109 results on '"E. Delagnes"'
Search Results
2. Cherenkov Telescope Array : the World’s largest VHE gamma-ray observatory
- Author
-
Roberta Zanin, H. Abdalla, H. Abe, S. Abe, A. Abusleme, F. Acero, A. Acharyya, V. Acin Portella, K. Ackley, R. Adam, C. Adams, S.S. Adhikari, I. Aguado Ruesga, I. Agudo, R. Aguilera, A. Aguirre Santaella, F. Aharonian, A. Alberdi, R. Alfaro, J. Alfaro, C. Alispach, R. Aloisio, R. Alves Batista, J.P. Amans, L. Amati, E. Amato, L. Ambrogi, G. Ambrosi, M. Ambrosio, R. Ammendola, J. Anderson, M. Anduze, E.O. Anguner, L.A. Antonelli, V. Antonuccio, P. Antoranz, R. Anutarawiramkul, J. Aragunde Gutierrez, C. Aramo, A. Araudo, M. Araya, A. Arbet Engels, C. Arcaro, V. Arendt, C. Armand, T. Armstrong, F. Arqueros, L. Arrabito, B. Arsioli, M. Artero, K. Asano, Y. Ascasibar, J. Aschersleben, M. Ashley, P. Attina, P. Aubert, C. B. Singh, D. Baack, A. Babic, M. Backes, V. Baena, S. Bajtlik, A. Baktash, C. Balazs, M. Balbo, O. Ballester, J. Ballet, B. Balmaverde, A. Bamba, R. Bandiera, A. Baquero Larriva, P. Barai, C. Barbier, V. Barbosa Martins, M. Barcelo, M. Barkov, M. Barnard, L. Baroncelli, U. Barres de Almeida, J.A. Barrio, D. Bastieri, P.I. Batista, I. Batkovic, C. Bauer, R. Bautista González, J. Baxter, U. Becciani, J. Becerra González, Y. Becherini, G. Beck, J. Becker Tjus, W. Bednarek, A. Belfiore, L. Bellizzi, R. Belmont, W. Benbow, D. Berge, E. Bernardini, M.I. Bernardos, K. Bernlöhr, A. Berti, M. Berton, B. Bertucci, V. Beshley, N. Bhatt, S. Bhattacharyya, W. Bhattacharyya, B. Y. Bi, G. Bicknell, N. Biederbeck, C. Bigongiari, A. Biland, R. Bird, E. Bissaldi, J. Biteau, M. Bitossi, O. Blanch, M. Blank, J. Blazek, J. Bobin, C. Boccato, F. Bocchino, C. Boehm, M. Bohacova, C. Boisson, J. Boix, J.P. Bolle, J. Bolmont, G. Bonanno, C. Bonavolontà, L. Bonneau Arbeletche, G. Bonnoli, P. Bordas, J. Borkowski, R. Bose, D. Bose, Z. Bosnjak, E. Bottacini, Markus Böttcher, M.T. Botticella, C. Boutonnet, F. Bouyjou, V. Bozhilov, E. Bozzo, L. Brahimi, C. Braiding, S. Brau Nogue, S. Breen, J. Bregeon, M. Breuhaus, A. Brill, W. Brisken, E. Brocato, A.M. Brown, K. Brügge, P. Brun, F. Brun, L. Brunetti, G. Brunetti, P. Bruno, A. Bruno, A. Bruzzese, N. Bucciantini, J. H. Buckley, R. Bühler, A. Bulgarelli, T. Bulik, M. Bünning, M. Bunse, M. Burton, A. Burtovoi, M. Buscemi, S. Buschjager, G. Busetto, J. Buss, K. Byrum, A. Caccianiga, F. Cadoux, A. Calanducci, C. Calderon, J. Calvo Tovar, R. A. Cameron, P. Campana, R. Canestrari, F. Cangemi, B. Cantlay, M. Capalbi, M. Capasso, M. Cappi, A. Caproni, R. Capuzzo Dolcetta, P. Caraveo, V. Cárdenas, L. Cardiel, M. Cardillo, C. Carlile, S. Caroff, R. Carosi, A. Carosi, E. Carquin, M. Carrere, J.M. Casandjian, S. Casanova, F. Cassol, F. Catalani, O. Catalano, D. Cauz, A. Ceccanti, C. Celestino Silva, K. Cerny, M. Cerruti, E. Chabanne, P. Chadwick, Y. Chai, P. Chambery, C. Champion, S. Chaty, A. Chen, K. Cheng, M. Chernyakova, G. Chiaro, A. Chiavassa, M. Chikawa, V.R. Chitnis, J. Chudoba, L. Chytka, S. Cikota, A. Circiello, P. Clark, M. Colak, E. Colombo, S. Colonges, A. Comastri, A. Compagnino, V. Conforti, E. Congiu, R. Coniglione, J. Conrad, F. Conte, J.L. Contreras, P. Coppi, R. Cornat, J. Coronado Blazquez, J. Cortina, A. Costa, H. Costantini, G. Cotter, B. Courty, S. Covino, S. Crestan, P. Cristofari, R. Crocker, J. Croston, K. Cubuk, O. Cuevas, X. Cui, G. Cusumano, S. Cutini, G. D'Amico, F. D'Ammando, P. D'Avanzo, P. Da Vela, M. Dadina, S. Dai, M. Dalchenko, M. Dall'Ora, M.K. Daniel, J. Dauguet, I. Davids, J. Davies, B. Dawson, A. De Angelis, A.E. de Araujo Carvalho, M. de Bony de Lavergne, G. De Cesare, F. de Frondat, I. de la Calle, E. de Gouveia Dal Pino, B. De Lotto, A. De Luca, D. De Martino, M. de Naurois, E. de Ona Wilhelmi, F. De Palma Persio, N. De Simone, V. de Souza Valle, E. Delagnes, G. Deleglise Reznicek, C. Delgado, A.G. Delgado Giler, J. Delgado Mengual Valle, Domenico Della Volpe, D. Depaoli, J. Devin, T. Di Girolamo, C. Di Giulio Pierro, L. Di Venere, C. Díaz, C. Dib, S. Diebold, S. Digel, A. Djannati Atai, J. Djuvsland, A. Dmytriiev, K. Docher, A. Domínguez, D. Dominis Prester, A. Donini, D. Dorner, M. Doro, Rita Cassia dos Anjos, J.L. Dournaux, T. Downes, G. Drake, H. Drass, D. Dravins, C. Duangchan, A. Duara, G. Dubus, L. Ducci, C. Duffy, D. Dumora, K. Dundas Mora, A. Durkalec, V.V. Dwarkadas, J. Ebr, C. Eckner, J. Eder, E. Edy, K. Egberts, S. Einecke, C. Eleftheriadis, D. Elsässer, G. Emery, D. Emmanoulopoulos, J.P. Ernenwein, M. Errando, P. Escarate, J. Escudero, C. Espinoza, S. Ettori, A. Eungwanichayapant, P. Evans, C. Evoli, M. Fairbairn, D. Falceta Goncalves, A. Falcone, V. Fallah Ramazanı, R. Falomo, K. Farakos, G. Fasola, A. Fattorini, Y. Favre, R. Fedora, E. Fedorova, K. Feijen, Q. Feng, G. Ferrand, G. Ferrara, O. Ferreira, M. Fesquet, E. Fiandrini, A. Fiasson, M. Filipovic, D. Fink, J.P. Finley, V. Fioretti, D.F.G. Fiorillo, M. Fiorini, S. Flis, H. Flores, L. Foffano, C. Fohr, M.V. Fonseca, L. Font, G. Fontaine, O. Fornieri, P. Fortin, L. Fortson, N. Fouque, B. Fraga, A. Franceschini, F.J. Franco, L. Freixas Coromina, L. Fresnillo, D. Fugazza, Y. Fujita, S. Fukami, Y. Fukazawa, D. Fulla, S. Funk, A. Furniss, S. Gabici, D. Gaggero, G. Galanti, P. Galdemard, Y. A. Gallant, D. Galloway, S. Gallozzi, V. Gammaldi, R. Garcia, L. E. García-Muñoz, E. Garcia Lopez, F. Gargano, C. Gargano, S. Garozzo, D. Gascon, T. Gasparetto, D. Gasparrini, H. Gasparyan, M. Gaug, N. Geffroy, A. Gent, S. Germani, A. Ghalumyan, A. Ghedina, G. Ghirlanda, F. Gianotti, S. Giarrusso, M. Giarrusso, G. Giavitto, B. Giebels, N. Giglietto, V. Gika, F. Gillardo, R. Gimenes, F. Giordano, E. Giro, M. Giroletti, Andrea Giuliani, M. Gjaja, J.F. Glicenstein, P. Gliwny, H. Goksu, P. Goldoni, J.L. Gomez, M.M. Gonzalez, Juan Manuel Gonzalez, K.S. Gothe, D. Gotz Coelho, T. Grabarczyk, R. Graciani, P. Grandi, G. Grasseau, D. Grasso, D. Green, J. Green, T. Greenshaw, P. Grespan, A. Grillo, M.H. Grondin, J. Grube, V. Guarino, B. Guest, O. Gueta, M. Günduz, S. Gunji, G. Gyuk, J. Hackfeld, D. Hadasch, L. Hagge, A. Hahn, J.E. Hajlaoui, A. Halim, P. Hamal, W. Hanlon, Y. Harada, M.J. Hardcastle, M. Harvey Collado, T. Haubold, A. Haupt, M. Havelka, K. Hayashi, M. Hayashida, H. He, L. Heckmann, M. Heller, F. Henault, Gilles Henri, G. Hermann, S. Hernández Cadena, J. Herrera Llorente, O. Hervet, J. Hinton, A. Hiramatsu, K. Hirotani, B. Hnatyk, R. Hnatyk, J.K. Hoang, D. H.H. Hoffmann, C. Hoischen, J. Holder, M. Holler, B. Hona, D. Horan, Dieter Horns, P. Horvath, J. Houles, M. Hrabovsky, D. Hrupec, Y. Huang, J.‑M. Huet, G. Hughes, G. Hull, T.B. Humensky, M. Hütten, M. Iarlori, J.M. Illa, R. Imazawa, T. Inada, F. Incardona, A. Ingallinera, S. Inoue, T. Inoue, Y. Inoue, F. Iocco, K. Ioka, M. Ionica, S. Iovenitti, A. Iriarte, K. Ishio, W. Ishizaki, Y. Iwamura, J. Jacquemier, M. Jacquemont, M. Jamrozy, P. Janecek, F. Jankowsky, A. JardinBlicq, C. Jarnot, P. Jean Martínez, L. Jocou, N. Jordana, M. Josselin, I. JungRichardt, F.J.P.A. Junqueira, C. Juramy Gilles, P. Kaaret, L.H.S. Kadowaki, M. Kagaya, R. Kankanyan, D. Kantzas, V. Karas, A. Karastergiou, S. Karkar, J. Kasperek, H. Katagiri, J. Kataoka, K. Katarzynski, S. Katsuda, N. Kawanaka, D. Kazanas, D. Kerszberg, B. Khélifi, M.C. Kherlakian, T.P. Kian, D.B. Kieda, T. Kihm, S. Kim, S. Kisaka, R. Kissmann, R. Kleijwegt, G. Kluge, W. Kluźniak, J. Knapp, A. Kobakhidze, Y. Kobayashi, B. Koch, J. Kocot, K. Kohri, N. Komin, A. Kong, K. Kosack, F. Krack, M. Krause, F. Krennrich, H. Kubo, V. N. Kudryavtsev, S. Kunwar, J. Kushida, P. Kushwaha, Barbera Parola, G. La Rosa, R. Lahmann, A. Lamastra, M. Landoni, D. Landriu, R.G. Lang, J. Lapington, P. Laporte, P. Lason, J. Lasuik, J. Lazendic Galloway, T. Le Flour, P. Le Sidaner, S. Leach, S.H. Lee, W.H. Lee, S. Lee Oliveira, A. Lemiere, M. Lemoine Goumard, J.P. Lenain, F. Leone, V. Leray, G. Leto, F. Leuschner, R. Lindemann, E. Lindfors, L. Linhoff, I. Liodakis, A. Lipniacka, M. Lobo, Thomas Lohse, S. Lombardi, A. Lopez, M. Lopez, R. Lopez Coto, F. Louis, M. Louys, F. Lucarelli, H. Ludwig Boudi, P.L. Luque Escamilla, M.C. Maccarone, E. Mach, A.J. Maciejewski, J. Mackey, P. Maeght, C. Maggio, G. Maier, P. Majumdar, M. Makariev, M. Mallamaci, R. Malta Nunes de Almeida, D. Malyshev, D. Mandat, G. Maneva, M. Manganaro, P. Manigot, K. Mannheim, N. Maragos, D. Marano, M. Marconi, A. Marcowith, M. Marculewicz, B. Marcun, J. Marin, N. Marinello, P. Marinos, S. Markoff, P. Marquez, G. Marsella, J. M. Martin, P. G. Martin, M. Martinez, G. Martinez, O. Martinez, H. Martinez Huerta, C. Marty, R. Marx, N. Masetti, P. Massimino, H. Matsumoto, N. Matthews, G. Maurin, W. Max Moerbeck, N. Maxted, M.N. Mazziotta, S.M. Mazzola, J.D. Mbarubucyeye, L. Mc Comb, I. McHardy, S. McKeague, S. McMuldroch, E. Medina, D. Medina Miranda, A. Melandri, C. Melioli, D. Melkumyan, S. Menchiari, S. Mereghetti, G. Merino Arevalo, E. Mestre, J.L. Meunier, T. Meures, S. Micanovic, M. Miceli, M. Michailidis, J. Michalowski, T. Miener, I. Mievre, J. D. Miller, T. Mineo, M. Minev, J.M. Miranda, A. Mitchell, T. Mizuno, B. A. Mode, R. Moderski, L. Mohrmann, E. Molinari, T. Montaruli, I. Monteiro, C. Moore, A. Moralejo, D. Morcuende Parrilla, E. Moretti, K. Mori, P. Moriarty, K. Morik, P. Morris, A. Morselli, K. Mosshammer, R. Mukherjee, J. Muller, C. Mundell, J. Mundet, T. Murach, A. Muraczewski, H. Muraishi, I. Musella, A. Musumarra, A. Nagai, S. Nagataki, T. Naito, T. Nakamori, K. Nakashima, K. Nakayama, N. Nakhjiri, G. Naletto, D. Naumann, L. Nava, M.A. Nawaz, H. Ndiyavala, D. Neise, L. Nellen, R. Nemmen, N. Neyroud, K. Ngernphat, T. Nguyen Trung, L. Nicastro, L. Nickel, J. Niemiec, D. Nieto, C. Nigro, M. Nikołajuk, D. Ninci, K. Noda, Y. Nogami, S. Nolan, R. P. Norris, D. Nosek, M. Nöthe, V. Novotny, S. Nozaki, F. Nunio, P. O'Brien, K. Obara, Y. Ohira, M. Ohishi, S. Ohm, T. Oka, N. Okazaki, A. Okumura, C. Oliver, G. Olivera, B. Olmi, M. Orienti, R. Orito, M. Orlandini, E. Orlando, J.P. Osborne, M. Ostrowski, N. Otte, E. Ovcharov, E. Owen, I. Oya, A. Ozieblo, M. Padovani, A. Pagliaro, A. Paizis, M. Palatiello, M. Palatka, E. Palazzi, J.‑L. Panazol, D. Paneque, S. Panny, Francesca Romana Pantaleo, M. Panter, M. Paolillo, A. Papitto, A. Paravac, J.M. Paredes, G. Pareschi, N. Parmiggiani, R.D. Parsons, P. Paśko, S. R. Patel, B. Patricelli, L. Pavletic, S. Pavy, A. Peer, M. Pecimotika, M.G. Pellegriti, P. Peñil Del Campo, A. Pepato, S. Perard, C. Perennes, M. Peresano, A. Perez Aguilera, J. Perez Romero, M.A. Perez Torres, M. Persic, P. O. Petrucci, O. Petruk, B. Peyaud, K. Pfrang, E. Pian, P. Piatteli, E. Pietropaolo, R. Pillera, D. Pimentel, F. Pintore, C. Pio Garcia, G. Pirola, F. Piron, S. Pita, M. Pohl, V. Poireau, A. Pollo, M. Polo, C. Pongkitivanichkul, J. Porthault, J. Powell, D. Pozo, R.R. Prado, E. Prandini, J. Prast, K. Pressard, G. Principe, N. Produit, D. Prokhorov, H. Prokoph, H. Przybilski, E. Pueschel, G. Pühlhofer, I. Puljak, M.L. Pumo, M. Punch, F. Queiroz, J. Quinn, A. Quirrenbach, P.J. Rajda, R. Rando, S. Razzaque, S. Recchia, P. Reichherzer, O. Reimer, A. Reisenegger, Q. Remy, M. Renaud, T. Reposeur, B. Reville, J.M. Reymond, J. Reynolds, D. Ribeiro, M. Ribo, G. Richards, J. Rico, F. Rieger, L. Riitano, M. Riquelme, D. Riquelme, S. Rivoire, V. Rizi, E. Roache, M. Roche, J. Rodriguez, G. Rodriguez Fernandez, J.C. Rodriguez Ramirez, J.J. Rodriguez Vazquez, G. Rojas, P. Romano, G. Romeo Lobato, C. Romoli, M. Roncadelli, J. Rosado, A. Rosales de Leon, G. Rowell, A. Rugliancich, J.E. Ruiz del Mazo, C. Rulten, C. Russell, F. Russo Hatlen, S. Safi Harb, L. Saha, V. Sahakian, S. Sailer, T. Saito, N. Sakaki, S. Sakurai, G. Salina, H. Salzmann, D. Sanchez, H. Sandaker, A. Sandoval, P. Sangiorgi, M. Sanguillon, H. Sano, M. Santander, A. Santangelo, R. Santos Lima, A. Sanuy, L. Sapozhnikov, T. Saric, S. Sarkar, H. Sasaki, N. Sasaki, Y. Sato, F.G. Saturni, M. Sawada, J. Schaefer, A. Scherer, J. Scherpenberg, P. Schipani, B. Schleicher, J. Schmoll, M. Schneider, H. Schoorlemmer, P. Schovanek, F. Schussler, B. Schwab, U. Schwanke, J. Schwarz, E. Sciacca, S. Scuderi, M. Seglar Arroyo, I. Seitenzahl, D. Semikoz, O. Sergijenko, J.E. Serna Franco, Karol Seweryn, V. Sguera, A. Shalchi, R.Y. Shang, P. Sharma, L. Sidoli, J. Sieiro, H. Siejkowski, A. Sillanpaa, B.B. Singh, K.K. Singh, A. Sinha, C. Siqueira, J. Sitarek, P. Sizun, V. Sliusar, D. Sobczynska, R.W. Sobrinho, H. Sol, G. Sottile, H. Spackman, S. Spencer, G. Spengler, D. Spiga, W. Springer, A. Stamerra, S. Stanic, R. Starling, Ł. Stawarz, Stanislav Stefanik, C. Stegmann, A. Steiner, S. Steinmassl, C. Stella, R. Sternberger, M. Sterzel, C. Stevens, B. Stevenson, T. Stolarczyk, G. Stratta, U. Straumann, J. Striskovic, M. Strzys, R. Stuik, M. Suchenek, Y. Sunada, Tiina Suomijarvi, T. Suric, H. Suzuki, P. Swierk, T. Szepieniec, K. Tachihara, G. Tagliaferri, H. Tajima, N. Tajima, D. Tak, H. Takahashi, M. Takahashi, J. Takata, R. Takeishi, T. Tam, M. Tanaka, T. Tanaka, S. Tanaka, M. Tavani, F. Tavecchio, T. Tavernier, A. Russ Taylor, L.A. Tejedor, P. Temnikov, K. Terauchi, J.C. Terrazas, R. Terrier, T. Terzic, M. Teshima, D. Thibaut, F. Thocquenne, W. Tian, L. Tibaldo, A. Tiengo, M. Tluczykont, C.J. Todero Peixoto, K. Toma, L. Tomankova, J. Tomastik, M. Tornikoski, D.F. Torres, E. Torresi, G. Tosti, L. Tosti, N. Tothill, F. Toussenel, G. Tovmassian, C. Trichard, M. Trifoglio, A. Trois, S. Truzzi, A. Tsiahina, B. Turk, A. Tutone, Y. Uchiyama, P. Utayarat, L. Vaclavek, M. Vacula, V. Vagelli, F. Vagnetti, J.A. Valdivia, M. Valentino, A. Valio, B. Vallage, P. Vallania Quispe, A.M. van den Berg, W. van Driel, C. van Eldik, C. van Rensburg, Brian van Soelen, J. Vandenbroucke, G. Vasileiadis, V. Vassiliev, M. Vazquez Acosta, M. Vecchi, A. Vega, J. Veh, P. Veitch, C. Venter, S. Ventura, S. Vercellone, V. Verguilov, G. Verna, S. Vernetto, V. Verzi, G.P. Vettolani, C. Veyssiere, I. Viale, A. Viana, N. Viaux, J. Vignatti, C.F. Vigorito, J. Villanueva, V. Vitale, V. Vittorini, V. Vodeb, N. Vogel, V. Voisin, S. Vorobiov, M. Vrastil, T. Vuillaume, S.J. Wagner, P. Wagner, K. Wakazono, S.P. Wakely, M. Ward, D. Warren, J. Watson, M. Wechakama, P. Wegner, A. Weinstein, C. Weniger, F. Werner, H. Wetteskind, M. L. White, A. Wierzcholska, S. Wiesand, R. Wijers, M. Wilkinson, M. Will, J. Williams, T. J. Williamson, A. Wolter, Y.W. Wong, M. Wood, T. Yamamoto, H. Yamamoto, Y. Yamane, R. Yamazaki, S. Yanagita, L. Yang, S. Yoo, T. Yoshida, T. Yoshikoshi, P. Yu, A. Yusafzai, Michael Zacharias, B. Zaldivar, L. Zampieri, R. Zanin, R. Zanmar Sanchez, D. Zaric, M. Zavrtanik, D. Zavrtanik, Andrzej Zdziarski, A. Zech, H. Zechlin, A. Zenin, A. Zerwekh, K. Ziętara, A. Zink, J. Ziolkowski, M. Zivec, A. Zmija, Współautorami artykułu są członkowie CTA Observatory, CTA Consortium i LST Collaboration w liczbie 1139, Astronomy, Research unit Nuclear & Hadron Physics, and Research unit Astroparticle Physics
- Subjects
Physics ,Observatory ,Gamma ray ,Astronomy - Abstract
Very-high Energy (VHE) gamma-ray astroparticle physics is a relatively young field, and observations over the past decade have surprisingly revealed almost two hundred VHE emitters which appear to act as cosmic particle accelerators. These sources are an important component of the Universe, influencing the evolution of stars and galaxies. At the same time, they also act as a probe of physics in the most extreme environments known - such as in supernova explosions, and around or after the merging of black holes and neutron stars. However, the existing experiments have provided exciting glimpses, but often falling short of supplying the full answer. A deeper understanding of the TeV sky requires a significant improvement in sensitivity at TeV energies, a wider energy coverage from tens of GeV to hundreds of TeV and a much better angular and energy resolution with respect to the currently running facilities. The next generation gamma-ray observatory, the Cherenkov Telescope Array Observatory (CTAO), is the answer to this need. In this talk I will present this upcoming observatory from its design to the construction, and its potential science exploitation. CTAO will allow the entire astronomical community to explore a new discovery space that will likely lead to paradigm-changing breakthroughs. In particular, CTA has an unprecedented sensitivity to short (sub-minute) timescale phenomena, placing it as a key instrument in the future of multi-messenger and multi-wavelength time domain astronomy. I will conclude the talk presenting the first scientific results obtained by the LST-1, the prototype of one CTAO telescope type - the Large-Sized Telescope, that is currently under commission., PoS: Proceedings of Science, 395, ISSN:1824-8039, Proceedings of 37th International Cosmic Ray Conference (ICRC2021)
- Published
- 2022
3. High resolution MCP-PMT Readout Using Transmission Lines
- Author
-
M. Follin, R. Chyzh, C.-H. Sung, D. Breton, J. Maalmi, T. Chaminade, E. Delagnes, K. Schäfers, C. Weinheimer, D. Yvon, V. Sharyy, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, and ANR-18-CE92-0012,BOLD-PET,Détecteur Bismuth-Organique Mixte, Optique Tcherenkov et Chambre Ionisation, pour la Tomographie par Emission de Positrons(2018)
- Subjects
Transmission lines ,Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Planacon ,010308 nuclear & particles physics ,SAMPIC ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,01 natural sciences ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,0103 physical sciences ,MCP-PMT ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Instrumentation - Abstract
We study the potential of the MCP-PMT read-out to detect single photo-electron using transmission lines. Such a solution limits the number of read-out channels, has a uniform time resolution across the PMT surface and provides quasi-continuous measurement of the spatial coordinates. The proposed solution is designed to be used in the BOLD-PET project aiming to develop an innovative detection module for the positron emission tomography using the liquid detection media, the tri-methyl bismuth. In this study we use the commercial MCP-PMT Planacon from Photonis, with 32x32 anode structure. The PCB gathers signals from anode pads in 32 transmission lines which are read-out from both ends. Amplifier boards and SAMPIC modules, developed in our labs, allow us to realize the cost-effective, multi-channel digitization of signals with excellent precision. For a single photo-electron, we measured a time resolution of 70~ps (FWHM) simultaneously with a spatial accuracy of 1.6~mm and 0.9~mm (FWHM) along and across transmission lines correspondingly., Comment: Accepted by Nuclear Instruments and Methods in Physics Research Section A
- Published
- 2021
- Full Text
- View/download PDF
4. Response of a CMS HGCAL silicon-pad electromagnetic calorimeter prototype to 20-300 GeV positrons
- Author
-
B. Acar, G. Adamov, C. Adloff, S. Afanasiev, N. Akchurin, B. Akgün, F.A. Khan, M. Alhusseini, J. Alison, A. Alpana, G. Altopp, M. Alyari, S. An, S. Anagul, I. Andreev, P. Aspell, I.O. Atakisi, O. Bach, A. Baden, G. Bakas, A. Bakshi, S. Bannerjee, P. Bargassa, D. Barney, F. Beaudette, F. Beaujean, E. Becheva, A. Becker, P. Behera, A. Belloni, T. Bergauer, M. Besancon, S. Bhattacharya, D. Bhowmik, B. Bilki, P. Bloch, A. Bodek, M. Bonanomi, A. Bonnemaison, S. Bonomally, J. Borg, F. Bouyjou, N. Bower, D. Braga, J. Brashear, E. Brondolin, P. Bryant, A. Buchot Perraguin, J. Bueghly, B. Burkle, A. Butler-Nalin, O. Bychkova, S. Callier, D. Calvet, X. Cao, A. Cappati, B. Caraway, S. Caregari, A. Cauchois, L. Ceard, Y.C. Cekmecelioglu, S. Cerci, G. Cerminara, M. Chadeeva, N. Charitonidis, R. Chatterjee, Y.M. Chen, Z. Chen, H.J. Cheng, K.y. Cheng, S. Chernichenko, H. Cheung, C.H. Chien, S. Choudhury, D. Čoko, G. Collura, F. Couderc, M. Danilov, D. Dannheim, W. Daoud, P. Dauncey, A. David, G. Davies, O. Davignon, E. Day, P. DeBarbaro, F. De Guio, C. de La Taille, M. De Silva, P. Debbins, M.M. Defranchis, E. Delagnes, J.M. Deltoro Berrio, G. Derylo, P.G. Dias de Almeida, D. Diaz, P. Dinaucourt, J. Dittmann, M. Dragicevic, S. Dugad, F. Dulucq, I. Dumanoglu, V. Dutta, S. Dutta, M. Dünser, J. Eckdahl, T.K. Edberg, M. El Berni, F. Elias, S.C. Eno, Y. Ershov, P. Everaerts, S. Extier, F. Fahim, C. Fallon, G. Fedi, B.A. Fontana Santos Alves, E. Frahm, G. Franzoni, J. Freeman, T. French, P. Gandhi, S. Ganjour, X. Gao, A. Garcia-Bellido, F. Gastaldi, Z. Gecse, Y. Geerebaert, H. Gerwig, O. Gevin, S. Ghosh, A. Gilbert, W. Gilbert, K. Gill, C. Gingu, S. Gninenko, A. Golunov, I. Golutvin, T. Gonzalez, N. Gorbounov, L. Gouskos, A.B. Gray, Y. Gu, F. Guilloux, Y. Guler, E. Gülmez, J. Guo, E. Gurpinar Guler, M. Hammer, H.M. Hassanshahi, K. Hatakeyama, A. Heering, V. Hegde, U. Heintz, N. Hinton, J. Hirschauer, J. Hoff, W.-S. Hou, X. Hou, H. Hua, J. Incandela, A. Irshad, C. Isik, S. Jain, H.R. Jheng, U. Joshi, V. Kachanov, A. Kalinin, L. Kalipoliti, A. Kaminskiy, A. Kapoor, O. Kara, A. Karneyeu, M. Kaya, O. Kaya, A. Kayis Topaksu, A. Khukhunaishvili, J. Kiesler, M. Kilpatrick, S. Kim, K. Koetz, T. Kolberg, O.K. Köseyan, A. Kristić, M. Krohn, K. Krüger, N. Kulagin, S. Kulis, S. Kunori, C.M. Kuo, V. Kuryatkov, S. Kyre, Y. Lai, K. Lamichhane, G. Landsberg, C. Lange, J. Langford, M.Y. Lee, A. Levin, A. Li, B. Li, J.H. Li, Y.Y. Li, H. Liao, D. Lincoln, L. Linssen, R. Lipton, Y. Liu, A. Lobanov, R.-S. Lu, M. Lupi, I. Lysova, A.-M. Magnan, F. Magniette, A. Mahjoub, A.A. Maier, A. Malakhov, S. Mallios, I. Mandjavize, M. Mannelli, J. Mans, A. Marchioro, A. Martelli, G. Martinez, P. Masterson, B. Meng, T. Mengke, A. Mestvirishvili, I. Mirza, S. Moccia, G.B. Mohanty, F. Monti, I. Morrissey, S. Murthy, J. Musić, Y. Musienko, S. Nabili, A. Nagar, M. Nguyen, A. Nikitenko, D. Noonan, M. Noy, K. Nurdan, C. Ochando, B. Odegard, N. Odell, H. Okawa, Y. Onel, W. Ortez, J. Ozegović, S. Ozkorucuklu, E. Paganis, D. Pagenkopf, V. Palladino, S. Pandey, F. Pantaleo, C. Papageorgakis, I. Papakrivopoulos, J. Parshook, N. Pastika, M. Paulini, P. Paulitsch, T. Peltola, R. Pereira Gomes, H. Perkins, P. Petiot, T. Pierre-Emile, F. Pitters, E. Popova, H. Prosper, M. Prvan, I. Puljak, H. Qu, T. Quast, R. Quinn, M. Quinnan, M.T. Ramos Garcia, K.K. Rao, K. Rapacz, L. Raux, G. Reichenbach, M. Reinecke, M. Revering, A. Roberts, T. Romanteau, A. Rose, M. Rovere, A. Roy, P. Rubinov, R. Rusack, V. Rusinov, V. Ryjov, O.M. Sahin, R. Salerno, A.M. Sanchez Rodriguez, R. Saradhy, T. Sarkar, M.A. Sarkisla, J.B. Sauvan, I. Schmidt, M. Schmitt, E. Scott, C. Seez, F. Sefkow, S. Sharma, I. Shein, A. Shenai, R. Shukla, E. Sicking, P. Sieberer, P. Silva, A.E. Simsek, Y. Sirois, V. Smirnov, U. Sozbilir, E. Spencer, A. Steen, J. Strait, N. Strobbe, J.W. Su, E. Sukhov, L. Sun, D. Sunar Cerci, C. Syal, B. Tali, C.L. Tan, J. Tao, I. Tastan, T. Tatli, R. Thaus, S. Tekten, D. Thienpont, E. Tiras, M. Titov, D. Tlisov, U.G. Tok, J. Troska, L.-S. Tsai, Z. Tsamalaidze, G. Tsipolitis, A. Tsirou, N. Tyurin, S. Undleeb, D. Urbanski, V. Ustinov, A. Uzunian, M. Van de Klundert, J. Varela, M. Velasco, O. Viazlo, M.V. Barreto Pinto, P. Vichoudis, T. Virdee, R. Vizinho de Oliveira, J. Voelker, E. Voirin, M. Vojinovic, A. Wade, C. Wang, F. Wang, X. Wang, Z. Wang, M. Wayne, S.N. Webb, A. Whitbeck, D. White, R. Wickwire, J.S. Wilson, D. Winter, H.y. Wu, L. Wu, M. Wulansatiti Nursanto, C.H. Yeh, R. Yohay, D. Yu, G.B. Yu, S.S. Yu, C. Yuan, F. Yumiceva, I. Yusuff, A. Zacharopoulou, N. Zamiatin, A. Zarubin, S. Zenz, A. Zghiche, H. Zhang, J. Zhang, Y. Zhang, Z. Zhang, Laboratoire Leprince-Ringuet (LLR), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Organisation de Micro-Électronique Générale Avancée (OMEGA), and CMS HGCAL
- Subjects
Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,electromagnetic [calorimeter] ,energy resolution ,FOS: Physical sciences ,High Energy Physics - Experiment ,design [detector] ,High Energy Physics - Experiment (hep-ex) ,Calorimeters ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,ddc:610 ,Detectors and Experimental Techniques ,Instrumentation ,physics.ins-det ,spatial resolution ,Mathematical Physics ,detector: design ,irradiation ,Large detector systems for particle and astroparticle physics ,hep-ex ,CMS ,Instrumentation and Detectors (physics.ins-det) ,Si microstrip and pad detectors ,calorimeter: electromagnetic ,angular resolution ,electronics: readout ,Physics::Accelerator Physics ,semiconductor detector ,High Energy Physics::Experiment ,readout [electronics] ,Particle Physics - Experiment ,performance - Abstract
Journal of Instrumentation 17(05), P05022 (2022). doi:10.1088/1748-0221/17/05/P05022, The Compact Muon Solenoid collaboration is designing a new high-granularity endcap calorimeter, HGCAL, to be installed later this decade. As part of this development work, a prototype system was built, with an electromagnetic section consisting of 14 double-sided structures, providing 28 sampling layers. Each sampling layer has an hexagonal module, where a multipad large-area silicon sensor is glued between an electronics circuit board and a metal baseplate. The sensor pads of approximately 1.1 cm$^{2}$ are wire-bonded to the circuit board and are readout by custom integrated circuits. The prototype was extensively tested with beams at CERN's Super Proton Synchrotron in 2018. Based on the data collected with beams of positrons, with energies ranging from 20 to 300 GeV, measurements of the energy resolution and linearity, the position and angular resolutions, and the shower shapes are presented and compared to a detailed Geant4 simulation., Published by Inst. of Physics, London
- Published
- 2021
- Full Text
- View/download PDF
5. The CLAS12 Forward Tagger
- Author
-
V. Vigo, E. Pasyuk, F. Cipro, A. Ciarma, D. Sokhan, R. Behary, G. Charles, T. Bey, Y. Mouden, A. Filippi, K. L. Giovanetti, T. Lemon, Q. Bertrand, F. Sabatié, A. Manco, H.S. Mann, A. Bersani, I. Mandjavidze, A. Hoebel, David Attié, M. Vandenbroucke, S. Aune, M. Garçon, R. Cereseto, G. Christiaens, E. Delagnes, D. P. Watts, R. Miller, F. Georges, N. Grouas, A. Casale, C. Salgado, C. Rossi, G. Ottonello, T. Lerch, P. Contrepois, A. Trovato, Paolo Musico, L. Zana, F. Parodi, S. M. Hughes, S. Fegan, Fatiha Benmokhtar, J. Ball, J. A. Fleming, P. Campero Rojas, Alessandro Rizzo, P. Black, M. Leffel, M. Riallot, M. Battaglieri, Andrea Celentano, G. Miní, S. Procureur, M. Cook, P. Baron, R. Puppo, O. Meunier, R. Granelli, D. Besin, L. Lanza, M. Osipenko, M. Defurne, P. Pollovio, D. I. Glazier, R. De Vita, F. Bossu, M. Ripani, K. Livingston, C. Lahonde, Nicholas Zachariou, A. Acker, M. Taiuti, P. Bonneau, K. Hicks, C. Wiggins, M. Boyer, G. D. Smith, R. Boudouin, E. Virique, E. Fanchini, F. Pratolongo, A. D'Angelo, I. Stankovic, M. Bashkanov, B. McKinnon, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
- Subjects
tungsten: oxygen ,Photon ,Physics::Instrumentation and Detectors ,Low-Q2 electron scattering ,Electron ,01 natural sciences ,photon: particle identification ,MicroMegas ,Instrumentation ,Low-Q ,Physics ,forward spectrometer ,PbWO4 ,Settore FIS/04 ,MicroMegas detector ,PbWO 4 ,electron scattering ,Low-Q 2 electron scattering ,performance ,Nuclear and High Energy Physics ,PbWO ,Gas tracking detector ,SiPM ,Hodoscope ,Silicon photomultiplier ,Optics ,Electromagnetic calorimeter ,Hadron spectroscopy ,APD ,2 ,4 ,Plastic scintillator ,WLS fibers ,0103 physical sciences ,scintillation counter: hodoscope ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Low-Q(2) electron scattering ,010306 general physics ,detector: design ,activity report ,Scintillation ,lead ,Spectrometer ,electron: particle identification ,010308 nuclear & particles physics ,business.industry ,calorimeter: electromagnetic ,business - Abstract
This document presents the technical layout and the performance of the CLAS12 Forward Tagger (FT). The FT, composed of an electromagnetic calorimeter based on PbWO4 crystals (FT-Cal), a scintillation hodoscope (FT-Hodo), and several layers of Micromegas trackers (FT-Trk), has been designed to detect electrons and photons scattered at polar angles from 2 ∘ to 5 ∘ and to meet the physics goals of the hadron spectroscopy program and other experiments running with the CLAS12 spectrometer in Hall B.
- Published
- 2020
- Full Text
- View/download PDF
6. The DAQ system of the 12,000 Channel CMS High Granularity Calorimeter Prototype
- Author
-
B. Acar, G. Adamov, C. Adloff, S. Afanasiev, N. Akchurin, B. Akgün, M. Alhusseini, J. Alison, G. Altopp, M. Alyari, S. An, S. Anagul, I. Andreev, M. Andrews, P. Aspell, I.A. Atakisi, O. Bach, A. Baden, G. Bakas, A. Bakshi, S. Banerjee, P. Bargassa, D. Barney, E. Becheva, P. Behera, A. Belloni, T. Bergauer, M. Besancon, S. Bhattacharya, D. Bhowmik, P. Bloch, A. Bodek, G. Bombardi, M. Bonanomi, A. Bonnemaison, S. Bonomally, J. Borg, F. Bouyjou, D. Braga, J. Brashear, E. Brondolin, P. Bryant, J. Bueghly, B. Bilki, B. Burkle, A. Butler-Nalin, S. Callier, D. Calvet, X. Cao, B. Caraway, S. Caregari, L. Ceard, Y.C. Cekmecelioglu, S. Cerci, G. Cerminara, N. Charitonidis, R. Chatterjee, Y.M. Chen, Z. Chen, K.y. Cheng, S. Chernichenko, H. Cheung, C.H. Chien, S. Choudhury, D. Čoko, G. Collura, F. Couderc, L. Cristella, I. Dumanoglu, D. Dannheim, P. Dauncey, A. David, G. Davies, E. Day, P. DeBarbaro, F. De Guio, C. de La Taille, M. De Silva, P. Debbins, E. Delagnes, J.M. Deltoro, G. Derylo, P.G. Dias de Almeida, D. Diaz, P. Dinaucourt, J. Dittmann, M. Dragicevic, S. Dugad, V. Dutta, S. Dutta, J. Eckdahl, T.K. Edberg, M. El Berni, S.C. Eno, Yu. Ershov, P. Everaerts, S. Extier, F. Fahim, C. Fallon, S. Fiorendi, B.A. Fontana Santos Alves, E. Frahm, G. Franzoni, J. Freeman, T. French, Y. Guler, E. Gurpinar Guler, M. Gagnan, P. Gandhi, S. Ganjour, A. Garcia-Bellido, Z. Gecse, Y. Geerebaert, H. Gerwig, O. Gevin, A. Gilbert, W. Gilbert, K. Gill, C. Gingu, S. Gninenko, A. Golunov, I. Golutvin, T. Gonzalez, N. Gorbounov, L. Gouskos, Y. Gu, F. Guilloux, E. Gülmez, E. Hamamci, M. Hammer, A. Harilal, K. Hatakeyama, A. Heering, V. Hegde, U. Heintz, V. Hinger, N. Hinton, J. Hirschauer, J. Hoff, W.S. Hou, C. Isik, J. Incandela, A. Irshad, S. Jain, H.R. Jheng, U. Joshi, O. Kara, V. Kachanov, A. Kalinin, R. Kameshwar, A. Kaminskiy, H. Kanso, A. Karneyeu, O. Kaya, M. Kaya, A. Khukhunaishvili, J. Kieseler, S. Kim, K. Koetz, T. Kolberg, A. Kristić, M. Krohn, K. Krüger, N. Kulagin, S. Kulis, S. Kunori, C.M. Kuo, V. Kuryatkov, S. Kyre, O.K. Köseyan, Y. Lai, K. Lamichhane, G. Landsberg, C. Lange, J. Langford, M.Y. Lee, E. Leogrande, A. Levin, J.H. Li, A. Li, B. Li, H. Liao, D. Lincoln, L. Linssen, R. Lipton, Y. Liu, A. Lobanov, K. Long, R.S. Lu, I. Lysova, A.M. Magnan, F. Magniette, A.A. Maier, A. Malakhov, I. Mandjavize, M. Mannelli, J. Mans, A. Marchioro, A. Martelli, P. Masterson, B. Meng, T. Mengke, E. Meschi, A. Mestvirishvili, I. Mirza, S. Moccia, I. Morrissey, T. Mudholkar, J. Musić, Y. Musienko, S. Nabili, A. Nagar, A. Nikitenko, D. Noonan, M. Noy, K. Nurdan, C. Ochando, B. Odegard, N. Odell, Y. Onel, W. Ortez, J. Ozegović, S. Ozkorucuklu, L. Pacheco-Rodriguez, E. Paganis, D. Pagenkopf, V. Palladino, S. Pandey, F. Pantaleo, C. Papageorgakis, I. Papakrivopoulos, J. Parshook, N. Pastika, M. Paulini, P. Paulitsch, T. Peltola, R. Pereira Gomes, H. Perkins, P. Petiot, M. Pierini, F. Pitters, H. Prosper, M. Prvan, I. Puljak, S.R. Qasim, H. Qu, T. Quast, R. Quinn, M. Quinnan, K. Rapacz, L. Raux, G. Reichenbach, M. Reinecke, M. Revering, M. Rieger, A. Rodriguez, T. Romanteau, A. Rose, M. Rovere, A. Roy, P. Rubinov, R. Rusack, A.E. Simsek, U. Sozbilir, O.M. Sahin, A. Sanchez, R. Saradhy, T. Sarkar, M.A. Sarkisla, J.B. Sauvan, I. Schmidt, M. Schmitt, E. Scott, C. Seez, F. Sefkow, M. Selvaggi, S. Sharma, I. Shein, A. Shenai, R. Shukla, E. Sicking, P. Sieberer, Y. Sirois, V. Smirnov, E. Spencer, A. Steen, J. Strait, T. Strebler, N. Strobbe, J.W. Su, E. Sukhov, M. Sun, L. Sun, D. Sunar Cerci, A. Surkov, C. Syal, B. Tali, U.G. Tok, A. Kayis Topaksu, C.L. Tan, I. Tastan, T. Tatli, R. Thaus, S. Tekten, D. Thienpont, T. Pierre-Emile, E. Tiras, M. Titov, D. Tlisov, J. Troska, Z. Tsamalaidze, G. Tsipolitis, A. Tsirou, N. Tyurin, S. Undleeb, D. Urbanski, V. Ustinov, A. Uzunian, G.P. Van Onsem, M. van de Klundert, J. Varela, M. Velasco, T. Vergine, M. Vicente Barreto Pinto, P.M. da Silva, T. Virdee, R. Vizinho de Oliveira, J. Voelker, E. Voirin, Z. Wang, X. Wang, F. Wang, M. Wayne, S.N. Webb, M. Weinberg, A. Whitbeck, D. White, R. Wickwire, J.S. Wilson, D. Winter, H.Y. Wu, L. Wu, C. H Yeh, R. Yohay, D. Yu, S.S. Yu, G.B. Yu, F. Yumiceva, A. Zacharopoulou, N. Zamiatin, A. Zarubin, S. Zenz, J. Zhang, H. Zhang, Laboratoire Leprince-Ringuet (LLR), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Organisation de Micro-Électronique Générale Avancée (OMEGA), École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), CMS HGCAL, and Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics - Instrumentation and Detectors ,data acquisition ,Physics::Instrumentation and Detectors ,Nuclear engineering ,01 natural sciences ,High Energy Physics - Experiment ,pi: irradiation ,High Energy Physics - Experiment (hep-ex) ,Data acquisition ,Sampling (signal processing) ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Detectors and Experimental Techniques ,Instrumentation ,physics.ins-det ,Mathematical Physics ,irradiation [muon] ,FPGA ,010302 applied physics ,Physics ,Large Hadron Collider ,Luminosity (scattering theory) ,CMS ,Detector ,Instrumentation and Detectors (physics.ins-det) ,upgrade [calorimeter] ,Calorimeter ,Upgrade ,design [electronics] ,microprocessor ,Granularity ,calorimeter: upgrade ,performance ,Particle Physics - Experiment ,irradiation [electron] ,FOS: Physical sciences ,0103 physical sciences ,irradiation [pi] ,electron: irradiation ,Calorimeters ,Data acquisition concepts ,ddc:610 ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,activity report ,010308 nuclear & particles physics ,hep-ex ,muon: irradiation ,electronics: readout ,semiconductor detector ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,readout [electronics] ,electronics: design - Abstract
Journal of Instrumentation 16(04), T04001 (2021). doi:10.1088/1748-0221/16/04/T04001, The CMS experiment at the CERN LHC will be upgraded to accommodate the 5-fold increase in the instantaneous luminosity expected at the High-Luminosity LHC (HL-LHC) [1]. Concomitant with this increase will be an increase in the number of interactions in each bunch crossing and a significant increase in the total ionising dose and fluence. One part of this upgrade is the replacement of the current endcap calorimeters with a high granularity sampling calorimeter equipped with silicon sensors, designed to manage the high collision rates [2]. As part of the development of this calorimeter, a series of beam tests have been conducted with different sampling configurations using prototype segmented silicon detectors. In the most recent of these tests, conducted in late 2018 at the CERN SPS, the performance of a prototype calorimeter equipped with ���12,000 channels of silicon sensors was studied with beams of high-energy electrons, pions and muons. This paper describes the custom-built scalable data acquisition system that was built with readily available FPGA mezzanines and low-cost Raspberry Pi computers., Published by Inst. of Physics, London
- Published
- 2020
- Full Text
- View/download PDF
7. Beta-delayed charged-particle spectroscopy using TexAT
- Author
-
Antti Saastamoinen, E. C. Pollacco, E. Delagnes, L. G. Sobotka, S. Ahn, J. Bishop, H. Jayatissa, S. T. Marley, Brian Roeder, Joshua Hooker, C. Hunt, Grigory Rogachev, R. O’Dwyer, P. Baron, A. Bosh, M. Barbui, S. Upadhyayula, R. Malecek, C. D. Pruitt, E. Koshchiy, E. Aboud, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
- Subjects
Active target ,Physics ,Nuclear and High Energy Physics ,010308 nuclear & particles physics ,Branching fraction ,Physics::Instrumentation and Detectors ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,Charged-particles ,01 natural sciences ,7. Clean energy ,Beta decay ,Projection (linear algebra) ,Charged particle ,Beta-decay ,0103 physical sciences ,Beta (velocity) ,Nuclear ,TPC ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Atomic physics ,010306 general physics ,Spectroscopy ,Instrumentation ,Beam (structure) - Abstract
β -delayed charged-particle emission is a sensitive probe of three-body decays in light nuclei. Time Projection Chambers (TPCs) offer a significant advantage over traditional charged-particle spectroscopy techniques due to a low-energy threshold and a high-geometric efficiency ( ≈ 4 π ) which are essential for use with radioactive ion beams where the beam intensities are limited. The technique for high-sensitivity spectroscopy of β -delayed charged-particle emission is shown to be possible using the Texas Active Target (TexAT) TPC in conjunction with the General Electronics for TPCs (GET) system. The benchmark case studied was that of 12 N β -decay to the first α -unbound state in 12 C , the Hoyle state. Half-life and branching ratio measurements are presented and are in good agreement with previous studies. The efficacy of using TPCs to study such a near-threshold state and disentangle the three-body dynamics of the decay products is demonstrated.
- Published
- 2020
- Full Text
- View/download PDF
8. The CLAS12 Micromegas Vertex Tracker
- Author
-
T. Bey, Maxime Defurne, M. Riallot, F. Georges, David Attié, A. Acker, E. Delagnes, P. Baron, F. Bossu, O. Meunier, R. Granelli, S. Aune, I. Mandjavidze, Q. Bertrand, J. Giraud, N. Grouas, S. Procureur, T. Lerch, D. Besin, Y. Moudden, C. Lahonde-Hamdoun, M. Boyer, J. Ball, R. Boudouin, E. Virique, G. Christiaens, M. Garçon, F. Sabatié, M. Vandenbroucke, P. Contrepois, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
- Subjects
solenoid ,Nuclear and High Energy Physics ,cylinder ,magnetic field: high ,BitTorrent tracker ,vertex detector ,02 engineering and technology ,7. Clean energy ,Optics ,Robustness (computer science) ,0202 electrical engineering, electronic engineering, information engineering ,tracking detector ,Electronics ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Instrumentation ,Physics ,Resistive touchscreen ,Spectrometer ,business.industry ,Particle tracking ,DREAM ASIC ,Detector ,integrated circuit ,silicon ,MicroMegas detector ,trigger ,021001 nanoscience & nanotechnology ,Magnetic field ,Automatic Keywords ,electronics: readout ,020201 artificial intelligence & image processing ,spectrometer ,0210 nano-technology ,business ,CLAS12 ,Micromegas ,Curved detectors - Abstract
The Micromegas Vertex Tracker was designed to improve upon the tracking capabilities of the baseline design of the CLAS12 spectrometer in Hall B at Jefferson Laboratory. A Barrel Micromegas Tracker made with six concentric cylinders, each made of three 120 ∘ -sector tiles, surrounds the Silicon Vertex Tracker, and a Forward Micromegas Tracker composed of 6 disks is placed 30 cm downstream of the liquid-hydrogen target. Both trackers sit in a 5 T solenoid magnetic field. All Micromegas elements are based on resistive technology to withstand luminosities up to 1 0 35 cm−2 s−1, as well as on bulk technology to enforce gain uniformity and mechanical robustness. Due to the high magnetic field, dedicated electronics have been designed and displaced ∼ 2 m away from the detectors. The electronics readout is based on the DREAM ASICs that allow sustained operation up to 20 kHz trigger rate at the maximum luminosity.
- Published
- 2020
- Full Text
- View/download PDF
9. Construction and commissioning of CMS CE prototype silicon modules
- Author
-
B. Acar, G. Adamov, C. Adloff, S. Afanasiev, N. Akchurin, B. Akgün, M. Alhusseini, J. Alison, G. Altopp, M. Alyari, S. An, S. Anagul, I. Andreev, M. Andrews, P. Aspell, I.A. Atakisi, O. Bach, A. Baden, G. Bakas, A. Bakshi, S. Banerjee, P. Bargassa, D. Barney, E. Becheva, P. Behera, A. Belloni, T. Bergauer, M. Besancon, S. Bhattacharya, D. Bhowmik, P. Bloch, A. Bodek, G. Bombardi, M. Bonanomi, A. Bonnemaison, S. Bonomally, J. Borg, F. Bouyjou, D. Braga, J. Brashear, E. Brondolin, P. Bryant, J. Bueghly, B. Bilki, B. Burkle, A. Butler-Nalin, S. Callier, D. Calvet, X. Cao, B. Caraway, S. Caregari, L. Ceard, Y.C. Cekmecelioglu, S. Cerci, G. Cerminara, N. Charitonidis, R. Chatterjee, Y.M. Chen, Z. Chen, K.y. Cheng, S. Chernichenko, H. Cheung, C.H. Chien, S. Choudhury, D. Čoko, G. Collura, F. Couderc, L. Cristella, I. Dumanoglu, D. Dannheim, P. Dauncey, A. David, G. Davies, E. Day, P. DeBarbaro, F. De Guio, C. de La Taille, M. De Silva, P. Debbins, E. Delagnes, J.M. Deltoro, G. Derylo, P.G. Dias de Almeida, D. Diaz, P. Dinaucourt, J. Dittmann, M. Dragicevic, S. Dugad, V. Dutta, S. Dutta, J. Eckdahl, T.K. Edberg, M. El Berni, S.C. Eno, Yu. Ershov, P. Everaerts, S. Extier, F. Fahim, C. Fallon, S. Fiorendi, B.A. Fontana Santos Alves, E. Frahm, G. Franzoni, J. Freeman, T. French, Y. Guler, E. Gurpinar Guler, M. Gagnan, P. Gandhi, S. Ganjour, A. Garcia-Bellido, Z. Gecse, Y. Geerebaert, H. Gerwig, O. Gevin, A. Gilbert, W. Gilbert, K. Gill, C. Gingu, S. Gninenko, A. Golunov, I. Golutvin, T. Gonzalez, N. Gorbounov, L. Gouskos, Y. Gu, F. Guilloux, E. Gülmez, E. Hamamci, M. Hammer, A. Harilal, K. Hatakeyama, A. Heering, V. Hegde, U. Heintz, V. Hinger, N. Hinton, J. Hirschauer, J. Hoff, W.S. Hou, C. Isik, J. Incandela, A. Irshad, S. Jain, H.R. Jheng, U. Joshi, O. Kara, V. Kachanov, A. Kalinin, R. Kameshwar, A. Kaminskiy, H. Kanso, A. Karneyeu, O. Kaya, M. Kaya, A. Khukhunaishvili, J. Kieseler, S. Kim, K. Koetz, T. Kolberg, A. Kristić, M. Krohn, K. Krüger, N. Kulagin, S. Kulis, S. Kunori, C.M. Kuo, V. Kuryatkov, S. Kyre, O.K. Köseyan, Y. Lai, K. Lamichhane, G. Landsberg, C. Lange, J. Langford, M.Y. Lee, E. Leogrande, A. Levin, J.H. Li, A. Li, B. Li, H. Liao, D. Lincoln, L. Linssen, R. Lipton, Y. Liu, A. Lobanov, K. Long, R.S. Lu, I. Lysova, A.M. Magnan, F. Magniette, A.A. Maier, A. Malakhov, I. Mandjavize, M. Mannelli, J. Mans, A. Marchioro, A. Martelli, P. Masterson, B. Meng, T. Mengke, E. Meschi, A. Mestvirishvili, I. Mirza, S. Moccia, I. Morrissey, T. Mudholkar, J. Musić, Y. Musienko, S. Nabili, A. Nagar, A. Nikitenko, D. Noonan, M. Noy, K. Nurdan, C. Ochando, B. Odegard, N. Odell, Y. Onel, W. Ortez, J. Ozegović, S. Ozkorucuklu, L. Pacheco-Rodriguez, E. Paganis, D. Pagenkopf, V. Palladino, S. Pandey, F. Pantaleo, C. Papageorgakis, I. Papakrivopoulos, J. Parshook, N. Pastika, M. Paulini, P. Paulitsch, T. Peltola, R. Pereira Gomes, H. Perkins, P. Petiot, M. Pierini, F. Pitters, H. Prosper, M. Prvan, I. Puljak, S.R. Qasim, H. Qu, T. Quast, R. Quinn, M. Quinnan, K. Rapacz, L. Raux, G. Reichenbach, M. Reinecke, M. Revering, M. Rieger, A. Rodriguez, T. Romanteau, A. Rose, M. Rovere, A. Roy, P. Rubinov, R. Rusack, A.E. Simsek, U. Sozbilir, O.M. Sahin, A. Sanchez, R. Saradhy, T. Sarkar, M.A. Sarkisla, J.B. Sauvan, I. Schmidt, M. Schmitt, E. Scott, C. Seez, F. Sefkow, M. Selvaggi, S. Sharma, I. Shein, A. Shenai, R. Shukla, E. Sicking, P. Sieberer, Y. Sirois, V. Smirnov, E. Spencer, A. Steen, J. Strait, T. Strebler, N. Strobbe, J.W. Su, E. Sukhov, M. Sun, L. Sun, D. Sunar Cerci, A. Surkov, C. Syal, B. Tali, U.G. Tok, A. Kayis Topaksu, C.L. Tan, I. Tastan, T. Tatli, R. Thaus, S. Tekten, D. Thienpont, T. Pierre-Emile, E. Tiras, M. Titov, D. Tlisov, J. Troska, Z. Tsamalaidze, G. Tsipolitis, A. Tsirou, N. Tyurin, S. Undleeb, D. Urbanski, V. Ustinov, A. Uzunian, G.P. Van Onsem, M. van de Klundert, J. Varela, M. Velasco, T. Vergine, M. Vicente Barreto Pinto, P.M. da Silva, T. Virdee, R. Vizinho de Oliveira, J. Voelker, E. Voirin, Z. Wang, X. Wang, F. Wang, M. Wayne, S.N. Webb, M. Weinberg, A. Whitbeck, D. White, R. Wickwire, J.S. Wilson, D. Winter, H.Y. Wu, L. Wu, C. H Yeh, R. Yohay, D. Yu, S.S. Yu, G.B. Yu, F. Yumiceva, A. Zacharopoulou, N. Zamiatin, A. Zarubin, S. Zenz, J. Zhang, H. Zhang, Laboratoire Leprince-Ringuet (LLR), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Organisation de Micro-Électronique Générale Avancée (OMEGA), École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), CMS HGCAL, and Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics - Instrumentation and Detectors ,Computer science ,Physics::Instrumentation and Detectors ,01 natural sciences ,030218 nuclear medicine & medical imaging ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,0302 clinical medicine ,Application-specific integrated circuit ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Detectors and Experimental Techniques ,Instrumentation ,physics.ins-det ,Mathematical Physics ,Large Hadron Collider ,irradiation ,CMS ,Instrumentation and Detectors (physics.ins-det) ,upgrade [calorimeter] ,Si microstrip and pad detectors ,Calorimeter ,Upgrade ,upgrade ,calorimeter: upgrade ,Computer hardware ,Particle Physics - Experiment ,performance ,Silicon ,chemistry.chemical_element ,FOS: Physical sciences ,fabrication ,design [calorimeter] ,03 medical and health sciences ,Calorimeters ,0103 physical sciences ,Calibration ,ddc:610 ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,activity report ,010308 nuclear & particles physics ,business.industry ,hep-ex ,Large detector systems for particle and astroparticle physics ,calorimeter: design ,silicon ,DESY ,integrated circuit: readout ,calibration ,chemistry ,readout [integrated circuit] ,Performance of High Energy Physics Detectors ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,business ,Beam (structure) - Abstract
Journal of Instrumentation 16(04), T04002 (2021). doi:10.1088/1748-0221/16/04/T04002, As part of its HL-LHC upgrade program, the CMS collaboration is developing a High Granularity Calorimeter (CE) to replace the existing endcap calorimeters. The CE is a sampling calorimeter with unprecedented transverse and longitudinal readout for both electromagnetic (CE-E) and hadronic (CE-H) compartments. The calorimeter will be built with ���30,000 hexagonal silicon modules. Prototype modules have been constructed with 6-inch hexagonal silicon sensors with cell areas of 1.1 cm2, and the SKIROC2-CMS readout ASIC. Beam tests of different sampling configurations were conducted with the prototype modules at DESY and CERN in 2017 and 2018. This paper describes the construction and commissioning of the CE calorimeter prototype, the silicon modules used in the construction, their basic performance, and the methods used for their calibration., Published by Inst. of Physics, London
- Published
- 2020
- Full Text
- View/download PDF
10. 68 A new transparent beam profiler based on secondary electrons emission for hadrontherapy charged particles beams
- Author
-
B. Boyer, Fayrouz. Haddad, M. Verderi, E. Delagnes, O. Gevin, Y. Geerebaert, T. Sounalet, C. Thiebaux, Frédéric Magniette, G. Blain, Noël Servagent, Charbel Koumeir, F. Poirier, P. Manigot, Nathalie Michel, Laboratoire Leprince-Ringuet (LLR), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique subatomique et des technologies associées (SUBATECH), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Cyclotron ARRONAX, GIP, Commission des Thons de l'Océan Indien (CTOI), FAO, Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), and Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
- Subjects
[PHYS]Physics [physics] ,Materials science ,business.industry ,Biophysics ,General Physics and Astronomy ,General Medicine ,Charged particle ,Secondary electrons ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,Optics ,030220 oncology & carcinogenesis ,Radiology, Nuclear Medicine and imaging ,business ,Beam (structure) ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2019
- Full Text
- View/download PDF
11. Caliste 64: detection unit of a spectro imager array for a hard x-ray space telescope
- Author
-
M. Billot, A. Penquer, F. Soufflet, F. Lugiez, A. Meuris, R. Bocage, M.C. Vassal, E. Delagnes, I. Le Mer, C. Blondel, F. Pinsard, Olivier Gevin, and O. Limousin
- Published
- 2017
- Full Text
- View/download PDF
12. SCOTT: A time and amplitude digitizer ASIC for PMT signal processing
- Author
-
Th. Stolarczyk, E. Monmarthe, H. Le Provost, J. P. Schuller, E. Delagnes, B. Vallage, Frederic Chateau, S. Russo, E. Zonca, F. Guilloux, S. Ferry, V. Gautard, S. Anvar, and F. Louis
- Subjects
Physics ,Nuclear and High Energy Physics ,Photomultiplier ,Signal processing ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Semiconductor memory ,01 natural sciences ,Signal ,KM3NeT ,Sampling (signal processing) ,Neutrino detector ,Application-specific integrated circuit ,0103 physical sciences ,14. Life underwater ,010306 general physics ,business ,Instrumentation ,Computer hardware - Abstract
SCOTT is an ASIC designed for the readout electronics of photomultiplier tubes developed for KM3NeT, the cubic-kilometer scale neutrino telescope in Mediterranean Sea. To digitize the PMT signals, the multi-time-over-threshold technique is used with up to 16 adjustable thresholds. Digital outputs of discriminators feed a circular sampling memory and a “first in first out” digital memory. A specific study has shown that five specifically chosen thresholds are suited to reach the required timing accuracy. A dedicated method based on the duration of the signal over a given threshold allows an equivalent timing precision at any charge. To verify that the KM3NeT requirements are fulfilled, this method is applied on PMT signals digitized by SCOTT.
- Published
- 2013
- Full Text
- View/download PDF
13. SIRIUS project (spectroscopy & identification of rare isotopes using S3)
- Author
-
N. Karkour, Ch. Theisen, Y. Moudden, K. Hauschild, G. Lebertre, B. Gall, X. Lafay, S. Coudert, H. Savagols, A. Lopez-Martens, D. Linget, A. Boujrad, F. Dechery, B. Sulignano, P. Brionnet, J. Piot, F. Saillant, F. Le Blanc, T. Goeltzenlichter, L. Gibelin, G. Wittwer, M. Tripon, M. Authier, Th. Lefrou, O. Dorvaux, V. Alaphilippe, A. Drouart, C. Maugeais, S. Herlant, Ch. Spitaels, J. Pancin, F. Lutton, E. Delagnes, L. Legeard, C. Mathieu, and Th. Chaminade
- Subjects
Physics ,Silicon ,Spectrometer ,Physics::Instrumentation and Detectors ,Preamplifier ,Detector ,chemistry.chemical_element ,020206 networking & telecommunications ,Germanium ,02 engineering and technology ,7. Clean energy ,030218 nuclear medicine & medical imaging ,Nuclear physics ,03 medical and health sciences ,0302 clinical medicine ,Cardinal point ,chemistry ,0202 electrical engineering, electronic engineering, information engineering ,Nuclear Experiment ,Spectroscopy ,Radioactive decay - Abstract
SIRIUS is a state-of-the-art detector system for nuclear decay spectroscopy that will be mounted at the focal plane of S3 (Super Separator Spectrometer), which is part of the new SPIRAL2 facility at GANIL, Caen in France. Such a system requires high performance as it is dedicated to the study of very exotic nuclei. It is the result of collaboration between GANIL CSNSM, IRFU, and IPHC It is composed of a succession of detectors (Trackers, Silicon detector DSSD and Tunnel plus an array of five clover Germanium detectors). This set-up is mounted in a compact geometry. The energy measurement varies from 50 keV to over 500 MeV with high precision (2 × 10−3) at low energies and 1 % for the detection of heavy ions. A major challenge has been the development of new electronics with a very large dynamic range maintaining an adequate energy resolution for the measured particles (with energies from a few hundred keV up to 500 MeV).
- Published
- 2016
- Full Text
- View/download PDF
14. The analog ring sampler: An ASIC for the front-end electronics of the ANTARES neutrino telescope
- Author
-
H. Lafoux, J. Fopma, F. Druillole, F. Feinstein, D. Lachartre, and E. Delagnes
- Subjects
Physics ,Nuclear and High Energy Physics ,Photomultiplier ,business.industry ,Physics::Instrumentation and Detectors ,Optical link ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Optics ,Data acquisition ,Nuclear Energy and Engineering ,Neutrino detector ,Application-specific integrated circuit ,Nuclear electronics ,Electronic engineering ,Electronics ,Electrical and Electronic Engineering ,business - Abstract
The ANTARES detector is a 0.1-km/sup 2/-scale high-energy neutrino telescope. It will be located in the Mediterranean Sea at a depth of 2400 in. It consists of a matrix of optical modules each containing a photomultiplier tube. An ASIC named the Analog Ring Sampler has been developed to process photomultiplier tube signals. It measures their arrival time and their charge and samples their shape when this differs from that characteristic of single photoelectrons. The digital output is multiplexed and transmitted to the shore through further electronics and an optical link. The main circuit blocks of the ASIC are discussed in this paper.
- Published
- 2016
15. Operational experience with the readout system of the MINOS vertex tracker
- Author
-
E. Delagnes, A. Corsi, D. Calvet, A. Delbart, N. Paul, F. Chateau, P. Baron, A. Obertelli, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
- Subjects
liquid hydrogen target ,readout electronics ,Jitter ,Decision support systems ,01 natural sciences ,Data acquisition ,Software ,AGET chip ,Japan ,readout system ,AFTER chip ,Power cables ,Clocks ,Physics ,RIKEN ,Time projection chamber ,in-beam spectroscopy ,nuclear physics experiment ,Detector ,hollow cylinder shape time projection chamber ,Electrical engineering ,MicroMegas detector ,Detectors ,network-based data acquisition systems ,exotic nuclei ,time projection chambers ,TPC ,Computer hardware ,performance ,Micromegas ,Nuclear and High Energy Physics ,Vertex (computer graphics) ,anode ,vertex detector ,Micromegas detector ,programming ,Low voltage ,nuclear physics ,0103 physical sciences ,Coaxial cables ,magic numbers off stability vertex tracker ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Electrical and Electronic Engineering ,Detector front-end electronics ,010306 general physics ,Field-programmable gate array ,activity report ,Grounding ,MINOS ,010308 nuclear & particles physics ,business.industry ,Field programmable gate arrays ,stability ,position sensitive particle detectors ,Power distribution ,microsensors ,time projection chamber ,AGET chips ,Nuclear Energy and Engineering ,integrated circuit: design ,electronics: readout ,field-programmable gate arrays (FPGAs) ,Electromagnetic compatibility ,business ,MINOS vertex tracker - Abstract
International audience; The magic numbers off stability (MINOS) vertex tracker is a compact instrument built for in-beam spectroscopy of exotic nuclei. Its main component is a ~30-cm-long hollow cylinder shape time projection chamber (TPC) surrounding a liquid hydrogen target. The anode of the TPC is read out by a Micromegas detector segmented in 18 concentric rings of 2 mm × 2 mm pads totaling 3604 channels. A dedicated system based on the AFTER and AGET chips was designed to read out this TPC, and the required software to configure, monitor, and acquire data was developed. After a construction period of two years and the validation in a test beam, four nuclear physics experiments exploiting MINOS have successfully been conducted at RIKEN, Japan. We describe the prominent aspects of the readout system of MINOS and we report on lessons learned during the three years of exploitation.
- Published
- 2016
- Full Text
- View/download PDF
16. Multi-time-over-threshold technique for photomultiplier signal processing: Description and characterization of the SCOTT ASIC
- Author
-
S. Anvar, E. Delagnes, Th. Stolarczyk, B. Vallage, E. Monmarthe, E. Zonca, H. Le Provost, V. Gautard, F. Guilloux, J. P. Schuller, F. Louis, Frederic Chateau, S. Russo, and S. Ferry
- Subjects
Physics ,Nuclear and High Energy Physics ,Signal processing ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Analog-to-digital converter ,Semiconductor memory ,01 natural sciences ,Signal ,law.invention ,KM3NeT ,Application-specific integrated circuit ,Sampling (signal processing) ,law ,0103 physical sciences ,Waveform ,14. Life underwater ,010306 general physics ,business ,Instrumentation ,Computer hardware - Abstract
KM3NeT aims to build a cubic-kilometer scale neutrino telescope in the Mediterranean Sea based on a 3D array of photomultiplier tubes. A dedicated ASIC, named SCOTT, has been developed for the readout electronics of the PMTs: it uses up to 16 adjustable thresholds to digitize the signals with the multi-time-over-threshold technique. Digital outputs of discriminators feed a circular sampling memory and a “first in first out” digital memory for derandomization. At the end of the data processing, the ASIC produces a digital waveform sampled at 800 MHz. A specific study was carried out to process PMT data and has showed that five specifically chosen thresholds are suited to reach the required timing precision. A dedicated method based on the duration of the signal over a given threshold allows an equivalent timing precision at any charge. A charge estimator using the information from the thresholds allows a charge determination within less than 20% up to 60 pe.
- Published
- 2012
- Full Text
- View/download PDF
17. Wideband pulse amplifiers for the NECTAr chip
- Author
-
P. Corona, David Gascon, E. Delagnes, X. Sieiro, Marc Ribó, P. Vincent, J. Bolmont, Jean-Francois Glicenstein, P. Nayman, F. Toussenel, S. Vorobiov, Andreu Sanuy, J.-P. Tavernet, F. Feinstein, and C. L. Naumann
- Subjects
Physics ,Nuclear and High Energy Physics ,Amplifier ,Integrated circuit ,Chip ,law.invention ,CMOS ,Application-specific integrated circuit ,law ,Hardware_INTEGRATEDCIRCUITS ,Electronic engineering ,Operational amplifier ,Wideband ,Instrumentation ,Voltage - Abstract
The NECTAr collaboration's FE option for the camera of the CTA is a 16 bits and 1–3 GS/s sampling chip based on analog memories including most of the readout functions. This works describes the input amplifiers of the NECTAr ASIC. A fully differential wideband amplifier, with voltage gain up to 20 V/V and a BW of 400 MHz. As it is impossible to design a fully differential OpAmp with an 8 GHz GBW product in a 0.35 CMOS technology, an alternative implementation based on HF linearized transconductors is explored. The output buffer is a class AB miller operational amplifier, with special non-linear current boost.
- Published
- 2012
- Full Text
- View/download PDF
18. Optimizing read-out of the NECTAr front-end electronics
- Author
-
F. Toussenel, P. Vincent, E. Delagnes, Alain Falvard, David Gascon, Marc Ribó, J.-P. Tavernet, P. Corona, Jean-Francois Glicenstein, S. Vorobiov, J. Bolmont, Andreu Sanuy, P. Nayman, F. Feinstein, and C. L. Naumann
- Subjects
Physics ,Time delay and integration ,Nuclear and High Energy Physics ,Pixel ,010308 nuclear & particles physics ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Bandwidth (signal processing) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cherenkov Telescope Array ,01 natural sciences ,law.invention ,Telescope ,Optics ,law ,0103 physical sciences ,Oscilloscope ,business ,010303 astronomy & astrophysics ,Instrumentation ,Cherenkov radiation - Abstract
We describe the optimization of the read-out specifications of the NECTAr front-end electronics for the Cherenkov Telescope Array (CTA). The NECTAr project aims at building and testing a demonstrator module of a new front-end electronics design, which takes an advantage of the know-how acquired while building the cameras of the CAT, H.E.S.S.-I and H.E.S.S.-II experiments. The goal of the optimization work is to define the specifications of the digitizing electronics of a CTA camera, in particular integration time window, sampling rate, analog bandwidth using physics simulations. We employed for this work real photomultiplier pulses, sampled at 100 ps with a 600 MHz bandwidth oscilloscope. The individual pulses are drawn randomly at the times at which the photo-electrons, originating from atmospheric showers, arrive at the focal planes of imaging atmospheric Cherenkov telescopes. The timing information is extracted from the existing CTA simulations on the GRID and organized in a local database, together with all the relevant physical parameters (energy, primary particle type, zenith angle, distance from the shower axis, pixel offset from the optical axis, night-sky background level, etc.), and detector configurations (telescope types, camera/mirror configurations, etc.). While investigating the parameter space, an optimal pixel charge integration time window, which minimizes relative error in the measured charge, has been determined. This will allow to gain in sensitivity and to lower the energy threshold of CTA telescopes. We present results of our optimizations and first measurements obtained using the NECTAr demonstrator module.
- Published
- 2012
- Full Text
- View/download PDF
19. Operation of a resistive Micromegas in air
- Author
-
David Attié, I. Mandjavidze, M. Boyer, G. Charles, S. Procureur, S. Aune, E. Delagnes, R. Dupré, C. Lahonde-Hamdoun, O. Meunier, J. Ball, P. Baron, A. Giganon, and V. Gautard
- Subjects
Physics ,Gaseous detectors ,Nuclear and High Energy Physics ,Resistive touchscreen ,Optics ,business.industry ,Detector ,Cosmic ray ,MicroMegas detector ,business ,Instrumentation - Abstract
The recent developments on resistive Micromegas have enhanced the performance of this detector, and in particular have offered the possibility to reach higher amplification gains in stable operation. In this paper, the detection capabilities of a resistive Micromegas in air have been investigated. A clear Fe 55 spectrum has been obtained, as well as MIP signals using cosmic rays. In the latter case, the detection efficiency reaches 42%, and could probably be further improved. The stable operation of a gaseous detector in air, i.e. without bottles, pipes or safety systems, can lead to many new applications or simplifications of existing setups.
- Published
- 2012
- Full Text
- View/download PDF
20. Caliste 256: A CdTe imaging spectrometer for space science with a 580μm pixel pitch
- Author
-
R. Bocage, M.C. Vassal, O. Gevin, Fabrice Soufflet, Olivier Limousin, E. Delagnes, J. Martignac, Modeste Donati, A. Meuris, F. Lugiez, F. Pinsard, I. Le Mer, and C. Blondel
- Subjects
Physics ,Nuclear and High Energy Physics ,Pixel ,business.industry ,Detector ,Imaging spectrometer ,Dead time ,Dot pitch ,Optics ,Cardinal point ,Optoelectronics ,Full custom ,business ,Instrumentation ,Image resolution - Abstract
Caliste project aims at hybridizing 1 cm 2 CdTe or CdZnTe pixel detectors with low-noise full custom front-end electronics, in a single component standing in a 1×1×2 cm 3 volume. Caliste device is 4-side buttable and can be used as elementary detection unit of a large mosaic to form a hard X-ray focal plane of any size and shape. Caliste is especially designed to match astronomical space mission requirements and its design takes into account environmental constraints, radiation environment in particular. This new imaging spectrometer for hard X-rays detection offers high spectral and spatial resolution together with accurate time-tagging capability and low dead time. Caliste concept relies on a 3D hybridization technology that consists in stacking full custom ASICs perpendicular to the detection surface into a single component. This technique simultaneously permits to realize a buttable imager and to enhance performance and uniformity response. Our last prototype is called Caliste 256 and integrates 16×16 pixels array, 580 μm pitch and 256 corresponding independent spectroscopy channels. This paper presents Caliste 256 design and properties. We emphasize spectral performance and demonstrate spectral resolution capabilities better than 1 keV FWHM at 60 keV.
- Published
- 2011
- Full Text
- View/download PDF
21. Performance of the front-end electronics of the ANTARES neutrino telescope
- Author
-
E. Delagnes, Francisco Camarena, R. Ostasch, C. Carloganu, D. Lo Presti, M. Ardid, Annarita Margiotta, Y. Hello, Antoine Kouchner, F. Lucarelli, J. J. Aubert, Vincent Bertin, F. Fehr, J. Poinsignon, G.V. Russo, Oleg Kalekin, Nasser Kalantar-Nayestanaki, G. Vannoni, M. Circella, M. Morganti, E. Castorina, J.-P. Ernenwein, Gisela Anton, T. Legou, C. Picq, E. Falchini, Dominique Lefèvre, C. Richardt, E. A. De Wolf, D. Dornic, J. Fopma, J. Petrovic, Juanan Aguilar, G. Wijnker, U. Emanuele, G. Giacomelli, C. Naumann, M. Rujoiu, Stephanie Escoffier, M.C. Bouwhuis, W. Kretschmer, Giorgio Riccobene, Paolo Piattelli, F. Rethore, G. Halladjian, Ciro Bigongiari, H. Lafoux, U. F. Katz, D. Palioselitis, Doriane Drouhin, J.D. Zornoza, Jürgen Brunner, A. Le Van Suu, K. Fratini, V. Van Elewyck, Thierry Pradier, H. Loehner, Teresa Montaruli, J. P. Schuller, C. Hoffmann, G. Guillard, Ch Olivetto, Holger Motz, G. E. Pavala, S. Mangano, H. Costantini, C. M. Reed, Manuel Bou-Cabo, Francesco Simeone, M. Neff, F. M. Schoeck, M. de Jong, R. Auer, A. Capone, J. Hoessl, Anne Deschamps, Alain Mazure, P. Payre, B. Baret, S. Basa, Alexander Kappes, S. Biagi, Manuela Vecchi, G. Carminati, H. Yepes, S. Loucatos, H. Le Provost, L. Tasca, V. Flaminio, [No Value] Charvis, Patrick Lamare, A. C.S. Assis Jesus, G. Lim, P. Vernin, Tri L. Astraatmadja, Th. Stolarczyk, J-P Pineau, J.A. Martínez-Mora, Th. Chaleil, N. Cottini, U. Fritsch, P.M. Kooijman, Guillaume Lambard, M. Marcelin, Robert Lahmann, S. Anvar, V. Popa, H. van Haren, E. Presani, B. Herold, C. Curtil, N. Chon Sen, F. Feinstein, A. Brown, Tommaso Chiarusi, I. Dekeyser, C. Kopper, A. Radu, Jos Steijger, G. De Bonis, Giuseppina Larosa, D. Zaborov, Christian Tamburini, J.-L. Fuda, J. Zúñiga, Gregory David Hallewell, C. Donzaud, J. P. Gómez-González, D. Lachartre, Vincenzo Cavasinni, C. Distefano, E. Monmarthe, L. Caponetto, Kay Graf, B. Vallage, Arnauld Albert, M. Anghinolfi, J. Busto, Piera Sapienza, M. Bazzotti, Thomas Eberl, L. Moscoso, G. Lelaizant, F. Salesa, S. Cecchini, J. Carr, F. Druillole, N. de Botton, H. Laschinsky, Simona Toscano, C. Racca, N. Picot-Clemente, Rezo Shanidze, P. Coyle, Maurizio Spurio, A.J. Heijboer, Juan José Hernández-Rey, I. Al Samarai, Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Groupe de Recherche en Physique des Hautes Energies (GRPHE), Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-IUT de Colmar, Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA)), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Département de Physique des Particules (ex SPP) (DPhP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Centre d'océanologie de Marseille (COM), Université de la Méditerranée - Aix-Marseille 2-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Géoazur (GEOAZUR 6526), Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Corpusculaire - Clermont-Ferrand (LPC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), APC - Astrophysique des Hautes Energies (APC - AHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO), ANTARES, Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Aix Marseille Université (AMU), Institut Universitaire de Technologie de Colmar-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Département de Physique des Particules (ex SPP) (DPP), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de la Méditerranée - Aix-Marseille 2, Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Dipartimento di Astronomia, Universita degli Studi di Bologna, Università di Bologna [Bologna] (UNIBO)-Università di Bologna [Bologna] (UNIBO), Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut Universitaire de Technologie de Colmar, Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Dipartimento di Astronomia, Universita degli Studi di Bologna, Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO)-Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO), ANTARES (IHEF, IoP, FNWI), KVI - Center for Advanced Radiation Technology, J.A. Aguilar, A. Albert, G. Anton, S. Anvar, M. Ardid, A.C. Assis Jesus, T. Astraatmadja, J.-J. Aubert, R. Auer, B. Baret, S. Basa, M. Bazzotti, V. Bertin, S. Biagi, C. Bigongiari, M. Bou-Cabo, M.C. Bouwhuis, A.M. Brown, J. Brunner, J. Busto, F. Camarena, A. Capone, G. Carminati, J. Carr, D. Castel, E. Castorina, V. Cavasinni, S. Cecchini, Ph. Charvis, T. Chiarusi, M. Circella, R. Coniglione, H. Costantini, N. Cottini, P. Coyle, C. Curtil, G. De Boni, M.P. Decowski, I. Dekeyser, A. Deschamps, C. Distefano, C. Donzaud, D. Dornic, D. Drouhin, T. Eberl, U. Emanuele, J.-P. Ernenwein, S. Escoffier, F. Fehr, V. Flaminio, K. Fratini, U. Fritsch, J.-L. Fuda, G. Giacomelli, J.P. Gómez-González, K. Graf, G. Guillard, G. Halladjian, G. Hallewell, H. van Haren, A.J. Heijboer, Y. Hello, J.J. Hernández-Rey, J. Hößl, M. de Jong, N. Kalantar-Nayestanaki a, O. Kalekin, A. Kappes, U. Katz, P. Kooijman, C. Kopper, A. Kouchner, W. Kretschmer, R. Lahmann, P. Lamare, G. Lambard, G. Larosa, H. Laschinsky, D. Lefèvre, G. Lelaizant, G. Lim, D. Lo Presti a, H. Loehner a, S. Loucatos, F. Lucarelli, K. Lyons, S. Mangano, M. Marcelin, A. Margiotta, J.A. Martinez-Mora, G. Maurin, A. Mazure, M. Melissas, T. Montaruli, M. Morganti, L. Moscoso, H. Motz, C. Naumann, M. Neff, R. Ostasch, D. Palioselitis, G.E. Pa˘va˘las, P. Payre, J. Petrovic, P. Piattelli, N. Picot-Clemente, C. Picq, R. Pillet, V. Popa, T. Pradier, E. Presani, C. Racca, A. Radu, C. Reed, C. Richardt, M. Rujoiu a, G.V. Russo, F. Salesa, P. Sapienza, F. Schöck, J.-P. Schuller, R. Shanidze, F. Simeone, M. Spurio, J.J.M. Steijger, Th. Stolarczyk, M. Taiuti, C. Tamburini, L. Tasca, S. Toscano, B. Vallage, V. Van Elewyck, M. Vecchi, P. Vernin, G. Wijnker, E. de Wolf, H. Yepes, D. Zaborov a, J.D. Zornoza, and J. Zúñiga
- Subjects
Nuclear and High Energy Physics ,Photomultiplier ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Physics::Instrumentation and Detectors ,Optical link ,Digital data ,FOS: Physical sciences ,Analog-to-digital converter ,Neutrino telescope ,01 natural sciences ,Multiplexing ,law.invention ,Phototube ,Application-specific integrated circuit ,Photomultiplier tube ,law ,ASICs ,0103 physical sciences ,14. Life underwater ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Instrumentation ,Physics ,010308 nuclear & particles physics ,business.industry ,ASIC ,Astrophysics::Instrumentation and Methods for Astrophysics ,Electrical engineering ,CIRCUIT ,Front-end electronics ,Chip ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Física nuclear ,UNDERWATER DETECTOR ,asic ,front-end electronics ,neutrino telescope ,photomultiplier tube ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,SYSTEM - Abstract
ANTARES is a high-energy neutrino telescope installed in the Mediterranean Sea at a depth of 2475 m. It consists of a three-dimensional array of optical modules, each containing a large photomultiplier tube. A total of 2700 front-end ASICs named Analogue Ring Samplers (ARS) process the phototube signals, measure their arrival time, amplitude and shape as well as perform monitoring and calibration tasks. The ARS chip processes the analogue signals from the optical modules and converts information into digital data. All the information is transmitted to shore through further multiplexing electronics and an optical link. This paper describes the performance of the ARS chip; results from the functionality and characterization tests in the laboratory are summarized and the long-term performance in the apparatus is illustrated., Comment: 20 pages, 22 figures, published in Nuclear Instruments and Methods A
- Published
- 2010
- Full Text
- View/download PDF
22. Measurements of the Lorentz angle with a Micromegas detector in high transverse magnetic fields
- Author
-
J. Ball, E. Delagnes, S. Aune, S. Lhenoret, S. Procureur, M. El Yakoubi, A. Mohamed, F. Sabatié, S. Cazaux, O. Meunier, P. Konczykowski, and C. Lahonde-Hamdoun
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Argon ,Spectrometer ,Physics::Instrumentation and Detectors ,business.industry ,Detector ,chemistry.chemical_element ,Solenoid ,MicroMegas detector ,Electron ,Magnetic field ,Optics ,chemistry ,Electric field ,High Energy Physics::Experiment ,business ,Instrumentation - Abstract
We measured the Lorentz angle in an argon + 10 % isobutane mixture using a Micromegas detector placed inside the CLAS-DVCS solenoid of Hall B at the Jefferson Laboratory. The primary goal of these tests was to validate Magboltz-based simulations developed for the implementation of Micromegas bulk detectors in the Central Tracker of the future CLAS12 spectrometer. We used a UV laser to extract electrons from the drift electrode of the detector. After amplification, the electrons were collected on the readout strips and the signals recorded. The difference of position observed between runs with and without magnetic field provided a direct measurement of the Lorentz angle. Scans in the drift electric field were performed for the first time in very high magnetic fields, up to 4.2 T, and a good agreement was observed with the Magboltz predictions.
- Published
- 2010
- Full Text
- View/download PDF
23. IDeF-X ECLAIRs: A CMOS ASIC for the Readout of CdTe and CdZnTe Detectors for High Resolution Spectroscopy
- Author
-
Olivier Limousin, P. Baron, X. Coppolani, F. Lugiez, E. Delagnes, F. Daly, O. Gevin, D. Renaud, A. Meuris, and F. Pinsard
- Subjects
Physics ,Nuclear and High Energy Physics ,business.industry ,Detector ,Schottky diode ,Capacitance ,Noise (electronics) ,Cadmium telluride photovoltaics ,Cadmium zinc telluride ,law.invention ,chemistry.chemical_compound ,Capacitor ,Nuclear Energy and Engineering ,chemistry ,CMOS ,law ,Optoelectronics ,Electrical and Electronic Engineering ,business - Abstract
The very last member of the IDeF-X ASIC family is presented: IDeF-X ECLAIRs is a 32-channel front end ASIC designed for the readout of Cadmium Telluride (CdTe) and Cadmium Zinc Telluride (CdZnTe) Detectors. Thanks to its noise performance (Equivalent Noise Charge floor of 33 e- rms) and to its radiation hardened design (Single Event Latchup Linear Energy Transfer threshold of 56 MeV.cm2.mg-1), the chip is well suited for soft X-rays energy discrimination and high energy resolution, ldquospace proof,rdquo hard X-ray spectroscopy. We measured an energy low threshold of less than 4 keV with a 10 pF input capacitor and a minimal reachable sensitivity of the Equivalent Noise Charge (ENC) to input capacitance of less than 7 e-/pF obtained with a 6 mus peak time. IDeF-X ECLAIRs will be used for the readout of 6400 CdTe Schottky monopixel detectors of the 2D coded mask imaging telescope ECLAIRs aboard the SVOM satellite. IDeF-X ECLAIRs (or IDeF-X V2) has also been designed for the readout of a pixelated CdTe detector in the miniature spectro-imager prototype Caliste 256 that is currently foreseen for the high energy detector module of the Simbol-X mission.
- Published
- 2009
- Full Text
- View/download PDF
24. Large bulk Micromegas detectors for TPC applications
- Author
-
D. Calvet, M. Zito, Federico Sanchez, S. W. K. Emery, M. Di Marco, E. Delagnes, M. Ravonel, R. De Oliveira, A. Blondel, Thorsten Lux, E. Monmarthe, M. Boyer, G. Jover, Didier Ferrere, P. Colas, E. Radicioni, F. Nizery, J. Beucher, L. Monfregola, A. Sarrat, I. Giomataris, C. Giganti, A. Delbart, A.Y. Rodriguez, E. Mazzucato, X. De La Broise, A. Cervera, E. Perrin, F. Pierre, F. Druillole, C. Hansen, M. G. Catanesi, J.-L. Ritou, P. Baron, and S. Anvar
- Subjects
T2K ,Physics ,Nuclear and High Energy Physics ,Energy loss ,Field (physics) ,Physics::Instrumentation and Detectors ,business.industry ,Detector ,MicroMegas detector ,Cosmic ray ,Nuclear physics ,Optics ,Application-specific integrated circuit ,Point (geometry) ,TPC ,business ,Instrumentation ,Micromegas ,HARP - Abstract
A large volume TPC will be used in the near future in a variety of experiments including T2K. The bulk Micromegas detector for this TPC is built using a novel production technique particularly suited for compact, thin and robust low mass detectors. The capability to pave a large Surface with a simple mounting Solution and small dead space is of particular interest for these applications. We have built several large bulk Micromegas detectors (36 x 34 cm(2)) and we have tested one in the former HARP field cage with a magnetic field. Prototypes cards of the T2K front end electronics, based on the AFTER ASIC chip, have been used in this TPC test for the first time. Cosmic ray data have been acquired in a variety of experimental conditions. Good detector performances, space point resolution and energy loss measurement have been achieved.-- et al. We would like to thank the HARP Collaboration for providing us with the TPC field cage and associated instrumentation. We gratefully acknowledge support from CERN for hosting this prototype test and providing invaluable support. Some of us acknowledge the support from the Ministerio de Educacion y Ciencia of Spain under Project code FPA2006-12120-C03 with the support of the FEDER fund from the European Community.
- Published
- 2009
- Full Text
- View/download PDF
25. The COMPASS RICH-1 fast photon detection system
- Author
-
P. Abbon, M. Alexeev, H. Angerer, R. Birsa, P. Bordalo, F. Bradamante, A. Bressan, M. Chiosso, P. Ciliberti, M.L. Colantoni, T. Dafni, S. Dalla Torre, E. Delagnes, O. Denisov, H. Deschamps, V. Diaz, N. Dibiase, V. Duic, W. Eyrich, A. Ferrero, M. Finger, M. Finger Jr., H. Fischer, S. Gerassimov, M. Giorgi, B. Gobbo, R. Hagemann, D. von Harrach, F.H. Heinsius, R. Joosten, B. Ketzer, V.N. Kolosov, K. Königsmann, I. Konorov, D. Kramer, F. Kunne, A. Lehmann, S. Levorato, A. Maggiora, A. Magnon, A. Mann, A. Martin, G. Menon, A. Mutter, O. Nähle, F. Nerling, D. Neyret, D. Panzieri, S. Paul, G. Pesaro, C. Pizzolotto, J. Polak, P. Rebourgeard, F. Robinet, E. Rocco, P. Schiavon, C. Schill, P. Schoenmeier, W. Schröder, L. Silva, M. Slunecka, F. Sozzi, L. Steiger, M. Sulc, M. Svec, S. Takekawa, F. Tessarotto, A. Teufel, H. Wollny, Abbon, P, Alexeev, M, Angerer, H, Birsa, R, Bordalo, P, Bradamante, F, Bressan, Andrea, Chiosso, M, Ciliberti, Piero, COLANTONI M., L, Dafni, T, DALLA TORRE, S, Delagnes, E, Denisov, O, Deschamps, H, Diaz, V, Dibiase, N, Duic, V, Eyrich, W, Ferrero, A, Finger, M, FINGER M., Jr, Fischer, H, Gerassimov, S, Giorgi, M, Gobbo, B, Hagemann, R, VON HARRACH, D, HEINSIUS F., H, Joosten, R, Ketzer, B, KOLOSOV V., N, Königsmann, K, Konorov, I, Kramer, D, Kunne, F, Lehmann, A, Levorato, Stefano, Maggiora, A, Magnon, A, Mann, A, Martin, Anna, Menon, G, Mutter, A, Nähle, O, Nerling, F, Neyret, D, Panzieri, D, Paul, S, Pesaro, G, Pizzolotto, C, Polak, J, Rebourgeard, P, Robinet, F, Rocco, E, Schiavon, Paolo, Schill, C, Schoenmeier, P, Schröder, W, Silva, L, Slunecka, M, Sozzi, F, Steiger, L, Sulc, M, Svec, M, Takekawa, Stefano, Tessarotto, F, Teufel, A, and Wollny, H.
- Subjects
Physics ,Nuclear and High Energy Physics ,Photomultiplier ,Physics::Instrumentation and Detectors ,business.industry ,Photon detector ,Detector ,law.invention ,Lens (optics) ,Optics ,Upgrade ,law ,Compass ,Systems design ,Optoelectronics ,High Energy Physics::Experiment ,business ,Instrumentation ,Photon detection - Abstract
A fast photon detection system has been built as a part of the upgrade of the COMPASS RICH-1 detector: it is based on 576 multi-anode photomultiplier tubes (MAPMTs) coupled to individual fused silica lens telescopes and fast readout electronics. This system has replaced the MWPCs with CsI photo-cathodes in the central region ( 1.3 m 2 , 25% of the total area) of the COMPASS RICH-1 photon detectors and has successfully been operated during the data taking in 2006 and 2007. We report about the fast photon detection system design, construction and commissioning, in particular about the design optimization and the validation tests of the lens telescopes. Preliminary values for the increased performances of COMPASS RICH-1 after the upgrade are also presented.
- Published
- 2008
- Full Text
- View/download PDF
26. The fast readout system for the MAPMTs of COMPASS RICH-1
- Author
-
P. Abbon, M. Alexeev, H. Angerer, R. Birsa, P. Bordalo, F. Bradamante, A. Bressan, M. Chiosso, P. Ciliberti, M.L. Colantoni, T. Dafni, S. Dalla Torre, E. Delagnes, O. Denisov, H. Deschamps, V. Diaz, N. Dibiase, V. Duic, W. Eyrich, A. Ferrero, M. Finger, H. Fischer, S. Gerassimov, M. Giorgi, B. Gobbo, R. Hagemann, D. von Harrach, F.H. Heinsius, R. Joosten, B. Ketzer, V.N. Kolosov, K. Königsmann, I. Konorov, D. Kramer, F. Kunne, A. Lehmann, S. Levorato, A. Maggiora, A. Magnon, A. Mann, A. Martin, G. Menon, A. Mutter, O. Nähle, F. Nerling, D. Neyret, D. Panzieri, S. Paul, G. Pesaro, C. Pizzolotto, J. Polak, P. Rebourgeard, F. Robinet, E. Rocco, P. Schiavon, C. Schill, P. Schoenmeier, W. Schröder, L. Silva, M. Slunecka, F. Sozzi, L. Steiger, M. Sulc, M. Svec, S. Takekawa, F. Tessarotto, A. Teufel, H. Wollny, Abbon, P, Alexeev, M, Angerer, H, Birsa, R, Bordalo, P, Bradamante, Franco, Bressan, Andrea, Chiosso, M, Ciliberti, Piero, COLANTONI M., L, Dafni, T, DALLA TORRE, S, Delagnes, E, Denisov, O, Deschamps, H, Diaz, V, Dibiase, N, Duic, V, Eyrich, W, Ferrero, A, Finger, M, FINGER M., Jr, Fischer, H, Gerassimov, S, Giorgi, M, Gobbo, B, Hagemann, R, VON HARRACH, D, HEINSIUS F., H, Joosten, R, Ketzer, B, KOLOSOV V., N, Königsmann, K, Konorov, I, Kramer, D, Kunne, F, Lehmann, A, Levorato, Stefano, Maggiora, A, Magnon, A, Mann, A, Martin, Anna, Menon, G, Mutter, A, Nähle, O, Nerling, F, Neyret, D, Panzieri, D, Paul, S, Pesaro, G, Pizzolotto, C, Polak, J, Rebourgeard, P, Robinet, F, Rocco, E, Schiavon, Paolo, Schill, C, Schoenmeier, P, Schröder, W, Silva, L, Slunecka, M, Sozzi, F, Steiger, L, Sulc, M, Svec, M, Takekawa, Stefano, Tessarotto, F, Teufel, A, and Wollny, H.
- Subjects
Physics ,Nuclear and High Energy Physics ,Photomultiplier ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,business.industry ,Detector ,Photon flux ,FOS: Physical sciences ,Readout electronics ,Instrumentation and Detectors (physics.ins-det) ,Chip ,Particle identification ,Upgrade ,Optics ,Compass ,Detectors and Experimental Techniques ,business ,Instrumentation - Abstract
A fast readout system for the upgrade of the COMPASS RICH detector has been developed and successfully used for data taking in 2006 and 2007. The new readout system for the multi-anode PMTs in the central part of the photon detector of the RICH is based on the high-sensitivity MAD4 preamplifier-discriminator and the dead-time free F1-TDC chip characterized by high-resolution. The readout electronics has been designed taking into account the high photon flux in the central part of the detector and the requirement to run at high trigger rates of up to 100 kHz with negligible dead-time. The system is designed as a very compact setup and is mounted directly behind the multi-anode photomultipliers. The data are digitized on the frontend boards and transferred via optical links to the readout system. The read-out electronics system is described in detail together with its measured performances., Comment: Proceeding of RICH2007 Conference, Trieste, Oct. 2007. v2: minor changes
- Published
- 2008
- Full Text
- View/download PDF
27. AFTER, an ASIC for the Readout of the Large T2K Time Projection Chambers
- Author
-
A. Delbart, F. Druillole, E. Mazzucato, F. Pierre, D. Calvet, E. Delagnes, P. Baron, M. Zito, E. Monmarthe, and X. De La Broise
- Subjects
Physics ,Nuclear and High Energy Physics ,business.industry ,Preamplifier ,Low-pass filter ,Detector ,Electrical engineering ,Proton Synchrotron ,Particle accelerator ,MicroMegas detector ,law.invention ,Nuclear Energy and Engineering ,CMOS ,law ,Electrical and Electronic Engineering ,Neutrino oscillation ,business - Abstract
The T2K (Tokai-to-Kamioka) experiment is a long baseline neutrino oscillation experiment in Japan, for which a near detector complex (ND280), used to characterize the beam, will be built 280 m from the target in the off-axis direction of the neutrino beam produced using the 50 GeV proton synchrotron of J-PARC (Japan Proton Accelerator Research Complex). The central part of the ND280 is a detector including 3 large Time Projection Chambers based on Micromegas gas amplification technology with anodes pixelated into about 125,000 pads and requiring therefore compact and low power readout electronics. A 72-channel front-end Application Specific Integrated Circuit has been developed to read these TPCs. Each channel includes a low noise charge preamplifier, a pole zero compensation stage, a second order Sallen-Key low pass filter and a 511-cell Switched Capacitor Array. This electronics offers a large flexibility in sampling frequency (50 MHz max.), shaping time (16 values from 100 ns to 2 ), gain (4 ranges from 120 fC to 600 fC), while taking advantage of the low physics events rate of 0.3 Hz. Fabricated in 0.35 CMOS technology, the prototype has been validated and meets all the requirements for the experiment so that mass production has been launched at the end of 2007.
- Published
- 2008
- Full Text
- View/download PDF
28. Caliste 64, an Innovative CdTe Hard X-Ray Micro-Camera
- Author
-
Olivier Limousin, E. Delagnes, Fabrice Soufflet, A. Meuris, O. Gevin, R. Bocage, M.C. Vassal, F. Pinsard, I. Le Mer, and F. Lugiez
- Subjects
Physics ,Nuclear and High Energy Physics ,Photon ,Pixel ,business.industry ,Schottky barrier ,Detector ,Noise (electronics) ,Semiconductor detector ,Full width at half maximum ,Optics ,Nuclear Energy and Engineering ,Stack (abstract data type) ,Observatory ,Optoelectronics ,Spectral resolution ,Electrical and Electronic Engineering ,business ,Dark current - Abstract
In the frame of the hard X-ray simbol-X observatory, a joint CNES-ASI space mission to be flown in 2013, a prototype of miniature camera equipped with 64 pixels has been designed. The device, called CALISTE 64, is a spectro- imager with high resolution event time-tagging capability. CALISTE 64 integrates a CdTe semiconductor detector with segmented electrode and its front-end electronics made of 64 independent analogue readout channels. This 10times10times18 mm3 camera, able to detect photons in the range from 2 keV up to 250 keV, is an elementary detection unit juxtaposable on its four sides. Consequently, large detector array can be made assembling a mosaic of CALISTE 64 units. Electronics readout module is achieved by stacking four IDeF-X V1.1 ASICs in a 3D-module, perpendicular to the detection plane. We achieved good noise performances, with an equivalent noise charge better than 60 electrons rms in average. We choose CdTe detectors equipped with aluminum Schottky barrier contacts because of their very low dark current and excellent spectroscopic performances. The first integrated CALISTE 64 camera was realized and tested. The device operates properly and all the 64 pixels show good spectra. When the crystal is cooled down to -10degC and biased at -400 V, the resulting sum spectrum shows a spectral resolution of 697 eV FWHM at 13.9 keV and 808 eV FWHM at 59.54 keV. This paper presents the CALISTE 64 design and preliminary performance test results.
- Published
- 2008
- Full Text
- View/download PDF
29. The COMPASS experiment at CERN
- Author
-
P. Abbon, E. Albrecht, V.Yu. Alexakhin, Yu. Alexandrov, G.D. Alexeev, M.G. Alekseev, A. Amoroso, H. Angerer, V.A. Anosov, B. Badełek, F. Balestra, J. Ball, J. Barth, G. Baum, M. Becker, Y. Bedfer, P. Berglund, C. Bernet, R. Bertini, M. Bettinelli, R. Birsa, J. Bisplinghoff, P. Bordalo, M. Bosteels, F. Bradamante, A. Braem, A. Bravar, A. Bressan, G. Brona, E. Burtin, M.P. Bussa, V.N. Bytchkov, M. Chalifour, A. Chapiro, M. Chiosso, P. Ciliberti, A. Cicuttin, M. Colantoni, A.A. Colavita, S. Costa, M.L. Crespo, P. Cristaudo, T. Dafni, N. d’Hose, S. Dalla Torre, C. d’Ambrosio, S. Das, S.S. Dasgupta, E. Delagnes, R. De Masi, P. Deck, N. Dedek, D. Demchenko, O.Yu. Denisov, L. Dhara, V. Diaz, N. Dibiase, A.M. Dinkelbach, A.V. Dolgopolov, A. Donati, S.V. Donskov, V.A. Dorofeev, N. Doshita, D. Durand, V. Duic, W. Dünnweber, A. Efremov, P.D. Eversheim, W. Eyrich, M. Faessler, V. Falaleev, P. Fauland, A. Ferrero, L. Ferrero, M. Finger, H. Fischer, C. Franco, J. Franz, F. Fratnik, J.M. Friedrich, V. Frolov, U. Fuchs, R. Garfagnini, L. Gatignon, F. Gautheron, O.P. Gavrichtchouk, S. Gerassimov, R. Geyer, J.M. Gheller, A. Giganon, M. Giorgi, B. Gobbo, S. Goertz, A.M. Gorin, F. Gougnaud, S. Grabmüller, O.A. Grajek, A. Grasso, B. Grube, A. Grünemaier, A. Guskov, F. Haas, R. Hagemann, J. Hannappel, D. von Harrach, T. Hasegawa, J. Heckmann, S. Hedicke, F.H. Heinsius, R. Hermann, C. Heß, F. Hinterberger, M. von Hodenberg, N. Horikawa, S. Horikawa, I. Horn, C. Ilgner, A.I. Ioukaev, S. Ishimoto, I. Ivanchin, O. Ivanov, T. Iwata, R. Jahn, A. Janata, R. Joosten, N.I. Jouravlev, E. Kabuß, V. Kalinnikov, D. Kang, F. Karstens, W. Kastaun, B. Ketzer, G.V. Khaustov, Yu.A. Khokhlov, J. Kiefer, Yu. Kisselev, F. Klein, K. Klimaszewski, S. Koblitz, J.H. Koivuniemi, V.N. Kolosov, E.V. Komissarov, K. Kondo, K. Königsmann, A.K. Konoplyannikov, I. Konorov, V.F. Konstantinov, A.S. Korentchenko, A. Korzenev, A.M. Kotzinian, N.A. Koutchinski, O. Kouznetsov, K. Kowalik, D. Kramer, N.P. Kravchuk, G.V. Krivokhizhin, Z.V. Kroumchtein, J. Kubart, R. Kuhn, V. Kukhtin, F. Kunne, K. Kurek, N.A. Kuzmin, M. Lamanna, J.M. Le Goff, M. Leberig, A.A. Lednev, A. Lehmann, V. Levinski, S. Levorato, V. I Lyashenko, J. Lichtenstadt, T. Liska, I. Ludwig, A. Maggiora, M. Maggiora, A. Magnon, G.K. Mallot, A. Mann, I.V. Manuilov, C. Marchand, J. Marroncle, A. Martin, J. Marzec, L. Masek, F. Massmann, T. Matsuda, D. Matthiä, A.N. Maximov, G. Menon, W. Meyer, A. Mielech, Yu.V. Mikhailov, M.A. Moinester, F. Molinié, F. Mota, A. Mutter, T. Nagel, O. Nähle, J. Nassalski, S. Neliba, F. Nerling, D. Neyret, M. Niebuhr, T. Niinikoski, V.I. Nikolaenko, A.A. Nozdrin, A.G. Olshevsky, M. Ostrick, A. Padee, P. Pagano, S. Panebianco, B. Parsamyan, D. Panzieri, S. Paul, B. Pawlukiewicz, H. Pereira, D.V. Peshekhonov, V.D. Peshekhonov, D. Piedigrossi, G. Piragino, S. Platchkov, K. Platzer, J. Pochodzalla, J. Polak, V.A. Polyakov, G. Pontecorvo, A.A. Popov, J. Pretz, S. Procureur, C. Quintans, J.-F. Rajotte, S. Ramos, I. Razaq, P. Rebourgeard, D. Reggiani, G. Reicherz, A. Richter, F. Robinet, E. Rocco, E. Rondio, L. Ropelewski, J.Y. Roussé, A.M. Rozhdestvensky, D. Ryabchikov, A.G. Samartsev, V.D. Samoylenko, A. Sandacz, M. Sans Merce, H. Santos, M.G. Sapozhnikov, F. Sauli, I.A. Savin, P. Schiavon, C. Schill, T. Schmidt, H. Schmitt, L. Schmitt, P. Schönmeier, W. Schroeder, D. Seeharsch, M. Seimetz, D. Setter, A. Shaligin, O.Yu. Shevchenko, A.A. Shishkin, H.-W. Siebert, L. Silva, F. Simon, L. Sinha, A.N. Sissakian, M. Slunecka, G.I. Smirnov, D. Sora, S. Sosio, F. Sozzi, A. Srnka, F. Stinzing, M. Stolarski, V.P. Sugonyaev, M. Sulc, R. Sulej, G. Tarte, N. Takabayashi, V.V. Tchalishev, S. Tessaro, F. Tessarotto, A. Teufel, D. Thers, L.G. Tkatchev, T. Toeda, V.V. Tokmenin, S. Trippel, J. Urban, R. Valbuena, G. Venugopal, M. Virius, N.V. Vlassov, A. Vossen, M. Wagner, R. Webb, E. Weise, Q. Weitzel, U. Wiedner, M. Wiesmann, R. Windmolders, S. Wirth, W. Wiślicki, H. Wollny, A.M. Zanetti, K. Zaremba, M. Zavertyaev, J. Zhao, R. Ziegler, M. Ziembicki, Y.L. Zlobin, A. Zvyagin, Abbon, P, Albrecht, E, ALEXAKHIN V., Yu, Alexandrov, Yu, ALEXEEV G., D, ALEKSEEV M., G, Amoroso, A, Angerer, H, ANOSOV V., A, Badelek, B, Balestra, F, Ball, J, Barth, J, Baum, G, Becker, M, Bedfer, Y, Berglund, P, Bernet, C, Bertini, R, Bettinelli, M, Birsa, R, Bisplinghoff, J, Bordalo, P, Bosteels, M, Bradamante, Franco, Braem, A, Bravar, A, Bressan, Andrea, Brona, G, Burtin, E, BUSSA M., P, BYTCHKOV V., N, Chalifour, M, Chapiro, A, Chiosso, M, Ciliberti, Piero, Cicuttin, A, Colantoni, M, COLAVITA A., A, Costa, S, CRESPO M., L, Cristaudo, P, Dafni, T, D'Hose, N, DALLA TORRE, S, D'Ambrosio, C, Das, S, DASGUPTA S., S, Delagnes, E, DE MASI, R, Deck, P, Dedek, N, Demchenko, D, DENISOV O., Yu, Dhara, L, Diaz, V, Dibiase, N, DINKELBACH A., M, DOLGOPOLOV A., V, Donati, A, DONSKOV S., V, DOROFEEV V., A, Doshita, N, Durand, D, Duic, V, Dünnweber, W, Efremov, A, EVERSHEIM P., D, Eyrich, W, Faessler, M, Falaleev, V, Fauland, P, Ferrero, A, Ferrero, L, Finger, M, FINGER M., Jr, Fischer, H, Franco, C, Franz, J, Fratnik, F, FRIEDRICH J., M, Frolov, V, Fuchs, U, Garfagnini, R, Gatignon, L, Gautheron, F, GAVRICHTCHOUK O., P, Gerassimov, S, Geyer, R, GHELLER J., M, Giganon, A, Giorgi, Marcello, Gobbo, B, Goertz, S, GORIN A., M, Gougnaud, F, Grabmüller, S, GRAJEK O., A, Grasso, A, Grube, B, Grünemaier, A, Guskov, A, Haas, F, Hagemann, R, Hannappel, J, VON HARRACH, D, Hasegawa, T, Heckmann, J, Hedicke, S, HEINSIUS F., H, Hermann, R, Hess, C, Hinterberger, F, VON HODENBERG, M, Horikawa, N, Horikawa, S, Horn, I, Ilgner, C, IOUKAEV A., I, Ishimoto, S, Ivanchin, I, Ivanov, O, Iwata, T, Jahn, R, Janata, A, Joosten, R, JOURAVLEV N., I, Kabuss, E, Kalinnikov, V, Kang, D, Karstens, F, Kastaun, W, Ketzer, B, KHAUSTOV G., V, KHOKHLOV Y. U., A, Kiefer, J, Kisselev, Yu, Klein, F, Klimaszewski, K, Koblitz, S, KOIVUNIEMI J., H, KOLOSOV V., N, KOMISSAROV E., V, Kondo, K, Königsmann, K, KONOPLYANNIKOV A., K, Konorov, I, KONSTANTINOV V., F, KORENTCHENKO A., S, Korzenev, A, KOTZINIAN A., M, KOUTCHINSKI N., A, Kouznetsov, O, Kowalik, K, Kramer, D, KRAVCHUK N., P, KRIVOKHIZHIN G., V, KROUMCHTEIN Z., V, Kubart, J, Kuhn, R, Kukhtin, V, Kunne, F, Kurek, K, KUZMIN N., A, Lamanna, M, LE GOFF J., M, Leberig, M, LEDNEV A., A, Lehmann, A, Levinski, V, Levorato, Stefano, I., LYASHENKO V, Lichtenstadt, J, Liska, T, Ludwig, I, Maggiora, A, Maggiora, M, Magnon, A, MALLOT G., K, Mann, A, MANUILOV I., V, Marchand, C, Marroncle, J, Martin, Anna, Marzec, J, Masek, L, Massmann, F, Matsuda, T, Matthiä, D, MAXIMOV A., N, Menon, G, Meyer, W, Mielech, A, MIKHAILOV Y. U., V, MOINESTER M., A, Molinié, F, Mota, F, Mutter, A, Nagel, T, Nähle, O, Nassalski, J, Neliba, S, Nerling, F, Neyret, D, Niebuhr, M, Niinikoski, T, NIKOLAENKO V., I, NOZDRIN A., A, OLSHEVSKY A., G, Ostrick, M, Padee, A, Pagano, P, Panebianco, S, Parsamyan, B, Panzieri, D, Paul, S, Pawlukiewicz, B, Pereira, H, PESHEKHONOV D., V, PESHEKHONOV V., D, Piedigrossi, D, Piragino, G, Platchkov, S, Platzer, K, Pochodzalla, J, Polak, J, POLYAKOV V., A, Pontecorvo, G, POPOV A., A, Pretz, J, Procureur, S, Quintans, C, RAJOTTE J., F, Ramos, S, Razaq, I, Rebourgeard, P, Reggiani, D, Reicherz, G, Richter, A, Robinet, F, Rocco, E, Rondio, E, Ropelewski, L, ROUSSÉ J., Y, ROZHDESTVENSKY A., M, Ryabchikov, D, SAMARTSEV A., G, SAMOYLENKO V., D, Sandacz, A, SANS MERCE, M, Santos, H, SAPOZHNIKOV M., G, Sauli, F, SAVIN I., A, Schiavon, Paolo, Schill, C, Schmidt, T, Schmitt, H, Schmitt, L, Schönmeier, P, Schroeder, W, Seeharsch, D, Seimetz, M, Setter, D, Shaligin, A, SHEVCHENKO O., Yu, SHISHKIN A., A, SIEBERT H., W, Silva, L, Simon, F, Sinha, L, SISSAKIAN A., N, Slunecka, M, SMIRNOV G., I, Sora, D, Sosio, S, Sozzi, F, Srnka, A, Stinzing, F, Stolarski, M, SUGONYAEV V., P, Sulc, M, Sulej, R, Tarte, G, Takabayashi, N, TCHALISHEV V., V, Tessaro, S, Tessarotto, F, Teufel, A, Thers, D, TKATCHEV L., G, Toeda, T, TOKMENIN V., V, Trippel, S, Urban, J, Valbuena, R, Venugopal, G, Virius, M, VLASSOV N., V, Vossen, A, Wagner, M, Webb, R, Weise, E, Weitzel, Q, Wiedner, U, Wiesmann, M, Windmolders, R, Wirth, S, Wisblicki, W, Wollny, H, ZANETTI A., M, Zaremba, K, Zavertyaev, M, Zhao, J, Ziegler, R, Ziembicki, M, ZLOBIN Y., L, and Zvyagin, A.
- Subjects
Nuclear and High Energy Physics ,straw tube detector ,Physics::Instrumentation and Detectors ,Project commissioning ,FOS: Physical sciences ,fixed-target experiment ,RICH detector ,hadron structure ,High Energy Physics - Experiment ,target ,MWPC ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Compass ,Hadron spectroscopy ,COMPASS experiment ,scintillating fibre detector ,Nuclear Experiment ,silicon microstrip detectors ,Instrumentation ,Silicon microstrip detectors ,Physics ,Large Hadron Collider ,Structure function ,MicroMegas detector ,front-end electronics ,DAQ ,micromegas detector ,drift chamber ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,polarised ,GEM detector ,calorimetry ,Particle Physics - Experiment ,polarised DIS - Abstract
The COMPASS experiment makes use of the CERN SPS high-intensitymuon and hadron beams for the investigation of the nucleon spin structure and the spectroscopy of hadrons. One or more outgoing particles are detected in coincidence with the incoming muon or hadron. A large polarized target inside a superconducting solenoid is used for the measurements with the muon beam. Outgoing particles are detected by a two-stage, large angle and large momentum range spectrometer. The setup is built using several types of tracking detectors, according to the expected incident rate, required space resolution and the solid angle to be covered. Particle identification is achieved using a RICH counter and both hadron and electromagnetic calorimeters. The setup has been successfully operated from 2002 onwards using a muon beam. Data with a hadron beam were also collected in 2004. This article describes the main features and performances of the spectrometer in 2004; a short summary of the 2006 upgrade is also given., 84 papes, 74 figures
- Published
- 2007
- Full Text
- View/download PDF
30. Concepts and trends for front-end chips in astroparticle experiments
- Author
-
E. Delagnes, F. Feinstein, Laboratoire de Physique Théorique et Astroparticules (LPTA), Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Département d'Astrophysique, de physique des Particules, de physique Nucléaire et de l'Instrumentation Associée (DAPNIA), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
Physics ,History ,Astrophysics::High Energy Astrophysical Phenomena ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,Cosmic ray ,Integrated circuit ,Particle detector ,Computer Science Applications ,Education ,law.invention ,Nuclear physics ,Front and back ends ,Application-specific integrated circuit ,Neutrino detector ,law ,Systems engineering ,Neutrino ,Electronic circuit - Abstract
We review recent application specific integrated circuits developed for high energy neutrino, gamma ray and cosmic ray detectors, which share constraints of the same kind. We compare various technical concepts used to fulfil similar requirements. We suggest some ways which could be followed in the near future to answer the needs of next generation experiments.
- Published
- 2007
- Full Text
- View/download PDF
31. Neutron detection in high γ background using a micromegas detector
- Author
-
E. Delagnes, H. Safa, V. Macary, B. Poumarede, S. Boyer, J. Pancin, E. Berthoumieux, and S. Aune
- Subjects
Physics ,Nuclear and High Energy Physics ,Range (particle radiation) ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Nuclear Theory ,Detector ,Photofission ,Photon flux ,MicroMegas detector ,Nuclear physics ,Prompt neutron ,Neutron detection ,Neutron ,Nuclear Experiment ,Instrumentation - Abstract
The ability of Micromegas to detect neutrons over a wide energy range has already been demonstrated. However, in some nuclear experiments or applications, neutrons come with high photon flux disturbing the detectors. A new project for nuclear waste characterization using photonuclear reactions is under development at the CEA. One of the ideas is to detect the prompt neutrons produced by these kinds of reactions, which are accompanied by a strong γ flash. The micromegas detector has been chosen to detect these neutrons since it is quite insensitive to γ-rays under certain conditions. The configuration of this detector will be presented and its γ insensitivity demonstrated. Results from simulations and experiments will be shown.
- Published
- 2007
- Full Text
- View/download PDF
32. IDeF-X BD: A low noise dual polarity ASIC for the readout of Silicon and CdTe detectors
- Author
-
E. Delagnes, Olivier Limousin, D. Huynh, O. Gevin, and F. Lugiez
- Subjects
Physics ,business.industry ,Dynamic range ,Detector ,Electrical engineering ,Chip ,Noise (electronics) ,law.invention ,Semiconductor detector ,Capacitor ,CMOS ,Application-specific integrated circuit ,law ,Optoelectronics ,business - Abstract
Our group has designed a family of ASICs dedicated to the readout of semiconductor detectors for space applications, named IDeF-X standing for Imaging Detector Front-end [1]-[3]. IDeF-X BD is a new member of the family. It has been optimized for the readout of low capacitor and low leakage current Silicon or Cd(Zn)Te detectors. IDeF-X BD has been designed in the standard AMS CMOS 0.35 μm process technology. Its power consumption is 3.3 mW per channel. The dynamic range of the ASIC is +/−70ke-. When no detector is connected to the chip, a 44 electrons rms ENC level is achieved after shaping with 6.8 μs peak time. Since IDeF-X BD is intended for space-borne applications in astrophysics, we evaluated its radiation tolerance and its sensitivity to single event latchup. We demonstrated that the ASIC remained fully functional without significant degradation of its performances after 300 krad and that the Latchup Linear Energy Transfer threshold was above 50 MeV/(mg/cm2). Good noise performance and radiation tolerance make the chip well suited for X-rays energy discrimination and high-energy resolution, “space proof,” hard X-ray-gamma-ray spectroscopy. It will be the readout ASIC of the silicon semiconductor diode detectors (SSDs) [4] in the STEP instrument [5] aboard the Solar Obiter ESA mission. The chip will fly on board the Solar Orbiter ESA mission in 2018.
- Published
- 2015
- Full Text
- View/download PDF
33. IDeF-X V1.0: A new 16-channel low-noise analog front-end for Cd(Zn)Te detectors
- Author
-
Olivier Limousin, E. Delagnes, O. Gevin, B.P.F. Dirks, F. Lugiez, C. Blondel, P. Baron, and X. Coppolani
- Subjects
Physics ,Nuclear and High Energy Physics ,Preamplifier ,business.industry ,Detector ,Chip ,Capacitance ,Analog front-end ,CMOS ,Optoelectronics ,Microelectronics ,business ,Instrumentation ,Dark current - Abstract
Joint progress in Cd(Zn)Te detectors, microelectronics and interconnection technologies open the way for a new generation of instruments for physics and astrophysics applications in the energy range from 1 to 1000 keV. Even working between −20 and 20 °C, these instruments will offer high spatial resolution (pixel size ranging from 300×300 μm2 to few mm2), high spectral response and high detection efficiency. To reach these goals, reliable, highly integrated, low noise and low power consumption electronics is mandatory. Our group is currently developing a new full-custom detector front-end ASIC named IDeF-X, for modular spectro-imaging system based on the use of Cd(Zn)Te detectors. We present the most recent version of IDeF-X which is a 16 channels analog readout chip for hard X-ray spectroscopy. It has been processed with the standard AMS 0.35 μm CMOS technology. Each channel consists of a charge sensitive preamplifier, a pole zero cancellation stage, a variable peaking time filter and an output buffer. IDeF-X is designed to be DC coupled to detectors having a low dark current at room temperature and is optimized for input capacitance ranging from 2 to 5pF.
- Published
- 2006
- Full Text
- View/download PDF
34. DEMIN: A neutron spectrometer, Micromegas-type, for inertial confinement fusion experiments
- Author
-
E. Delagnes, D. Riz, M. Houry, V. Yu. Glebov, B. Canaud, Y. Giomataris, Ph. Legou, Ph. Rebourgeard, L. Disdier, Craig Sangster, and F. Garaude
- Subjects
Physics ,Nuclear and High Energy Physics ,Spectrometer ,Astrophysics::High Energy Astrophysical Phenomena ,Nuclear Theory ,Detector ,MicroMegas detector ,Laser ,Neutron spectroscopy ,law.invention ,Nuclear physics ,Neutron generator ,law ,Neutron ,Nuclear Experiment ,Instrumentation ,Inertial confinement fusion - Abstract
A new neutron diagnostic has been designed to achieve high energy neutron spectroscopy in large γ background. The concept is based on the association of a Micromegas detector with a neutron-to-charged particle converter. Studies have been performed with a neutron generator and γ -ray sources and it has been shown that 14 MeV neutrons can be detected with improved efficiency and relative γ insensitivity. This low γ sensitivity makes this concept appealing for inertial fusion experiments. Experiments have been performed on the 60 beams, 30 kJ OMEGA laser system at the University of Rochester and have demonstrated the applications of this detector.
- Published
- 2006
- Full Text
- View/download PDF
35. The gaseous microstrip detector Micromegas for the high-luminosity COMPASS experiment at CERN
- Author
-
P. Rebourgeard, E. Delagnes, Ph. Abbon, G. Tarte, S Platchkov, A. Giganon, J.-M. Le Goff, A. Magnon, James Ball, C. Marchand, D. Thers, D. Neyret, H. Pereira, Y. Bedfer, S. Procureur, S. Panebianco, C. Bernet, and F. Kunne
- Subjects
Physics ,Nuclear and High Energy Physics ,Large Hadron Collider ,Luminosity (scattering theory) ,Physics::Instrumentation and Detectors ,Detector ,MicroMegas detector ,STRIPS ,Radiation length ,law.invention ,Nuclear physics ,law ,Compass ,COMPASS experiment ,High Energy Physics::Experiment ,Instrumentation - Abstract
The measurements in the COMPASS experiment at CERN require high-resolution tracking detectors, with low radiation length and high-rate capability. For this purpose we have developed and optimized a gaseous microstrip detector `Micromegas'. Twelve planes with 1024 strips each, assembled in 3 stations of 4 views XYUV, are now being operated with success in the COMPASS environment. We describe here the performances and results obtained.
- Published
- 2005
- Full Text
- View/download PDF
36. Tracking with MICROMEGAS detectors in the high energy, high luminosity COMPASS experiment
- Author
-
A Miéville, F. Kunne, G. Tarte, D. Thers, E. Delagnes, C. Marchand, F. Lehar, D. Neyret, Y. Bedfer, J. Ball, S. Platchkov, J. M. Le Goff, Ph. Rebourgeard, A. Magnon, and H. Pereira
- Subjects
Physics ,Nuclear and High Energy Physics ,Luminosity (scattering theory) ,Large Hadron Collider ,Spectrometer ,business.industry ,Detector ,MicroMegas detector ,Tracking (particle physics) ,Nuclear physics ,Optics ,Compass ,COMPASS experiment ,business ,Instrumentation - Abstract
Large size 40×40 cm 2 gaseous microstrip MICROMEGAS detectors are used for the charged particle tracking in the COMPASS experiment at CERN. The commissioning was performed using a 160 GeV muon beam of up to 1.5×108 particles per SPS spill. Position resolution of ⩽70 μm and timing resolution of ⩽10 ns are achieved. A printed circuit board of 60×120 cm 2 surface and 100 μm thickness allows to move the front-end electronics components outside of the spectrometer acceptance, hence keeping the amount of material within acceptance minimum. These detectors fulfill the stringent requirements of the COMPASS spectrometry.
- Published
- 2002
- Full Text
- View/download PDF
37. The SAMPIC Waveform and Time to Digital Converter
- Author
-
H. M. X. Grabas, P. Rusquart, J. Maalmi, Dominique Breton, E. Delagnes, Matthias Saimpert, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), and Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Engineering ,Discriminator ,010308 nuclear & particles physics ,business.industry ,Analog-digital conversion ,CMOS ,Successive approximation ADC ,Front-end electronics ,Time measurement ,Chip ,01 natural sciences ,Analog multiplier ,Time-to-digital converter ,Analog signal ,Mixed analog-digital integrated circuits ,0103 physical sciences ,Electronic engineering ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Waveform ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,010306 general physics ,business ,Analog device ,Delay lock loop - Abstract
Sce Electronique; International audience; SAMPIC is a Waveform and Time to DigitalConverter (WTDC) multichannel chip. Each of its 16 channelsassociates a DLL-based TDC providing a raw time with an ultrafastanalog memory allowing fine timing extraction as well asother parameters of the pulse. Each channel also integrates adiscriminator that can trigger itself independently or participateto a more complex trigger. After triggering, analog data isdigitized by an on-chip ADC and only that corresponding to aregion of interest is sent serially to the DAQ. The association ofthe raw and fine timings permits achieving timing resolutions of afew ps rms. The paper describes the detailed SAMPIC0architecture and reports its main measured performances.
- Published
- 2014
38. Status of the NectarCAM camera project
- Author
-
J. Prast, Javier Sieiro, F. Toussenel, Michael Punch, C. Zurbach, A. Lévêque, C. Boutonnet, Pierre Jean, P. Nayman, J. L. Panazol, S. Colonges, J. Bolmont, Juan Abel Barrio, J. F. Olive, Pierre-Olivier Petrucci, Christophe Champion, Giovanni Lamanna, S. Fegan, P. Brun, F. Louis, F. Nunio, Oscar Blanch, G. Martinez, S. Pavy, Berrie Giebels, J. Houles, V. Voisin, E. Moulin, J.-P. Ernenwein, R. López-Coto, S. Karkar, G. Vasileiadis, R. Hermel, Luis Ángel Tejedor, M. Barcelo, David Gascon, G. Fontaine, M. Fesquet, N. Fouque, Karl-Heinz Sulanke, J.-P. Tavernet, Andreu Sanuy, B. Courty, Jürgen Knödlseder, E. Delagnes, S. Rosier-Lees, P. Ramon, P. Corona, V. Waegebert, S. Rateau, J. F. Glicenstein, C. Delgado, Deirdre Horan, P. Sizun, François Hénault, D. Herranz, C. Díaz, O. Ferreira, D. Hoffmann, J. Boix, Yassir Moudden, E. Chabanne, T. LeFlour, Marc Ribó, Centre de Physique des Particules de Marseille (CPPM), and Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,business.industry ,[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE] ,Electrical engineering ,Analog-to-digital converter ,High voltage ,Field of view ,Astrophysics ,Modular design ,Cherenkov Telescope Array ,Chip ,7. Clean energy ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,law.invention ,Data acquisition ,law ,Física nuclear ,Electronics ,business - Abstract
International audience; NectarCAM is a camera designed for the medium-sized telescopes of the Cherenkov Telescope Array (CTA) covering the central energy range 100 GeV to 30 TeV. It has a modular design based on the NECTAr chip, at the heart of which is a GHz sampling Switched Capacitor Array and 12-bit Analog to Digital converter. The camera will be equipped with 265 7-photomultiplier modules, covering a field of view of 7 to 8 degrees. Each module includes the photomultiplier bases, High Voltage supply, pre-amplifier, trigger, readout and Thernet transceiver. Events recorded last between a few nanoseconds and tens of nanoseconds. A flexible trigger scheme allows to read out very long events. NectarCAM can sustain a data rate of 10 kHz. The camera concept, the design and tests of the various subcomponents and results of thermal and electrical prototypes are presented. The design includes the mechanical structure, the cooling of electronics, read-out, clock distribution, slow control, data-acquisition, trigger, monitoring and services. A 133-pixel prototype with full scale mechanics, cooling, data acquisition and slow control will be built at the end of 2014
- Published
- 2014
- Full Text
- View/download PDF
39. Reaching a few picosecond timing precision with the 16-channel digitizer and timestamper SAMPIC ASIC
- Author
-
E. Delagnes, Dominique Breton, H. M. X. Grabas, P. Rusquart, J. Maalmi, Département d'Electronique, des Détecteurs et d'Informatique pour la Physique (ex SEDI) (DEDIP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, SERDI, Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), and Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Nuclear and High Energy Physics ,Discriminator ,Integrated circuit ,Time to digital converter ,010308 nuclear & particles physics ,business.industry ,ASIC ,Analog-to-digital ,Chip ,01 natural sciences ,Signal ,Switched capacitor array ,Time-to-digital converter ,Application-specific integrated circuit ,Sampling (signal processing) ,0103 physical sciences ,Waveform ,Waveform sampling ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,010306 general physics ,business ,Instrumentation ,Computer hardware ,Communication channel - Abstract
International audience; SAMPIC is a Time and Waveform to Digital Converter (TWDC) multichannel chip. It integrates 16 channels each including DLL-based TDC providing a raw time associated with an ultra-fast analog memory sampling the signal used for precise timing measurements as well as other parameters of the pulse. Every channel also integrates a discriminator that can trigger it independently or participate to a more complex trigger. After triggering, the analog samples are digitized by on-chip ADCs and are sent serially to the acquisition. The paper describes the architecture of SAMPIC and reports the main performance measured on the first prototype chip with a focus on timing resolution in the range of 15 ps RMS using raw data improved to less than 5 ps RMS after a simple calibration.
- Published
- 2014
- Full Text
- View/download PDF
40. The readout system for the Clas12 Micromegas vertex tracker
- Author
-
Y. Moudden, V. Gautard, S. Aune, E. Delagnes, B. Raydo, I. Mandjavidze, H. Bervas, P. Baron, F. Sabatié, J. Giraud, E. Monmarthe, D. Besin, R. Granelli, M. Riallot, S. Procureur, and David Attié
- Subjects
Physics ,High rate ,Vertex (computer graphics) ,Physics::Instrumentation and Detectors ,law ,Detector ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Electronic engineering ,MicroMegas detector ,STRIPS ,Vertex detector ,Noise (video) ,law.invention - Abstract
In this paper, the architecture of the Clas12 Micromegas vertex tracker readout is described and the details of its implementation are given. The innovations allowing to meet the challenging requirements of the tracker operation are presented. The system performance is evaluated based on detector tests with a cosmic rays trigger and on standalone high rate validation tests. Finally, the perspectives to adapt the readout system or a part of it to other experiments are discussed.
- Published
- 2014
- Full Text
- View/download PDF
41. Musett: A segmented Si array for Recoil-Decay-Tagging studies at VAMOS
- Author
-
Ch. Theisen, F. Jeanneau, B. Sulignano, F. Druillole, J. Ljungvall, B. Paul, E. Virique, P. Baron, H. Bervas, E. Clément, E. Delagnes, A. Dijon, E. Dossat, A. Drouart, F. Farget, Ch. Flouzat, G. De France, A. Görgen, Ch. Houarner, B. Jacquot, W. Korten, G. Lebertre, B. Lecornu, L. Legeard, A. Lermitage, S. Lhenoret, C. Marry, C. Maugeais, L. Menager, O. Meunier, A. Navin, F. Nizery, A. Obertelli, E. Rauly, B. Raine, M. Rejmund, J. Ropert, F. Saillant, H. Savajols, Ch. Schmitt, M. Tripon, E. Wanlin, G. Wittwer, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, CSNSM SNO, Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Grand Accélérateur National d'Ions Lourds (GANIL), Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut de Physique Nucléaire d'Orsay (IPNO), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Nuclear and High Energy Physics ,Silicon detector Recoil decay tagging ,Wien filter ,Spectrometer ,Detector ,Alpha spectroscopy ,Particle detector ,Semiconductor detector ,Nuclear physics ,Recoil ,Data acquisition ,Cardinal point ,Recoil separator ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Instrumentation - Abstract
A new segmented silicon-array called MUSETT has been built for the study of heavy elements using the Recoil-Decay-Tagging technique. MUSETT is located at the focal plane of the VAMOS spectrometer at GANIL and is used in conjunction with a γ-ray array at the target position. This paper describes the device, which consists of four 10×10 cm 2 Si detectors and its associated front-end electronics based on highly integrated ASICs electronics. The triggerless readout electronics, the data acquisition and the analysis tools developed for its characterization are presented. This device was commissioned at GANIL with the EXOGAM γ-ray spectrometer using the fusion–evaporation reaction 197 Au( 22 Ne,5 n ) 214 Ac. Additionally, the performance of the VAMOS Wien filter used during the in-beam commissioning is also reported.
- Published
- 2014
- Full Text
- View/download PDF
42. Analogue Sum ASIC for L1 Trigger Decision in Cherenkov Telescope Cameras
- Author
-
Luis Ángel Tejedor, C. Delgado, Juan Abel Barrio, German Martinez, J. Boix, E. Delagnes, David Gascon, L. Freixas Coromina, Andreu Sanuy, Oscar Blanch, R. Lopez Coto, and F. Guilloux
- Subjects
Physics - Instrumentation and Detectors ,Computer science ,Astrophysics::High Energy Astrophysical Phenomena ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,FOS: Physical sciences ,law.invention ,High Energy Physics - Experiment ,Telescope ,High Energy Physics - Experiment (hep-ex) ,Application-specific integrated circuit ,Observatory ,law ,Instrumentation ,Mathematical Physics ,Cherenkov radiation ,Pixel ,business.industry ,Dynamic range ,Astrophysics::Instrumentation and Methods for Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,Cherenkov Telescope Array ,visual_art ,Electronic component ,visual_art.visual_art_medium ,business ,Computer hardware - Abstract
The Cherenkov Telescope Array (CTA) project aims to build the largest ground-based gamma-ray observatory based on an array of Imaging Atmospheric Cherenkov Telescopes (IACTs). The CTA will implement a multi-level trigger system to distinguish between gamma ray-like induced showers and background images induced by night sky background (NSB) light. The trigger system is based on coincident detections among pixels (level 0 trigger), clusters of pixels (level 1) or telescopes. In this article, the first version of the application specific integrated circuit (ASIC) for Level 1 trigger system is presented, capable of working with different Level 0 strategies and different trigger region sizes. In addition, it complies with all the requirements specified by the CTA project, specially the most critical ones as regards noise, bandwidth, dynamic range and power consumption. All these features make the presented system very suitable for use in the CTA cameras and improve the features of discrete components prototypes of the L1 trigger circuit in terms of compactness, noise, performance and power consumption., Comment: TWEEP 2014
- Published
- 2014
- Full Text
- View/download PDF
43. Polycell
- Author
-
M. Arques, M. Rouger, G. Masson, Francois Lebrun, P. Baron, Olivier Limousin, E. Delagnes, P. Trystram, J.-P. Leray, F. Mathy, D. Lattard, J.L Martin, N Baffert, A. Noca, J.P Rostaing, P. Villard, and J Crétolle
- Subjects
Physics ,Nuclear and High Energy Physics ,business.industry ,Preamplifier ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Modular design ,Radiation ,law.invention ,Telescope ,Optics ,law ,Electronics ,Spectral resolution ,business ,Instrumentation ,Energy (signal processing) - Abstract
A basic component called Polycell has been developed for the ISGRI CdTe γ-ray camera of the IBIS telescope on board the INTEGRAL satellite. This imager is an assembly of 16384 CdTe detectors (4×4 mm large, 2 mm thick) operating at room temperature. ISGRI covers the lower part (20 keV–1 MeV) of the IBIS energy range (20 keV–10 MeV). Detectors are arranged 4×4 on Polycells, where they are connected to their front-end electronics. The front-end electronics is based on radiation tolerant 4-channel analog–digital ASICs. The ASICs contain a low-noise charge-sensitive preamplifier (160e− rms; 1 pF load) and a pulse rise-time measurement in addition to the standard pulse-height measurement. This permits to compute a charge loss correction based on the charge drift time. The digital part includes the internal acquisition timing sequence as well as the dialogue with external electronics. After a description of the front-end electronics, we will present the improvements made on the new and final version of this hybrid mini CdTe γ-ray cameras. In conclusion, we will present the spectometric performance obtained owing to this modular device. A spectral resolution around 7% at 122 keV is obtained with this last generation of ASICs.
- Published
- 2001
- Full Text
- View/download PDF
44. Fast readout of the COMPASS RICH CsI-MWPC photon chambers
- Author
-
E. Delagnes, S. Gerasimov, I. Konorov, B. Ketzer, A. Magnon, F. Tessaroto, F. Kunne, S. Panebianco, H. Deschamps, Soumen Paul, D. Neyret, N. Kravtchuk, P. Rebourgeard, and Ph. Abbon
- Subjects
Physics ,Nuclear and High Energy Physics ,Photon ,business.industry ,Detector ,Dead time ,Chip ,Signal ,Optics ,Sampling (signal processing) ,Compass ,COMPASS experiment ,business ,Instrumentation - Abstract
A new readout system for CsI-coated MWPCs, used in the COMPASS RICH detector, has been proposed and tested in nominal high-rate conditions. It is based on the APV25-S1 analog sampling chip, and will replace the Gassiplex chip readout used up to now. The APV chip, originally designed for silicon microstrip detectors, is shown to perform well even with “slow” signals from a MWPC, keeping a signal-to-noise ratio of 9. For every trigger the system reads three consecutive in-time samples, thus allowing to extract information on the signal shape and its timing. The effective time window is reduced from ∼3 μs for the Gassiplex to below 400 ns for the APV25-S1 chip, reducing pile-up events at high particle rate. A significant improvement of the signal-to-background ratio by a factor 5–6 with respect to the original readout has been measured in the central region of the RICH detector. Due to its pipelined architecture, the new readout system also considerably reduces the dead time per event, allowing efficient data taking at higher trigger rate.
- Published
- 2006
- Full Text
- View/download PDF
45. Thick film SOI technology: characteristics of devices and performance of circuits for high-energy physics at cryogenic temperatures; effects of ionizing radiation
- Author
-
M Sueur, E. Delagnes, E. Orsier, M. Rouger, P Pailler, R. Truche, J du Port de Pontcharra, N. Fourches, Ph. Abbon, and R. Chipaux
- Subjects
Physics ,Nuclear and High Energy Physics ,Silicon ,business.industry ,Silicon on insulator ,chemistry.chemical_element ,Ionizing radiation ,Threshold voltage ,chemistry ,Rise time ,Optoelectronics ,Microelectronics ,Irradiation ,business ,Instrumentation ,Noise (radio) - Abstract
We report here the characteristics of elementary devices and circuits when they are exposed at low temperature (≈ 90 K) to ionizing radiation. These devices and circuits are implemented in a radiation-hardened SOI monolithic technology. We have made irradiations both at high dose rates (≈ 100 krads/h) and low dose rate (≈ 0.02 krad/h), the low dose rate is of the order of magnitude of the value which should be encountered in high-energy physics calorimeters during future experiments. A reduction of the dose rate, at identical total dose received, has a favourable effect on the threshold voltage shift of MOSFETs and, consequently, on the behaviour of circuits designed with these devices. For example, a preamplifer remained functional with no significant change in its characteristics (noise and rise time) after ≈ 100 krads irradiation during a longer than 6 months exposure at 90 K (liquid-argon temperature). This is of key importance for the future development of silicon microelectronics for Liquid-Argon Calorimetry.
- Published
- 1997
- Full Text
- View/download PDF
46. SCTA-a rad-hard BiCMOS analogue readout ASIC for the ATLAS Semiconductor Tracker
- Author
-
F. Lugiez, Shaun Roe, E. Delagnes, J. Kaplon, P. Weilhammer, Wladyslaw Dabrowski, U. Koetz, Francis Anghinolfi, Christoph Posch, and Pierre Jarron
- Subjects
Physics ,Nuclear and High Energy Physics ,Preamplifier ,business.industry ,Amplifier ,Clock rate ,Electrical engineering ,Integrated circuit ,BiCMOS ,Chip ,Multiplexer ,law.invention ,Nuclear Energy and Engineering ,law ,Integrator ,Hardware_INTEGRATEDCIRCUITS ,Detectors and Experimental Techniques ,Electrical and Electronic Engineering ,business - Abstract
Two prototype chips for the analogue readout of silicon strip detectors in the ATLAS Semiconductor Tracker (SCT) have been designed and manufactured, in 32 channels and 128 channel versions, using the radiation hard BiCMOS DMILL process. The SCTA chip comprises three basic blocks: front-end amplifier, analogue pipeline and output multiplexer. The front-end circuit is a fast transresistance amplifier followed by an integrator, providing fast shaping with a peaking time of 25 ns, and an output buffer. The front end output values are sampled at 40 MHz rate and stored in a 112-cell deep analogue pipeline. The delay between the write pointer and trigger pointer is tunable between 2 /spl mu/S and 2.5 /spl mu/s. The chip has been tested successfully and subsequently irradiated up to 10 MraB. Full functionality of all blocks of the chip has been achieved at a clock frequency of 40 MHz both before and after irradiation. Noise figures of ENC=720 e/sup ./+33 e/sup .//pF before irradiation and 840 e/sup ./+33 e/sup .//pF after irradiation have been obtained.
- Published
- 1997
- Full Text
- View/download PDF
47. Introducing the CTA concept
- Author
-
A. Mathieu, R. G. Wagner, K. Panagiotidis, S Rosier Lees, Julien Rousselle, M. Gómez Berisso, Michela Uslenghi, Stephen Maxfield, R. C. Shellard, Ivica Puljak, T. Le Flour, Thomas Schanz, Tobias C. Walther, Juanan Aguilar, Pierre Colin, M. Chikawa, N. Fouque, Mosè Mariotti, G. Fontaine, Merja Tornikoski, V. Diez-Blanco, Enrico Giro, A. Krepps, G. Koss, J. M. Martin, Sergio Billotta, E. de Oña Wilhelmi, Keitaro Takahashi, S. Buson, P. Brook, S. Steiner, M. Dyrda, Joseph Silk, Sera Markoff, P. Lubinski, U. Schwanke, Sauvik Bhattacharyya, J. Ripken, T. Haubold, C. Zurbach, H. Wetteskind, R. Hermel, J. Darling, J. Nicolau-Kukliński, Konstancja Satalecka, M. Videla, Stefan Funk, P. Conconi, S. Bajtlik, Lukasz Stawarz, J. M. Paredes, K. Reitberger, Stefan Wagner, Teresa Mineo, David Kieda, G. Pareschi, Shigeto Kabuki, Makoto Sawada, Antonio Stamerra, Rodolfo Canestrari, N. Baby, G. Crimi, P. Kostka, J. Grube, R. Zanin, I. K. Kominis, L. Mc Comb, R. Sternberger, M. Fesquet, M. Tokarz, David Fink, Daniela Dorner, N. Hamer Heras, A. Moralejo Olaizola, M. de Naurois, Diego F. Torres, Claes Fransson, K. Nishijima, Yutaka Fujita, L. Fresnillo, B. García, R. Kossakowski, A. Masserot, H. von Gunten, Alkiviadis F. Bais, Ciro Bigongiari, A. Saggion, G. Papyan, I. Mrusek, K. Farakos, J. Michałowski, A. Franckowiak, Fernando Martinez, M. Doert, R. Wawrzaszek, Michele Doro, L. Sapozhnikov, Claudia Lavalley, D. Thuermann, A.A. Zdziarski, Cristina Knapic, Karen Byrum, N. Neyroud, Petr Schovanek, W. Domainko, D. Kastana, E. Birsin, Adrian Biland, F. Sánchez, Alexandre Marcowith, M. Errando, R. L. C. Starling, J. Schultze, A. Weinstein, B. B. Singh, Yassir Moudden, Jelena Aleksić, C. L. Naumann, V. Waegebaert, M. Shayduk, U. F. Katz, Gianpiero Tagliaferri, M. Schroedter, A. Vollhardt, O. Reimann, Hideyuki Ohoka, Vincenzo Testa, C. Jablonski, Tsuguya Naito, J. Schäfer, Stavros Maltezos, A. Wierzcholska, P. Wawer, L. Nellen, F. Mirabel, Tatsuo Yoshida, P. H. Carton, Nina Nowak, L. Platos, Riccardo Rando, P. P. Krueger, R. Wischnewski, W. Romaszkan, E. Fede, Martino Marisaldi, Markus Gaug, Richard Willingale, J. H. Buckley, U. De AlmeidaBarres, J. Knapp, Saverio Lombardi, D. della Volpe, A. Herrero, A. Bottani, E. Delagnes, Martin J. Hardcastle, C. Morello, Anna Lipniacka, T. Greenshaw, M. Renaud, Giancarlo Cusumano, Jonathan Biteau, M. Sowiński, J. R. T. de Mello Neto, T. B. Humensky, Michael G. Richer, G. Parks, G. Grasseau, H. Baba, Gino Tosti, Damir Lelas, H. Krawzcynski, David Paneque, M. Barcelo, R. Dickherber, P. Ferrando, Shinji Hara, D. Florin, Hideaki Katagiri, T. Shibata, Fuyuki Tokanai, N. A. McCubbin, J. Gomez-Ortega, D. Nakajima, A. Liolios, P. Laporte, Orjan Dale, A. Sillanpää, Dainis Dravins, Timothée Grégoire, Nu. Komin, A. Mihailidis, L. Sidoli, Shiu-Hang Lee, A. W. Chen, J. M. Illa, A. Kuznetsov, P. Munar-Adrover, D. Dominis Prester, Marcos Daniel Actis, Abraham D. Falcone, L. Journet, D. Hadasch, N. Galante, A. Murphy, C. J. Todero Peixoto, S. Wiesand, A. Aravantinos, A. C. Rovero, J. L. Dournaux, P. Romano, M. Hrabovsky, R. de los Reyes Lopez, M. Ostrowski, J. Pallota, Geza Gyuk, Petar Temnikov, R. Dubois, Jan Ebr, R. Koul, David J. Smith, S. Schwarzburg, P. Manigot, Chad Finley, Tarek M. Hassan, Giuseppe Sottile, Evgeni Ovcharov, P. J. Rajda, F. Krennrich, Peter L. Moore, W. B. Focke, W. Bednarek, Elena Amato, Kazunori Kohri, J. Gamez-Garcia, I. Oya, A. Shibuya, German Hermann, William H. Lee, Dorota Sobczyńska, X. Zhou, C. Balkowski, G. Vallejo, M. Hayashida, M. Bitossi, Loukas Vlahos, H. Lockart, N. Geffroy, L. Tibaldo, Marek Jamrozy, Luke O'c. Drury, Pratik Majumdar, P. Sutcliffe, S. Schlenstedt, M. Palatka, Christophe Champion, H. Ueno, M. Rupiński, P. Giommi, J. Schwarz, G. Pühlhofer, Takashi Saito, W. van Driel, C. van Eldik, Q. Xiong, Yasuo Fukui, A. Donat, A. Ibarra, R. S. Warwick, Michiko Ohishi, A. W. Smith, J.-P. Lenain, Aion Viana, Terry Ashton, Guillaume Dubus, Jacek Niemiec, K. Kodani, Luis Ángel Tejedor, A. Wörnlein, Takanori Yoshikoshi, Masahiro Teshima, W. Gäbele, Ll. Font, Olaf Reimer, J. F. Valdés-Galicia, Lucy Fortson, J. P. Osborne, Mattia Fornasa, Keith Bechtol, Masayuki Tanaka, Shigehiro Nagataki, M. Rataj, M. Ribordy, Emmanuel Moulin, I. de la Calle, K. Winiarski, C. Jeanney, I. Mognet, I. Vegas, C. Juffroy, Yutaka Ohira, A. Jacholkowska, Matthew Wood, A. E. Suárez, J. Bähr, K. M. Schure, J. Maya, M. Dafonseca, J. Tasan, R. Sugawara, M. Bourgeat, A. Mancilla, D. Pelat, Olga Botner, D. Nedbal, G. Depaola, Robert Wagner, T. Okuda, H. Arnaldi, Josep Martí, P. Corona, T. Bonev, D. Yelos, J. Sieiro, V. Scalzotto, Jacco Vink, D. Languignon, Marco Ajello, J. Vandenbrouke, Philipp Mertsch, M. Mordalska, P. Wegner, P. Ziółkowski, P. T. O'Brien, A. Nozato, Robert D. Preece, B. Huber, Matteo Balbo, J.R. Bogart, R. Kankanyan, K. Mori, T. Jogler, Seth Digel, Claudio Vuerli, Hiromitsu Takahashi, Thomas Lohse, K. Saito, A. W. Borgland, Elisa Prandini, Helene Sol, Ryan Heller, M. Bogdan, D. Dumas, M. Stodulski, Y. Awane, Piercarlo Bonifacio, Pedro L. Luque-Escamilla, Judith H. Croston, Fabio Pizzolato, P. M. Chadwick, M. K. Daniel, Riccardo Paoletti, Reiko Orito, Katsuaki Asano, R. Frei, G. Disset, Valerie Connaughton, Juhani Huovelin, Hiroyasu Tajima, S. Vercellone, F. Feinstein, G. Decerprit, Riccardo Smareglia, S. Spyrou, Gustavo E. Romero, J. Shi, J. Carr, N. Girard, Dirk L. Hoffmann, Andreas Zech, Markus Boettcher, Osvaldo Catalano, Akira Okumura, M. Dohmke, C. Föhr, Sabrina Casanova, R. A. Cameron, Jan Conrad, K. Umehara, K. K. Yadav, A. Paizis, John L. Quinn, L. Pogosyan, C. Farnier, William J. Potter, Domenico Impiombato, Tadashi Kifune, Jonathan Granot, Gernot Maier, M. Cieślar, S. Palanque, G.W. Fraser, J. Prast, R. Bose, Heidi Sandaker, G. Lamanna, Dusan Mandat, J.F. Glicenstein, J. Harris, D. Naumann, J. Ziolkowski, Michał Szanecki, C. Delgado, J. Kocot, W. Lustermann, Sabine Elles, J. Schmoll, L. Gérard, M. López, Norita Kawanaka, V. Gika, B. Lieunard, A. Pichel, Martin Pohl, Mariusz Sterzel, S. Vincent, Paolo De Coppi, J. Lande, O. Blanch Bigas, Gianluca Giavitto, Yusuke Konno, Julian Sitarek, M. Panter, P.-O. Petrucci, F. Henault, M. Prouza, Philip Kaaret, Josep Colomé, Luciano Nicastro, German Martinez, L. Gebremedhin, J. M. Yebras, Apostolos Mastichiadis, A. S. Madhavan, Thomas J. Maccarone, K. Berger, R. Buehler, P. Jean, N. Sartore, F. Toussenel, Aris Karastergiou, W. Kluźniak, A. Djannati-Ataï, S. J. Fegan, Louis Antonelli, A. González Muñoz, J. Berdugo, S. S. Upadhya, M. Sidz, F. Mottez, Patrick Vogler, F. Di Pierro, Wystan Benbow, B. Sacco, L. Chiappetti, J. Dumm, R. Firpo Curcoll, David Gascon, V. Boccone, J. Krause, J. P. Avernet, B. Peyaud, B. De Lotto, Ana Babić, T. O. B. Schmidt, I. M. McHardy, T. Schweizer, S. P. Wakely, Daniel Gall, Frank M. Rieger, E. Sant'Ambrogio, M. Kagaya, P. Vincent, R. C. Rannot, Sandro Mereghetti, A. De Angelis, M. Scarcioffolo, R. White, G. H. Sembroski, Takeshi Nakamori, C. Medina, M. A. De Oliveira Leigui, Subir Sarkar, A. Marszałek, Reshmi Mukherjee, K. Nakayama, A. Fiasson, S. Giarrusso, T. Bernardino, J. P. Finley, D. Neise, L. O. Takalo, F. Grañena, Nikola Godinovic, H. Sasaki, P. Zychowski, Francesco Dazzi, B. Courty, A. Basili, Vitaly Neustroev, B. Khélifi, T. Glanzman, M. Trifoglio, Regis Terrier, R. A. Ong, E. M. Santos, M. Minuti, Thomas Bretz, R. Moderski, J. Kushida, S. Royer, Emilio Molinari, Etienne Lyard, J. Houles, Juan Abel Barrio, T. Lerch, S. Rivoire, T. Kishimoto, M. Cailles, M. Casiraghi, Nikolaos Stergioulas, J. Gaweda, S. Koyama, Ingomar Allekotte, E. Ismailova, Elina Giannakaki, S. Schwemmer, Ryo Yamazaki, G. Fasola, Christoph Deil, Jose Luis Contreras, T. Bird, Miguel A. Sánchez-Conde, J. Dick, E. Edy, D. Parsons, R. Pyzioł, R. Mirzoyan, Manjuli R. Sharma, J. Borkowski, Jonathan S. Lapington, Cameron B Rulten, Rino Bandiera, Volker Beckmann, Jun Kakuwa, Dimitris Balis, Kenji Toma, Anna Barnacka, Andrea Santangelo, L. Padilla, Peter Eger, G. Decock, Karol Seweryn, N. Sakaki, Darko Veberič, Andrea Bulgarelli, B. Rudak, M. Pérez, H. Koppel, Felix Spanier, M. I. Martínez, D. Horville, Marco Molinaro, R. Walter, P. Ramon, S. Brau-Nogue, J. Camprecios, K. Kärcher, John H. Seiradakis, S. Criswell, D. J. Leopold, V. J. Guarino, R. Gredig, S. Vorobiov, Viktor Gruev, Gareth Hughes, Daniele Spiga, Quirin Weitzel, N. Håkansson, Susumu Inoue, U. Straumann, Juan Cortina, B. Behera, Jürgen Knödlseder, Daniel Nieto, Tomasz Szepieniec, H. Prokoph, Jerzy Grygorczuk, G. De La Vega, Jim Hinton, E. Chabanne, M. Mahabir, R. Krobot, M. Capalbi, Miroslav Pech, C. Díaz, J. Ludwin, F. Gianotti, Garret Cotter, Claudio Melioli, Hiroaki Yamamoto, C. Veyssiere, Kunihito Ioka, S. Sun, J. M. Parraud, L. Rob, Felix Aharonian, G. Maneva, D. Melkumyan, T. Schwab, J. Kasperek, J. M. Huet, E. Lorenz, S. Tanaka, Y. A. Gallant, S. Couturier, B.W. Favill, J. Boix Gargallo, Andrea Tiengo, Leszek Bogacz, Andreu Sanuy, Christian Fruck, J. Sykes, C. Martens, A. Yoshida, Marek Sikora, E. Racero, G. Rouaix, N. Bhat, A. Salini, A. S. Barber, Mauro Ghigo, Jan Ridky, K. Kosack, Konrad Bernlöhr, C. Tenzer, Alice Allafort, M. Torres, Catherine Boisson, Grzegorz Kowal, M. Karczewski, G. Agnetta, Victor Stamatescu, Anthony H. Gonzalez, S. Rousselle, Giovanni Bonanno, A. Zajczyk, A. Gadola, P. Martin, V. Zitelli, I. Manthos, N. Maragos, A. Dettlaff, F. Profeti, S. Colonges, S. Gunji, S. Cazaux, S. Colafrancesco, M. Paz Arribas, Rika Hagiwara, Darell Engelhaupt, Nestor Mirabal, Johann Cohen-Tanugi, S. Grunewald, Abby M. Green, I. D. Davids, D. Nosek, T. Yamamoto, Gagik Tovmassian, R. Sakonaka, Miguel Alcubierre, C. Baixeras, T. L. Usher, Kazufumi Torii, H. Lüdecke, L. Wiśniewski, B. Kellner-Leidel, P. Demange, F. Gonzalez, B. Moal, V. De Caprio, V. Golev, K. Katarzyński, V. Bugaev, A. Reimer, J. Koziol, G. Pojmanski, Alessandro Carosi, J. Bolmont, A. Nikolaidis, R. J. García López, V. A. Kudryavtsev, C. Stegmann, J.-P. Ernenwein, M. Fiorini, Ivone F. M. Albuquerque, Marco Tavani, P. Korohoda, A. Giuliani, E. Carmona, C. Bauer, Kostas D. Kokkotas, O. Tibolla, G. Deleglise, Pierre Brun, Dinko Dimitrov, I. Jung, R. Steenkamp, Marc Ribó, Kathrin Egberts, P. Reardon, Adriano Ghedina, Stefan Rosén, N. Hidaka, Trygve Buanes, A. Segreto, H. Huan, Juri Poutanen, Ruben Lopez-Coto, S. Cavazzani, Massimiliano Belluso, A. Kretzschmann, F. De Frondat, A. Riviere, J. F. Olive, Tsunefumi Mizuno, Serena Mattiazzo, M. González, D. Fantinel, Matteo Cerruti, S. Vergani, Sabrina Einecke, N. La Palombara, Reinhard Schlickeiser, P. Antoranz, Pol Bordas, D. Paillot, V. de Souza, Yasushi Fukazawa, Phil Evans, Werner Hofmann, Hugh Dickinson, F. Roy, Yvonne Becherini, E. O. Angüner, D. Corti, T. C. Arlen, Francesco Russo, V. R. Chitnis, D. Ross, R. Gabriele, Massimo Persic, E. Fokitis, A. Bonardi, D. Garrido, A. Niedźwiecki, L. Cossio, Hidetoshi Kubo, Y. de Oliveira, F. Mattana, Anna Szostek, M. Compin, S. Blake, F. Lucarelli, Petter Hofverberg, Felix Ryde, M. Gougerot, C. Boutonnet, Dimitrios Emmanoulopoulos, A. Mangano, P. Vallania, Jose Miguel Miranda, A. Manalaysay, M. Raue, A. Bouvier, Shohei Yanagita, Nektarios Vlahakis, Joni Tammi, M. Naumann-Godo, Kohta Murase, E. Fillin-Martino, Jiri Chudoba, K. Hatanaka, A. Lopatin, N. Otte, G. Rojas, Tomonori Totani, K. S. Gothe, J. P. Vialle, D. Kolitzus, K. Warda, Hironori Matsumoto, J. Rico, P. Ringegni, James Chiang, R. McKay, A. Bobkov, Aya Bamba, H. Takami, B. Giebels, O. Grimm, S. Basso, F. Dubois, Victor Zabalza, A. Förster, Pasquale Blasi, Alexandros Papayannis, A. G. Akhperjanian, Eckhard Kendziorra, James A. Anderson, Giuseppe Malaguti, R. Welsing, S. Pita, A. Ozieblo, Heide Costantini, D. Tezier, J.-H. Köhne, M. Tluczykont, Ll. Garrido, Alexander Varón Sandoval, Matthew R. Orr, Dominique Durand, F. Chollet, O. Luz, E. O. Saemann, Jun Kataoka, M. Proyetti, C. Barbier, Jürgen Barnstedt, L. Bouchet, Hiroshi Muraishi, Anton N. Baushev, L. A. Otero, Denis Bastieri, S. Incorvaia, Tihomir Surić, V. La Parola, Nathan Smith, Karl-Heinz Sulanke, F. Bernard, Luca Stringhetti, S. Paiano, S. Federici, Hector Flores, Karl Mannheim, Michael S. Briggs, Giovanna Pedaletti, E. M. de Gouveia Dal Pino, J. D. Smith, G. La Rosa, Alicia López-Oramas, M. Janiak, Gary Drake, G. Talbot, Petr Travnicek, Elisabetta Bissaldi, Mario Meucci, R. Northrop, V. Scapin, Vito Conforti, J. D. Ponz, T. Aghajani, J. J. Jimenez, A. D. Supanitsky, Hernán Asorey, M. Werner, Brian Reville, A. Haupt, C. Skole, Gilles Henri, Daniele Gardiol, V. Vassiliev, R. Platzer, Y. Saito, A. La Barbera, Allan Hallgren, C. Eleftheriadis, S. Cantu, G. Maurin, K. Lacombe, A. Le Padellec, F. Stinzing, T. Hayakawa, A. Cillis, M. Suchenek, I. Monteiro, V. Sahakian, A. Di Paola, Grzegorz Madejski, A. De Luca, Andreas Quirrenbach, P. A. Caraveo, N. A. Webb, Michael Zacharias, J. Vanderwalt, Dario Hrupec, K. Ziȩtara, T. Armstrong, A. Lorca, T. Krähenbühl, A. Etchegoyen, Stefano Covino, C. Kalkuhl, K. Kitamoto, Tomasz Bulik, R. Rohlfs, D. Allan, A. Zhao, Luisa Arrabito, B. S. Acharya, T. Johnson, C. Schultz, G. Vasileiadis, Eleen Shum, Daniel Ferenc, Paola Grandi, Maria Concetta Maccarone, E. Strazzeri, H. Kelly, E. J. Quel, H. Vankov, Ruben Alfaro, I. Telezhinsky, J. Becker Tjus, C. Dufour, F. Köck, Ilana M. Braun, Jamie Holder, Ryoji Enomoto, Luigi Lessio, Michael Punch, Stefano Gabici, I. Puerto-Gimenez, S. Karkar, P. Nayman, M. Grudzińska, E. Aliu, Yoshiyuki Inoue, Elina Lindfors, J. Becerra, Daniel Mazin, Yukikatsu Terada, André Schulz, Teresa Montaruli, G. Bonnoli, S. Renner, Dieter Horns, J. Dyks, V. Pelassa, Mark I. Wilkinson, Ricardo Graciani, I. Troyano, P. Ristori, Thomas Kihm, P. Micolon, S. J. Nolan, Torsten Bringmann, David A. Williams, Joachim Hahn, L. Brunetti, U. Roeser, Wolfgang Rhode, Kanaris Tsinganos, Stefan Ohm, J. L. Panazol, G. Busetto, B. S., Acharya, M., Acti, T., Aghajani, G., Agnetta, J., Aguilar, F., Aharonian, M., Ajello, A., Akhperjanian, M., Alcubierre, J., Aleksic, R., Alfaro, E., Aliu, A. J., Allafort, D., Allan, I., Allekotte, E., Amato, J., Anderson, E. O., Anguener, L. A., Antonelli, P., Antoranz, A., Aravantino, T., Arlen, T., Armstrong, H., Arnaldi, L., Arrabito, K., Asano, T., Ashton, H. G., Asorey, Y., Awane, H., Baba, A., Babic, N., Baby, J., Baehr, A., Bai, C., Baixera, S., Bajtlik, M., Balbo, D., Bali, C., Balkowski, A., Bamba, R., Bandiera, A., Barber, C., Barbier, M., Barcelo, A., Barnacka, J., Barnstedt, U. B., De, J. A., Barrio, A., Basili, S., Basso, D., Bastieri, C., Bauer, A., Baushev, J., Becerra, Y., Becherini, K. C., Bechtol, J. B., Tju, V., Beckmann, W., Bednarek, B., Behera, M., Belluso, W., Benbow, J., Berdugo, K., Berger, F., Bernard, T., Bernardino, K., Bernloehr, N., Bhat, S., Bhattacharyya, C., Bigongiari, A., Biland, S., Billotta, T., Bird, E., Birsin, Bissaldi, Elisabetta, J., Biteau, M., Bitossi, S., Blake, O. B., Biga, P., Blasi, A., Bobkov, V., Boccone, M., Boettcher, L., Bogacz, J., Bogart, M., Bogdan, C., Boisson, J. B., Gargallo, J., Bolmont, G., Bonanno, A., Bonardi, T., Bonev, P., Bonifacio, G., Bonnoli, P., Borda, A., Borgland, J., Borkowski, R., Bose, O., Botner, A., Bottani, L., Bouchet, M., Bourgeat, C., Boutonnet, A., Bouvier, S., Brau Nogue, I., Braun, T., Bretz, M., Brigg, T., Bringmann, P., Brook, P., Brun, L., Brunetti, T., Buane, J., Buckley, R., Buehler, V., Bugaev, A., Bulgarelli, T., Bulik, G., Busetto, S., Buson, K., Byrum, M., Caille, R., Cameron, J., Camprecio, R., Canestrari, S., Cantu, M., Capalbi, P., Caraveo, E., Carmona, A., Carosi, J., Carr, P. . ., H., S., Casanova, M., Casiraghi, O., Catalano, S., Cavazzani, S., Cazaux, M., Cerruti, E., Chabanne, P., Chadwick, C., Champion, A., Chen, J., Chiang, L., Chiappetti, M., Chikawa, V. R., Chitni, F., Chollet, J., Chudoba, M., Cieslar, A., Cilli, J., Cohen Tanugi, S., Colafrancesco, P., Colin, J., Calome, S., Colonge, M., Compin, P., Conconi, V., Conforti, V., Connaughton, J., Conrad, J. L., Contrera, P., Coppi, P., Corona, D., Corti, J., Cortina, L., Cossio, H., Costantini, G., Cotter, B., Courty, S., Couturier, S., Covino, G., Crimi, S. J., Criswell, J., Croston, G., Cusumano, M., Dafonseca, O., Dale, M., Daniel, J., Darling, I., David, F., Dazzi, A. D., Angeli, V. D., Caprio, F. D., Frondat, E. M., De, I. d., La, G. A., De, R. d., Lo, B. D., Lotto, A. D., Luca, J. R., T., M. d., Nauroi, Y. d., Oliveira, E. d., Ona, V. d., Souza, G., Decerprit, G., Decock, C., Deil, E., Delagne, G., Deleglise, C., Delgado, D. D., Volpe, P., Demange, G., Depaola, A., Dettlaff, A. D., Paola, F. D., Pierro, C., Diaz, J., Dick, R., Dickherber, H., Dickinson, V., Diez Blanco, S., Digel, D., Dimitrov, G., Disset, A., Djannati Atai, M., Doert, M., Dohmke, W., Domainko, D. D., Prester, A., Donat, D., Dorner, M., Doro, J. . ., L., G., Drake, D., Dravin, L., Drury, F., Duboi, R., Duboi, G., Dubu, C., Dufour, D., Duma, J., Dumm, D., Durand, J., Dyk, M., Dyrda, J., Ebr, E., Edy, K., Egbert, P., Eger, S., Einecke, C., Eleftheriadi, S., Elle, D., Emmanoulopoulo, D., Engelhaupt, R., Enomoto, J. . ., P., M., Errando, A., Etchegoyen, P., Evan, A., Falcone, D., Fantinel, K., Farako, C., Farnier, G., Fasola, B., Favill, E., Fede, S., Federici, S., Fegan, F., Feinstein, D., Ferenc, P., Ferrando, M., Fesquet, A., Fiasson, E., Fillin Martino, D., Fink, C., Finley, J. P., Finley, M., Fiorini, R. F., Curcoll, H., Flore, D., Florin, W., Focke, C., Foehr, E., Fokiti, L., Font, G., Fontaine, M., Fornasa, A., Foerster, L., Fortson, N., Fouque, A., Franckowiak, C., Fransson, G., Fraser, R., Frei, I. F., M., L., Fresnillo, C., Fruck, Y., Fujita, Y., Fukazawa, Y., Fukui, S., Funk, W., Gaebele, S., Gabici, R., Gabriele, A., Gadola, N., Galante, D., Gall, Y., Gallant, J., Gamez Garcia, B., Garcia, R. G., Lopez, D., Gardiol, D., Garrido, L., Garrido, D., Gascon, M., Gaug, J., Gaweda, L., Gebremedhin, N., Geffroy, L., Gerard, A., Ghedina, M., Ghigo, E., Giannakaki, F., Gianotti, S., Giarrusso, G., Giavitto, B., Giebel, V., Gika, P., Giommi, N., Girard, E., Giro, A., Giuliani, T., Glanzman, J. . ., F., N., Godinovic, V., Golev, M. G., Berisso, J., Gomez Ortega, M. M., Gonzalez, A., Gonzalez, F., Gonzalez, A. G., Munoz, K. S., Gothe, M., Gougerot, R., Graciani, P., Grandi, F., Granena, J., Granot, G., Grasseau, R., Gredig, A., Green, T., Greenshaw, T., Gregoire, O., Grimm, J., Grube, M., Grudzinska, V., Gruev, S., Gruenewald, J., Grygorczuk, V., Guarino, S., Gunji, G., Gyuk, D., Hadasch, R., Hagiwara, J., Hahn, N., Hakansson, A., Hallgren, N. H., Hera, S., Hara, M. J., Hardcastle, J., Harri, T., Hassan, K., Hatanaka, T., Haubold, A., Haupt, T., Hayakawa, M., Hayashida, R., Heller, F., Henault, G., Henri, G., Hermann, R., Hermel, A., Herrero, N., Hidaka, J., Hinton, D., Hoffmann, W., Hofmann, P., Hofverberg, J., Holder, D., Horn, D., Horville, J., Houle, M., Hrabovsky, D., Hrupec, H., Huan, B., Huber, J. . ., M., G., Hughe, T. B., Humensky, J., Huovelin, A., Ibarra, J. M., Illa, D., Impiombato, S., Incorvaia, S., Inoue, Y., Inoue, K., Ioka, E., Ismailova, C., Jablonski, A., Jacholkowska, M., Jamrozy, M., Janiak, P., Jean, C., Jeanney, J. J., Jimenez, T., Jogler, T., Johnson, L., Journet, C., Juffroy, I., Jung, P., Kaaret, S., Kabuki, M., Kagaya, J., Kakuwa, C., Kalkuhl, R., Kankanyan, A., Karastergiou, K., Kaercher, M., Karczewski, S., Karkar, A., Kasperek, D., Kastana, H., Katagiri, J., Kataoka, K., Katarzynski, U., Katz, N., Kawanaka, B., Kellner Leidel, H., Kelly, E., Kendziorra, B., Khelifi, D. B., Kieda, T., Kifune, T., Kihm, T., Kishimoto, K., Kitamoto, W., Kluzniak, C., Knapic, J. w., Knapp, J., Knoedlseder, F., Koeck, J., Kocot, K., Kodani, J. . ., H., K., Kohri, K., Kokkota, D., Kolitzu, N., Komin, I., Komini, Y., Konno, H., Koeppel, P., Korohoda, K., Kosack, G., Ko, R., Kossakowski, P., Kostka, R., Koul, G., Kowal, S., Koyama, J., Koziol, T., Kraehenbuehl, J., Krause, H., Krawzcynski, F., Krennrich, A., Krepp, A., Kretzschmann, R., Krobot, P., Krueger, H., Kubo, V. A., Kudryavtsev, J., Kushida, A., Kuznetsov, A. L., Barbera, N. L., Palombara, V. L., Parola, G. L., Rosa, K., Lacombe, G., Lamanna, J., Lande, D., Languignon, J., Lapington, P., Laporte, C., Lavalley, T. L., Flour, A. L., Padellec, S. . ., H., W. H., Lee, M. A., Leigui, D., Lela, D. J., Leopold, T., Lerch, L., Lessio, B., Lieunard, E., Lindfor, A., Liolio, A., Lipniacka, H., Lockart, T., Lohse, S., Lombardi, A., Lopatin, M., Lopez, R., Lopez Coto, A., Lopez Orama, A., Lorca, E., Lorenz, P., Lubinski, F., Lucarelli, H., Luedecke, J., Ludwin, P. L., Luque Escamilla, W., Lustermann, O., Luz, E., Lyard, M. C., Maccarone, T. J., Maccarone, G. M., Madejski, A., Madhavan, M., Mahabir, G., Maier, P., Majumdar, G., Malaguti, S., Maltezo, A., Manalaysay, A., Mancilla, D., Mandat, G., Maneva, A., Mangano, P., Manigot, K., Mannheim, I., Mantho, N., Marago, A., Marcowith, M., Mariotti, M., Marisaldi, S., Markoff, A., Marszalek, C., Marten, J., Marti, P., Martin, G., Martinez, F., Martinez, M., Martinez, A., Masserot, A., Mastichiadi, A., Mathieu, H., Matsumoto, F., Mattana, S., Mattiazzo, G., Maurin, S., Maxfield, J., Maya, D., Mazin, L. M., Comb, N., Mccubbin, I., Mchardy, R., Mckay, C., Medina, C., Melioli, D., Melkumyan, S., Mereghetti, P., Mertsch, M., Meucci, J., Michalowski, P., Micolon, A., Mihailidi, T., Mineo, M., Minuti, N., Mirabal, F., Mirabel, J. M., Miranda, R., Mirzoyan, T., Mizuno, B., Moal, R., Moderski, I., Mognet, E., Molinari, M., Molinaro, T., Montaruli, I., Monteiro, P., Moore, A. M., Olaizola, M., Mordalska, C., Morello, K., Mori, F., Mottez, Y., Moudden, E., Moulin, I., Mrusek, R., Mukherjee, P., Munar Adrover, H., Muraishi, K., Murase, A., Murphy, S., Nagataki, T., Naito, D., Nakajima, T., Nakamori, K., Nakayama, C., Naumann, D., Naumann, M., Naumann Godo, P., Nayman, D., Nedbal, D., Neise, L., Nellen, V., Neustroev, N., Neyroud, L., Nicastro, J., Nicolau Kuklinski, A., Niedzwiecki, J., Niemiec, D., Nieto, A., Nikolaidi, K., Nishijima, S., Nolan, R., Northrop, D., Nosek, N., Nowak, A., Nozato, P., O'Brien, Y., Ohira, M., Ohishi, S., Ohm, H., Ohoka, T., Okuda, A., Okumura, R. A., Ong, R., Orito, M., Orr, J., Osborne, M., Ostrowski, L. A., Otero, N., Otte, E., Ovcharov, I., Oya, A., Ozieblo, L., Padilla, S., Paiano, D., Paillot, A., Paizi, S., Palanque, M., Palatka, J., Pallota, K., Panagiotidi, D., Paneque, M., Panter, R., Paoletti, A., Papayanni, G., Papyan, J. M., Parede, G., Pareschi, G., Park, D., Parson, M. P., Arriba, M., Pech, G., Pedaletti, V., Pelassa, D., Pelat, M. D., C., M., Persic, P. . ., O., B., Peyaud, A., Pichel, S., Pita, F., Pizzolato, L., Plato, R., Platzer, L., Pogosyan, M., Pohl, G., Pojmanski, J. D., Ponz, W., Potter, J., Poutanen, E., Prandini, J., Prast, R., Preece, F., Profeti, H., Prokoph, M., Prouza, M., Proyetti, I., Puerto Gimenez, G., Puehlhofer, I., Puljak, M., Punch, R., Pyziol, E. J., Quel, J., Quinn, A., Quirrenbach, E., Racero, P. J., Rajda, P., Ramon, R., Rando, R. C., Rannot, M., Rataj, M., Raue, P., Reardon, O., Reimann, A., Reimer, O., Reimer, K., Reitberger, M., Renaud, S., Renner, B., Reville, W., Rhode, M., Ribo, M., Ribordy, M. G., Richer, J., Rico, J., Ridky, F., Rieger, P., Ringegni, J., Ripken, P. R., Ristori, A., Riviere, S., Rivoire, L., Rob, U., Roeser, R., Rohlf, G., Roja, P., Romano, W., Romaszkan, G. E., Romero, S., Rosen, S. R., Lee, D., Ro, G., Rouaix, J., Rousselle, S., Rousselle, A. C., Rovero, F., Roy, S., Royer, B., Rudak, C., Rulten, M., Rupinski, F., Russo, F., Ryde, B., Sacco, E. O., Saemann, A., Saggion, V., Safiakian, K., Saito, T., Saito, Y., Saito, N., Sakaki, R., Sakonaka, A., Salini, F., Sanchez, M., Sanchez Conde, A., Sandoval, H., Sandaker, E., Sant'Ambrogio, A., Santangelo, E. M., Santo, A., Sanuy, L., Sapozhnikov, S., Sarkar, N., Sartore, H., Sasaki, K., Satalecka, M., Sawada, V., Scalzotto, V., Scapin, M., Scarcioffolo, J., Schafer, T., Schanz, S., Schlenstedt, R., Schlickeiser, T., Schmidt, J., Schmoll, P., Schovanek, M., Schroedter, C., Schultz, J., Schultze, A., Schulz, K., Schure, T., Schwab, U., Schwanke, J., Schwarz, S., Schwarzburg, T., Schweizer, S., Schwemmer, A., Segreto, G. H., Sembroski, K., Seweryn, M., Sharma, M., Shayduk, R. C., Shellard, J., Shi, T., Shibata, A., Shibuya, E., Shum, L., Sidoli, M., Sidz, J., Sieiro, M., Sikora, J., Silk, A., Sillanpaa, B. B., Singh, J., Sitarek, C., Skole, R., Smareglia, A., Smith, D., Smith, J., Smith, N., Smith, D., Sobczynska, H., Sol, G., Sottile, M., Sowinski, F., Spanier, D., Spiga, S., Spyrou, V., Stamatescu, A., Stamerra, R., Starling, L., Stawarz, R., Steenkamp, C., Stegmann, S., Steiner, N., Stergioula, R., Sternberger, M., Sterzel, F., Stinzing, M., Stodulski, U., Straumann, E., Strazzeri, L., Stringhetti, A., Suarez, M., Suchenek, R., Sugawara, K. . ., H., S., Sun, A. D., Supanitsky, T., Suric, P., Sutcliffe, J., Syke, M., Szanecki, T., Szepieniec, A., Szostek, G., Tagliaferri, H., Tajima, H., Takahashi, K., Takahashi, L., Takalo, H., Takami, C., Talbot, J., Tammi, M., Tanaka, S., Tanaka, J., Tasan, M., Tavani, L. A., Tejedor, I., Telezhinsky, P., Temnikov, C., Tenzer, Y., Terada, R., Terrier, M., Teshima, V., Testa, D., Tezier, D., Thuermann, L., Tibaldo, O., Tibolla, A., Tiengo, M., Tluczykont, C. J., Todero, F., Tokanai, M., Tokarz, K., Toma, K., Torii, M., Tornikoski, D. F., Torre, M., Torre, G., Tosti, T., Totani, C., Toussenel, G., Tovmassian, P., Travnicek, M., Trifoglio, I., Troyano, K., Tsingano, H., Ueno, K., Umehara, S. S., Upadhya, T., Usher, M., Uslenghi, J. F., Valdes Galicia, P., Vallania, G., Vallejo, W. v., Driel, C. v., Eldik, J., Vandenbrouke, J., Vanderwalt, H., Vankov, G., Vasileiadi, V., Vassiliev, D., Veberic, I., Vega, S., Vercellone, S., Vergani, C., Veyssiere, J. P., Vialle, A., Viana, M., Videla, P., Vincent, S., Vincent, J., Vink, N., Vlahaki, L., Vlaho, P., Vogler, A., Vollhardt, H. . ., P., S., Vorobiov, C., Vuerli, V., Waegebaert, R., Wagner, R. G., Wagner, S., Wagner, S. P., Wakely, R., Walter, T., Walther, K., Warda, R., Warwick, P., Wawer, R., Wawrzaszek, N., Webb, P., Wegner, A., Weinstein, Q., Weitzel, R., Welsing, M., Werner, H., Wetteskind, R., White, A., Wierzcholska, S., Wiesand, M., Wilkinson, D. A., William, R., Willingale, K., Winiarski, R., Wischnewski, L., Wisniewski, M., Wood, A., Woernlein, Q., Xiong, K. K., Yadav, H., Yamamoto, T., Yamamoto, R., Yamazaki, S., Yanagita, J. M., Yebra, D., Yelo, A., Yoshida, T., Yoshida, T., Yoshikoshi, V., Zabalza, M., Zacharia, A., Zajczyk, R., Zanin, A., Zdziarski, A., Zech, A., Zhao, X., Zhou, K., Zietara, J., Ziolkowski, P., Ziolkowski, V., Zitelli, C., Zurbach, P., Zychowski, Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), APC - Astrophysique des Hautes Energies (APC - AHE), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Dipartimento di Astronomia, Universita degli Studi di Bologna, Università di Bologna [Bologna] (UNIBO)-Università di Bologna [Bologna] (UNIBO), Centre de Physique des Particules de Marseille (CPPM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Aix Marseille Université (AMU), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, CTA, Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Galaxies, Etoiles, Physique, Instrumentation (GEPI), Laboratoire d'Annecy de Physique des Particules (LAPP), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Dipartimento di Astronomia, Universita degli Studi di Bologna, Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO)-Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO), and High Energy Astrophys. & Astropart. Phys (API, FNWI)
- Subjects
Next generation Cherenkov telescopes ,Ciencias Físicas ,01 natural sciences ,7. Clean energy ,TeV GAMMA-RAY ASTRONOMY ,Observatory ,Air showers ,HESS ,Cherenkov Telescopes ,010303 astronomy & astrophysics ,MISSION ,SUPERNOVA REMNANT W44 ,TELESCOPE ,ASTRONOMY ,EMISSION ,Physics ,ta213 ,[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE] ,Settore FIS/01 - Fisica Sperimentale ,Astrophysics::Instrumentation and Methods for Astrophysics ,TeV gamma-ray astronomy ,ddc:540 ,CIENCIAS NATURALES Y EXACTAS ,[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE] ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Air shower ,AIR SHOWERS ,Astrophysics::High Energy Astrophysical Phenomena ,0103 physical sciences ,Preparatory phase ,ta115 ,TeV gamma-ray astronomy Air showers Cherenkov Telescopes ,010308 nuclear & particles physics ,business.industry ,CHERENKOV TELESCOPES ,Física ,Astronomy ,Institut für Physik und Astronomie ,Astronomy and Astrophysics ,ASTROFÍSICA ,Cherenkov Telescope Array ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Astronomía ,Design study ,Telecommunications ,business - Abstract
The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project., La lista completa de autores puede consultarse en el documento o en la página web de la revista., Facultad de Ingeniería
- Published
- 2013
- Full Text
- View/download PDF
48. The camera of the fifth H.E.S.S. telescope. Part I: System description
- Author
-
C. Goffin, J. L. Panazol, J. F. Glicenstein, P. Mugnier, T. Le Flour, D. Besin, E. Delagnes, P. Espigat, B. Degrange, N. Geffroy, P. Corona, G. Maurin, W. Bertoli, J.-P. Tavernet, J. Prast, P. Ghislain, B. Giebels, J. M Dubois, B. Lieunard, L. Journet, F. Toussenel, Michael Punch, S. Lees, Olivier Martineau-Huynh, S. Royer, P. Nayman, Yassir Moudden, S. Rivoire, P. Maritaz, J. F. Huppert, G. Lamanna, F. Krayzel, P. Y David, A. Fiasson, I. Gomes Monteiro, P. Venault, G. Fontaine, P. Gauron, L. Brunetti, L. Guevara Riveros, M. Compin, S. Hormigos, J. M. Parraud, F. Feinstein, M. de Naurois, J. Mehault, D. Vincent, M. Sanguillon, H. Zaghia, J. Bolmont, B. Khélifi, E. Edy, D. Fernandez, G. Vasileiadis, P. Manigot, L.-M. Chounet, P. Vincent, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC), AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire Leprince-Ringuet (LLR), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire Univers et Particules de Montpellier (LUPM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Montpellier 2 - Sciences et Techniques (UM2), HESS, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), APC - Astrophysique des Hautes Energies (APC - AHE), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Dipartimento di Astronomia, Universita degli Studi di Bologna, Università di Bologna [Bologna] (UNIBO)-Università di Bologna [Bologna] (UNIBO), Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), and Université de Montpellier (UM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Astroparticle physics ,Physics ,Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Pixel ,Cherenkov detector ,business.industry ,Astronomy ,FOS: Physical sciences ,Reflector (antenna) ,Instrumentation and Detectors (physics.ins-det) ,law.invention ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Telescope ,Cardinal point ,Software ,law ,High Energy Stereoscopic System ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,business ,Astrophysics - Instrumentation and Methods for Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Instrumentation ,Instrumentation and Methods for Astrophysics (astro-ph.IM) - Abstract
In July 2012, as the four ground-based gamma-ray telescopes of the H.E.S.S. (High Energy Stereoscopic System) array reached their tenth year of operation in Khomas Highlands, Namibia, a fifth telescope took its first data as part of the system. This new Cherenkov detector, comprising a 614.5 m^2 reflector with a highly pixelized camera in its focal plane, improves the sensitivity of the current array by a factor two and extends its energy domain down to a few tens of GeV. The present part I of the paper gives a detailed description of the fifth H.E.S.S. telescope's camera, presenting the details of both the hardware and the software, emphasizing the main improvements as compared to previous H.E.S.S. camera technology., Comment: 16 pages, 13 figures, accepted for publication in NIM A
- Published
- 2013
- Full Text
- View/download PDF
49. Origin of macroscopic effects on hardened Mosfet devices following low temperature (90 K) ionizing irradiation
- Author
-
E. Delagnes, L. P. Le Meur, E. Orsier, R. Truche, N. Fourches, and J. de Pontcharra
- Subjects
Materials science ,business.industry ,Physics::Medical Physics ,Transistor ,Dose dependence ,Ionizing irradiation ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Threshold voltage ,law.invention ,Gate oxide ,law ,MOSFET ,Optoelectronics ,Electrical and Electronic Engineering ,business ,Dose rate - Abstract
Macroscopic effects are observed on MOS transistors after low temperature ionizing irradiation : the dose dependence of the threshold voltage shift and significantly a novel dose rate dependence. The microscopic origin of these effects is thorougly discussed. A quantitative modeling of the experimental results is made and we find that the subsequent formulation allows a determination of the hole stochastic transport parameter α in the gate oxide. The threshold voltage shift as a function of dose rate can then be predicted.
- Published
- 1995
- Full Text
- View/download PDF
50. Development of a Readout Electronic for the Measurement of Ionization in Liquid Xenon Compton Telescope Containing Micro-Patterns
- Author
-
L. Scotto Lavina, O. Lemaire, O. Gevin, J.-P. Cussonneau, Dominique Thers, S. Duval, E. Delagnes, Wen-Hao Chen, A. F. Mohamad Hadi, T. Oger, E. Morteau, J. Donnard, Laboratoire SUBATECH Nantes (SUBATECH), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Nantes (UN)-Mines Nantes (Mines Nantes), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, and Mines Nantes (Mines Nantes)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Noise measurement ,010308 nuclear & particles physics ,business.industry ,Compton telescope ,Detector ,Electrical engineering ,chemistry.chemical_element ,MicroMegas detector ,01 natural sciences ,7. Clean energy ,Capacitance ,Noise (electronics) ,Optics ,Xenon ,chemistry ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,business ,Dark current - Abstract
We report on the electronic dedicated to the acquisition of the ionization current signal induced by the interactions of γ-rays inside a Compton telescope with Liquid Xenon. In order to achieve sub-millimeter resolution we successfully adapted an existing ASIC originally designed for semi-conductor detector with low input capacitance and low dark current called IDeF-x-Lxe, and fabricated in a standard 0.35 μm CMOS technology. With a copper pad area of 0.25 in2 of our first prototype, and a Micromegas micromesh located 50 μm above the anode used as Frisch grid, the noise measurement shows an ENC of ~100 erms- thanks to a meticulous setup. Each part of the coupling between the detector and the electronic has been specially tailored to cope with temperature constraints and with noise requirements.
- Published
- 2012
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.