5 results on '"Egidos Plaja, N."'
Search Results
2. Detector technologies for CLIC
- Author
-
Dannheim, D., Krüger, K., Levy, A., Nürnberg, A., Sicking, E., Abusleme Hoffman, A.C., Parès, G., Fritzsch, T., Rothermund, M., Jansen, H., Sefkow, F., Velyka, A., Schwandt, J., Perić, I., Emberger, L., Graf, C., Macchiolo, A., Simon, F., Szalay, M., van der Kolk, N., Abramowicz, H., Benhammou, Y., Borysov, O., Borysova, M., Joffe, A., Kananov, S., Levy, I., Eigen, G., Bugiel, R., Bugiel, S., Firlej, M., Fiutowski, T.A., Idzik, M., Moroń, J., Świentek, K.P., Terlecki, P., Brückman de Renstrom, P., Turbiarz, B., Wojtoń, T., Zawiejski, L.K., Firu, E., Ghenescu, V., Neagu, A.T., Preda, T., Boyko, I., Nefedov, Yu., Rymbekova, A., Sapronov, A., Shelkov, G., Zhemchugov, A., Ruiz-Jimeno, A., Vila, I., Fullana, E., Fuster, J., Gomis Lopez, P., Perelló, M., Villarejo, M.A., Vos, M., Alozy, J., Alipour Tehrani, N., Arominski, D., Ballabriga Sune, R., Boyer, F., Brondolin, E., Buckland, M., Campbell, M., Dette, K., Duarte Ramos, F., Egidos Plaja, N., Elsener, K., Fiergolski, A., Fuentes Rojas, C., Grefe, C., Hynds, D., Klempt, W., Kremastiotis, I., Kröger, J., Kulis, S., Leogrande, E., Linssen, L., Llopart Cudie, X., Lucaci-Timoce, A., Munker, M., Musa, L., Nuiry, F.-X., Perez Codina, E., Pernegger, H., Petrič, M., Pitters, F., Quast, T., Redford, S., Riedler, P., Roloff, P., Sailer, A., Santin, E., Schnoor, U., Sielewicz, K., Simoniello, R., Snoeys, W., Spannagel, S., Sroka, S., Ström, R., Valerio, P., van Dam, S., van der Kraaij, E., Vǎnát, T., Viazlo, O., Vicente Barreto Pinto, M., Weber, M.A., Williams, M., Wolters, K., Benoit, M., Iacobucci, G., Sultan, D M S, Bosley, R.R., Price, T., Watson, M.F., Watson, N.K., Winter, A.G., Goldstein, J., Green, S., Marshall, J.S., Thomson, M.A., Xu, B., Casse, G., Vossebeld, J., Coates, T., Salvatore, F., Repond, J., Xia, L., Kenney, C., and Tomada, A.
- Subjects
Physics::Instrumentation and Detectors ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Detectors and Experimental Techniques ,physics.ins-det - Abstract
The Compact Linear Collider (CLIC) is a high-energy high-luminosity linear electron-positron collider under development. It is foreseen to be built and operated in three stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. It offers a rich physics program including direct searches as well as the probing of new physics through a broad set of precision measurements of Standard Model processes, particularly in the Higgs-boson and top-quark sectors. The precision required for such measurements and the specific conditions imposed by the beam dimensions and time structure put strict requirements on the detector design and technology. This includes low-mass vertexing and tracking systems with small cells, highly granular imaging calorimeters, as well as a precise hit-time resolution and power-pulsed operation for all subsystems. A conceptual design for the CLIC detector system was published in 2012. Since then, ambitious R&D programmes for silicon vertex and tracking detectors, as well as for calorimeters have been pursued within the CLICdp, CALICE and FCAL collaborations, addressing the challenging detector requirements with innovative technologies. This report introduces the experimental environment and detector requirements at CLIC and reviews the current status and future plans for detector technology R&D.
- Published
- 2019
3. CERN Yellow Reports: Monographs, Vol 1 (2019): Detector Technologies for CLIC
- Author
-
Abusleme Hoffman, A. C., Parès, G., Emberger, L., Sroka, S., Ström, R., Valerio, P., van Dam, S., van der Kraaij, E., Vǎnát, T., Viazlo, O., Vicente Barreto Pinto, M., Weber, M. A., Williams, M., Graf, C., Wolters, K., Benoit, M., Iacobucci, G., Sultan, D. M. S., Bosley, R. R., Price, T., Watson, M. F., Watson, N. K., Winter, A. G., Goldstein, J., Macchiolo, A., Green, S., Marshall, J. S., Thomson, M. A., Xu, B., Casse, G., Vossebeld, J., Coates, T., Salvatore, F., Repond, J., Xia, L., Simon, F., Kenney, C., Tomada, A., Szalay, M., van der Kolk, N., Abramowicz, H., Benhammou, Y., Borysov, Oleksandr, Borysova, M., Fritzsch, T., Joffe, A., Kananov, S., Levy, A., Levy, I., Eigen, G., Bugiel, R., Bugiel, S., Firlej, M., Fiutowski, T. A., Idzik, M., Rothermund, M., Moroń, J., Świentek, K. P., Terlecki, P., Brückman de Renstrom, P., Turbiarz, B., Wojtoń, T., Zawiejski, L. K., Firu, E., Ghenescu, V., Neagu, A. T., Jansen, H., Preda, T., Boyko, I., Nefedov, Yu., Rymbekova, A., Sapronov, A., Shelkov, G., Zhemchugov, A., Ruiz-Jimeno, A., Vila, I., Fullana, E., Krüger, K., Fuster, J., Gomis Lopez, P., Perelló, M., Villarejo, M. A., Vos, M., Alozy, J., Alipour Tehrani, N., Arominski, D., Ballabriga Sune, R., Boyer, F., Sefkow, F., Brondolin, E., Buckland, M., Campbell, M., Dannheim, D., Dette, K., Duarte Ramos, F., Egidos Plaja, N., Elsener, K., Fiergolski, A., Fuentes Rojas, C., Velyka, A., Grefe, C., Hynds, D., Klempt, W., Kremastiotis, I., Kröger, J., Kulis, S., Leogrande, E., Linssen, L., Llopart Cudie, X., Lucaci-Timoce, A., Schwandt, J., Munker, M., Musa, L., Nürnberg, A., Nuiry, F.-X., Perez Codina, E., Pernegger, H., Petrič, M., Pitters, F., Quast, T., Redford, S., Perić, I., Riedler, P., Roloff, P., Sailer, A., Santin, E., Schnoor, U., Sicking, E., Sielewicz, K., Simoniello, R., Snoeys, W., and Spannagel, S.
- Subjects
Physics::Instrumentation and Detectors ,Physics::Accelerator Physics ,High Energy Physics::Experiment - Abstract
CERN 152 pp. (2019). doi:10.23731/CYRM-2019-001, The Compact Linear Collider (CLIC) is a high-energy high-luminosity linear electron-positron collider under development. It is foreseen to be built and operated in three stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. It offers a rich physics program including direct searches as well as the probing of new physics through a broad set of precision measurements of Standard Model processes, particularly in the Higgs-boson and top-quark sectors. The precision required for such measurements and the specific conditions imposed by the beam dimensions and time structure put strict requirements on the detector design and technology. This includes low-mass vertexing and tracking systems with small cells, highly granular imaging calorimeters, as well as a precise hit-time resolution and power-pulsed operation for all subsystems. A conceptual design for the CLIC detector system was published in 2012. Since then, ambitious R&D programmes for silicon vertex and tracking detectors, as well as for calorimeters have been pursued within the CLICdp, CALICE and FCAL collaborations, addressing the challenging detector requirements with innovative technologies. This report introduces the experimental environment and detector requirements at CLIC and reviews the current status and future plans for detector technology R&D., Published by CERN
- Published
- 2019
- Full Text
- View/download PDF
4. CMOS Monolithic Pixel Sensors based on the Column-Drain Architecture for the HL-LHC Upgrade
- Author
-
Walter Snoeys, N. Egidos Plaja, Thanushan Kugathasan, P. Breugnon, T. Hirono, Hans Krüger, M. Barbero, P. Rymaszewski, C. Bespin, P. Pangaud, Y. Degerli, Tianyang Wang, Petra Riedler, I. Caicedo, Tomasz Hemperek, C. A. Marin Tobon, I. Berdalovic, Heinz Pernegger, Enrico Junior Schioppa, F. Guilloux, N. Wermes, Roberto Cardella, M. Vandenbroucke, S. Godiot, K. Moustakas, Centre de Physique des Particules de Marseille (CPPM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Aix Marseille Université (AMU), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Moustakas, K., Barbero, M., Berdalovic, I., Bespin, C., Breugnon, P., Caicedo, I., Cardella, R., Degerli, Y., Egidos Plaja, N., Godiot, S., Guilloux, F., Hemperek, T., Hirono, T., Krueger, H., Kugathasan, T., Marin Tobon, C. A., Pangaud, P., Pernegger, H., Schioppa, E. J., Snoeys, W., Vandenbroucke, M., Wang, T., Wermes, N., and Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nuclear and High Energy Physics ,noise ,Pixel detectors ,Physics - Instrumentation and Detectors ,Fabrication ,FOS: Physical sciences ,Novel high voltage and resistive CMOS sensors [6] ,fabrication ,01 natural sciences ,Capacitance ,030218 nuclear medicine & medical imaging ,Front and back ends ,03 medical and health sciences ,0302 clinical medicine ,semiconductor detector: pixel ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Detectors and Experimental Techniques ,Instrumentation ,physics.ins-det ,radiation: damage ,Physics ,semiconductor detector: technology ,Large Hadron Collider ,DMAPS ,Pixel ,irradiation ,010308 nuclear & particles physics ,business.industry ,tracking detector: upgrade ,ATLAS experiment ,Front end electronics ,Instrumentation and Detectors (physics.ins-det) ,ATLAS ,CMOS ,efficiency ,Electrode ,electronics: readout ,Optoelectronics ,dispersion ,business ,performance ,semiconductor detector: design - Abstract
Depleted Monolithic Active Pixel Sensors (DMAPS) constitute a promising low cost alternative for the outer layers of the ATLAS experiment Inner Tracker (ITk). Realizations in modern, high resistivity CMOS technologies enhance their radiation tolerance by achieving substantial depletion of the sensing volume. Two DMAPS prototypes that use the same “column-drain” readout architecture and are based on different sensor implementation concepts named LF-Monopix and TJ-Monopix have been developed for the High Luminosity upgrade of the Large Hadron Collider (HL-LHC). Depleted Monolithic Active Pixel Sensors (DMAPS) constitute a promising low cost alternative for the outer layers of the ATLAS experiment Inner Tracker (ITk). Realizations in modern, high resistivity CMOS technologies enhance their radiation tolerance by achieving substantial depletion of the sensing volume. Two DMAPS prototypes that use the same "column-drain" readout architecture and are based on different sensor implementation concepts named LF-Monopix and TJ-Monopix have been developed for the High Luminosity upgrade of the Large Hardon Collider (HL-LHC). LF-Monopix was fabricated in the LFoundry 150 nm technology and features pixel size of $50x250~\mu m^{2}$ and large collection electrode opted for high radiation tolerance. Detection efficiency up to 99\% has been measured after irradiation to $1\cdot10^{15}~n_{eq}/cm^{2}$. TJ-Monopix is a large scale $(1x2~cm^{2})$ prototype featuring pixels of $36x40~\mu m^{2}$ size. It was fabricated in a novel TowerJazz 180 nm modified process that enables full depletion of the sensitive layer, while employing a small collection electrode that is less sensitive to crosstalk. The resulting small sensor capacitance ($
- Published
- 2018
- Full Text
- View/download PDF
5. Monolithic pixel development in TowerJazz 180 nm CMOS for the outer pixel layers in the ATLAS experiment
- Author
-
Luciano Musa, Jerome Rousset, Roberto Cardella, Nuria Egidos Plaja, Christian Johann Riegel, Craig Buttar, Tianyang Wang, Cesar Augusto Marin Tobon, K. Moustakas, I. Berdalovic, Bastien Blochet, Enrico Junior Schioppa, Carla Sbarra, Richard Bates, Tomasz Hemperek, Marco Dalla, Carlos Solans Sanchez, Heinz Pernegger, Petra Riedler, Douglas Schaefer, Dima Maneuski, Walter Snoeys, Jacobus Willem Van Hoorne, Abhishek Sharma, Herve Mugnier, Norbert Wermes, Thanushan Kugathasan, Berdalovic, I., Bates, R., Buttar, C., Cardella, R., Egidos Plaja, N., Hemperek, T., Hiti, B., van Hoorne, J. W., Kugathasan, T., Mandic, I., Maneuski, D., Marin Tobon, C. A., Moustakas, K., Musa, L., Pernegger, H., Riedler, P., Riegel, C., Schaefer, D., Schioppa, E. J., Sharma, A., Snoeys, W., Solans Sanchez, C., and Wermes, T. Wang and N.
- Subjects
Materials science ,Physics::Instrumentation and Detectors ,Integrated circuit ,7. Clean energy ,01 natural sciences ,Capacitance ,030218 nuclear medicine & medical imaging ,law.invention ,03 medical and health sciences ,0302 clinical medicine ,law ,0103 physical sciences ,Detectors and Experimental Techniques ,Instrumentation ,Radiation hardening ,Mathematical Physics ,CMOS sensor ,Pixel ,010308 nuclear & particles physics ,business.industry ,ATLAS experiment ,Detector ,Electronic detector readout concepts (solid-state) ,Front-end electronics for detectorreadout ,Particle tracking detectors ,Radiation-hard detectors ,CMOS ,Optoelectronics ,business - Abstract
The upgrade of the ATLAS tracking detector (ITk) for the High-Luminosity Large Hadron Collider at CERN requires the development of novel radiation hard silicon sensor technologies. Latest developments in CMOS sensor processing offer the possibility of combining high-resistivity substrates with on-chip high-voltage biasing to achieve a large depleted active sensor volume. We have characterised depleted monolithic active pixel sensors (DMAPS), which were produced in a novel modified imaging process implemented in the TowerJazz 180 nm CMOS process in the framework of the monolithic sensor development for the ALICE experiment. Sensors fabricated in this modified process feature full depletion of the sensitive layer, a sensor capacitance of only a few fF and radiation tolerance up to $10^{15} n_{\mathrm{eq}}/ \mathrm{cm}^2$. This paper summarises the measurements of charge collection properties in beam tests and in the laboratory using radioactive sources and edge TCT. The results of these measurements show significantly improved radiation hardness obtained for sensors manufactured using the modified process. This has opened the way to the design of two large scale demonstrators for the ATLAS ITk. To achieve a design compatible with the requirements of the outer pixel layers of the tracker, a charge sensitive front-end taking 500 nA from a 1.8 V supply is combined with a fast digital readout architecture. The low-power front-end with a 25 ns time resolution exploits the low sensor capacitance to reduce noise and analogue power, while the implemented readout architectures minimise power by reducing the digital activity.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.