1. Memory Induced by Recurrent Drought Stress in Chirca (Acanthostyles buniifolius)
- Author
-
Tamara Heck, Gustavo Maia Souza, Marcus Vinícius Fipke, Rubens Antonio Polito, Andrisa Balbinot, Fabiane Pinto Lamego, Edinalvo Rabaioli Camargo, and Luis Antonio de Avila
- Subjects
climate change ,chirca ,priming effect ,recurrent stress ,Botany ,QK1-989 - Abstract
To thrive as a successful weed in natural pastures, a plant must have not only highly competitive ability, but also the resilience to endure environmental stress and rapidly reclaim space once those stressors diminish and the other non-stress-tolerant plants die. Acanthostyles buniifolius [(Hook. ex Hook. & Arn.) R.M.King & H.Rob.], known as chirca, is a widely spread weed in South American natural pastures. It is known for its remarkable ability to withstand environmental stress and flourish in environments with prevalent stressors. The study evaluated the memory effect of water stress (drought) in chirca plants. The experiment was conducted in a greenhouse in a randomized block design with three replications. Treatments included Control = control plants without water deficit kept at 100% of the soil water-holding capacity (WHC); Primed plants = plants that were primed with water stress at 141 days after emergence (DAE) and received recurrent stress at 164 DAE; Naïve plants: plants that only experienced water stress at 164 DAE. To reach water stress, plants were not watered until the soil reached 15% of the soil’s WHC, which occurred ten days after water suppression in the priming stress and nine days after water suppression in the second stress. During periods without restriction, the pots were watered daily at 100% of the WHC. Primed plants exposed to water deficit better-maintained water status compared to the naïve plants; glycine betaine is an important defense mechanism against water deficit in chirca; naïve plants have a higher concentration of proline than plants under recurrent stress, demonstrating the greater need for protection against oxidative damage and needs greater osmotic regulation. Recurrent water deficits can prepare chirca plants for future drought events. These results show that chirca is a very adaptative weed and may become a greater threat to pastures in South America due to climate change, especially if drought becomes more frequent and severe.
- Published
- 2025
- Full Text
- View/download PDF