindividually read out via Silicon Photomultipliers. The presentedresults are based on data collected with pion beams in the energyrange from 8 GeV to 100 GeV. The fine segmentation of thesensitive layers and the high sampling frequency allow for anexcellent reconstruction of the spatial development of hadronicshowers. A comparison between data and Monte Carlo simulations ispresented, concerning both the longitudinal and lateral developmentof hadronic showers and the global response of the calorimeter. Theperformance of several GEANT4 physics lists with respect tothese observables is evaluated. Calorimeters with a high granularity are a fundamental requirement of the Particle Flow paradigm. This paper focuses on the prototype of a hadron calorimeter with analog readout, consisting of thirty-eight scintillator layers alternating with steel absorber planes. The scintillator plates are finely segmented into tiles individually read out via Silicon Photomultipliers. The presented results are based on data collected with pion beams in the energy range from 8GeV to 100GeV. The fine segmentation of the sensitive layers and the high sampling frequency allow for an excellent reconstruction of the spatial development of hadronic showers. A comparison between data and Monte Carlo simulations is presented, concerning both the longitudinal and lateral development of hadronic showers and the global response of the calorimeter. The performance of several GEANT4 physics lists with respect to these observables is evaluated.
- Published
- 2013
- Full Text
- View/download PDF